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ABSTRACT   

The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of 
structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and 
extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and 
environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) 
techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse 
techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity 
assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of 
FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification 
techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental 
frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model 
measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small 
masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of 
damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with 
multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective 
functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly 
algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully 
predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location. 

Keywords: Structural health monitoring, damage detection, wind turbine blade, fuzzy finite element model updating, 
uncertainty quantification, particle swarm optimization, firefly algorithm 

Abbreviations  

 

1. INTRODUCTION 

Advancement of technologies which harvest the earth’s natural resources for power generation purposes have led to 
harnessing clean energy from sources such as solar, biomass, geothermal and wind. Developments in material technology 
and availability of resources have contributed to the significant growth, depicted in Figure 1, observed in the wind energy 
industry [1]. 

EMA Experimental modal analysis LE Leading edge 
FA Firefly algorithm MCS Monte Carlo simulation 
FEM Finite element model NI National Instruments 
FEMU Finite element model updating O&M Operation and maintenance 
FFEMU Fuzzy finite element model updating PSO Particle swarm optimization 
FRF Frequency response function SHM Structural health monitoring 
GOA Global optimization algorithm TE Trailing edge 
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Figure 1 - Global annual installed wind capacity 2000-2020 [1] 

Predictions from the global wind energy council forecast annual installed wind capacity to maintain a steady growth 
moving towards 2020 [1], therefore increasing cost effectiveness of this resource is of paramount importance. Costs 
associated with operation and maintenance (O&M) of wind turbines can be significant, estimated at 20-30% of the lifecycle 
costs for onshore turbines and 30% of the higher lifecycle costs for their offshore counterparts [2]. In particular, blades are 
a crucial component in terms of economic factors, structural safety and energy production; however, materials and 
manufacture methods lead to an increased susceptibility to degradation from moisture absorption, leading edge erosion, 
fatigue and delamination. Current condition monitoring practices include visual inspections at predefined intervals, 
ultrasonic testing and acoustic emissions testing. 

Although these methods are non-destructive, they are subjective due to dependence on the skill of the inspector and provide 
no information on the structural state between monitoring intervals. Techniques classified as structural health monitoring 
(SHM) have been developed to continuously monitor the health of a structure as opposed to evaluation of the structure at 
predefined intervals. The ability to continuously monitor a wind turbine will facilitate early prediction of damage, enabling 
maintenance to be scheduled at convenience and mitigations to be introduced before damage severity increases. 

Physics based SHM techniques such as calibration of finite element models (FEM) by inverse techniques, known as finite 
element model updating (FEMU), have potential for damage severity assessment. Deterministic FEMU is an optimization 
problem where an objective function, containing the difference between experimental and analytical modal parameters, is 
minimized to provide an updated set of model parameters. Although these methods are beneficial in theory, idealization, 
discretization and model parameter errors are often encountered in FEMU and affect the integrity of the investigation [3]. 
Probabilistic and alternative uncertainty quantification methods can use uncertain measurement data and FEMs to 
propagate uncertainty into the updated parameters. 

Probabilistic FEMU methods utilize knowledge of the random distribution of measured modal parameters to determine 
statistical indices of model parameters. A probabilistic Bayesian damage identification framework was investigated on an 
operational footbridge by Behmanesh and Moaveni [4, 5]. The influence of continuously collected data on the probabilistic 
methodology was investigated and the results compared to a deterministic damage identification [4]. Further research by 
Behmanesh and Moaveni [5] utilized the Bayesian FEMU methodology for damage detection of the structure under varying 
environmental conditions. Within both studies, the authors simulated damage through addition of experimental mass to 
segments of the bridge and considered the added mass of each segment as updating parameters. 

The link between probabilistic and fuzzy logic was investigated by Chandrashekhar and Ganguli [6] who used probabilistic 
methods for FEMU to update a cantilever beam exposed to varying damage extents. A probabilistic Monte Carlo simulation 
(MCS) was used to determine variation in a damage evaluation parameter (frequency) resulting from structural damage 
and material uncertainty. The obtained results were used as an input to a fuzzy logic system providing a visualization of 
the damage detected on the structure. This link was further developed by Simoen et al [7] who used both Bayesian and 
non-probabilistic (fuzzy) methods to model uncertainty in FEMU and successfully updated a reinforced concrete beam. 
Due to the fundamentally different nature of uncertainty modelling, the authors concluded that both approaches were 
appropriate, however, suitability of the method was found to be problem dependent. 

Probabilistic methods are often dependent on specification of probability density functions to describe uncertain quantities. 
In construction of these, information is often unavailable or subject to engineering judgement and therefore the models 
created can be subjective. Alternative uncertainty quantification methods, such as fuzzy finite element model updating 
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(FFEMU) provide the benefit of not requiring any assumptions regarding the probability distribution of uncertain variables. 
FFEMU was discussed by Erdogan and Bakir [8] to investigate the effect of measurement noise on measured modal 
parameters. Global optimization algorithms (GOA) were utilized to determine the global optimum of the objective function 
at each fuzzy membership level with comparisons between membership functions of fuzzy updated parameters and results 
obtained via MCS methods. FFEMU was further investigated by Liu and Duan [9] for a full-scale bridge structure. This 
work considered the uncertain structural parameters as fuzzy variables, which led to fuzzification of the objective function 
for updating. Approaches reported in both [8] and [9] involve model updating of structures with data containing reducible 
uncertainty. 

In this paper, the non-probabilistic FFEMU process is detailed and used for structural modification assessment of a small-
scale wind turbine blade within laboratory conditions. This methodology enabled identification of the magnitude and 
location of structural modification whilst considering the uncertainty propagation in updated parameters. Two experimental 
campaigns, in baseline and altered states, were conducted to obtain the natural frequencies of the blade to be used as the 
target for updating studies. A numerical model of the blade was constructed with four added lumped mases, which were 
used as the updating parameters. Objective functions were constructed and minimized at each -level using both particle 
swarm optimization (PSO) algorithm and firefly algorithm (FA). Fuzzy updated parameters, which minimized the objective 
function at each fuzzy membership level predicted the location and magnitude of structural modification whilst accounting 
for uncertainty associated with these parameters. 

2. THEORY 

 Fuzzy sets and -level technique 

In classical set theory, the statement about an object belonging to a particular set is described in binary terms, providing 
sharply defined boundaries. In real life, however, for variables such as those used in structural models, this binary 
classification is idealized and no longer applicable due to the uncertainty associated with the variables. Fuzzy set method, 
developed by Zadeh [10], is a powerful mechanism to quantify uncertainty as it assigns each object with a degree of 
membership within a particular set through prescription of a membership function. For a fuzzy set ܣሚ, the membership 
function is represented by  A

x   for all values of x in the domain X: 

       , | , ( ) 0,1
A A

A x x x X x    
  (1) 

A membership function  A
x   value equal to one indicates that the element is a member of set A , while a value of zero 

indicates x is undoubtedly not a member. A value between these two extremes indicates a degree of belief in the variable 
belonging to the set. The -level technique, often used in fuzzy arithmetic operations, involves decomposing the 
membership function of fuzzy variables into a number of levels, enabling a deterministic interval to be obtained for each 
level. 

Deterministic FEMU can be considered as a constrained optimization problem in which the goal is to minimize an objective 
function containing the variation between analytical and experimental modal parameters. As this objective function is a 
function of the structural parameters, minimization leads to an updated set of structural parameters whose corresponding 
modal response parameters closely match the experimental response parameters. 
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Figure 2 - FFEMU process 

 Fuzzy finite element model updating 

 Theory 

FFEMU involves assigning membership functions values to the experimental responses obtained to introduce uncertainty, 
then propagation of this uncertainty through the model to calculate the uncertainty associated with the structural 
parameters. To do this, membership functions are divided into a number of levels (m), an objective function is formulated 
at each of the m levels and minimized to obtain the updated structural parameters at that level. Finally, the structural 
parameters at each level are then assembled to provide fuzzy updated parameters (Figure 2). The objective functions used 
for updating each of the levels are detailed in Section 2.4. 

 Objective functions 

During FFEMU, two objective functions, a deterministic one and a fuzzy one, are required dependent on the level to be 
updated. The deterministic objective function, used for level =1, considering only frequency values for updating [11] is: 

       
2

1

n
a e e
i i i

i

f   


   θ θ θ  (2) 

where  represents eigenvalue (frequency), superscripts a and e refer to analytical and experimental values, respectively, 
and n is the number of frequencies considered. 

A fuzzy objective function, is required for subsequent -levels as these levels require the calculation of an interval updating 
parameter vector which minimizes the deviation between analytical and experimental modal parameters at the lower and 
upper bounds of the level respectively. A fuzzy objective function of this nature can be written as [8]: 

          
2

1

n TI I T I I I
i i i i

i

f


    θ r θ W r θ r θ Wr θ  (3) 

   ( )a e eI I
i i i i     r θ θ  (4) 

    a e eI I
i i ii       

r θ θ  (5) 

where I is the interval updating parameter vector, λi
a(I) and ̅ߣi

a(I) are the lower and upper values of analytical eigenvalue, 
respectively, whilst λi

e and ̅ߣi
e
 are the lower and upper values of experimental eigenvalues, respectively, and W is the 

weighting matrix. Variables ri and ̅ܚi are relative modal frequency errors. 

 Optimization algorithms 

A significant challenge in FFEMU is choosing a robust optimization algorithm capable of obtaining the global minimum 
solution of the objective function. Within the solution space, often local minimum solutions are known to exist which may 
cause the algorithm to converge at a non-optimum solution. In addition to this, the relationship between modal and 
structural parameters is generally non-linear in nature and therefore the objective function becomes complex. In this 
research, the applicability of two optimization algorithms, namely FA and PSO, was investigated. 
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 Firefly algorithm 

The FA, developed by Yang [12], is a population based, meta-heuristic algorithm inspired by nature in particular the 
flashing behavior of fireflies. Meta-heuristic algorithms have the advantage of utilizing a combination of randomization 
and local searching to discover new solutions within the search space. Fireflies use bioluminescence, to create unique 
flashing patterns which can be used to attract mating partners, entice potential prey and as a deterring mechanism against 
potential predators [13]. 

FA is based on three fundamental assumptions: 

1. Fireflies are unisex 

2. Attractiveness of fireflies is proportional to their light intensity 

3. The brightness of a firefly is determined by the calculated objective function value 

Crucial to the success of FA is the definition of how light intensity varies and formulation of attractiveness. The light 
intensity, I, of the solution is proportional to the objective function value. The light intensity I(r) decreases with distance 
from the source according to the following equation: 

 
2

( ) r
oI r I e   (6) 

where Io represents the intensity of light at the source, r is the distance from the source and light absorption is modelled 
using the fixed light absorption coefficient, γ, [13]. As stated in the second assumption of the algorithm, attractiveness is 
directly proportional to their light intensity I(r) and therefore attractiveness β can be modelled as:  

 
2

0( ) rr e      (7) 

where β0 is the attractiveness at r=0. The distance between two fireflies Si and Sj is calculated as the Euclidian distance: 

  
2

1

k n

ij i j ik jk
k

r S S




   S S   (8) 

where n denotes the dimensionality of the problem. To define the movement of the ith firefly towards the more attractive 
jth firefly the following equation is used: 

 
2

( )ijr

i i o j i ie     S S S S ε  (9) 

where  is a randomization (mutation) parameter and i is a random vector chosen from a Gaussian distribution. This 
equation consists of three terms, the first indicating the current position of the ith firefly, the second controlling attraction 
towards a more attractive firefly whilst the third term is a randomization term [13]. 

 Particle swarm optimization 

The PSO algorithm is another metaheuristic optimization algorithm based on the way in which a group of animals such as 
a swarm of bees or school of fish search for the optimum feeding location. This nature-inspired algorithm developed by 
Kennedy and Eberhart [14], creates an initial swarm of particles in the solution space which are able to search for the 
optimum solution using their personal knowledge whilst also benefiting from the knowledge of the swarm. As a particle 
moves through the solution space, it has the ability to remember the individually achieved optimum value and the positional 
co-ordinates leading to this value. The particle also benefits from the knowledge of the entire swarm’s optimum position 
and modifying its individual path towards the globally optimum solution. 

In the PSO algorithm, the population of particles is randomly generated within the solution space with a random position 
xi(t) and velocity vi(t). The algorithm calculates an objective function value, often known as a cost value, of each particle 
using the specified objective function. The particles are influenced in their behavior by their individual best position 
pbesti(t) and the optimum position of the swarm denoted as gbest(t). The position xi(t) is updated in each iteration as 
follows:  

 ( 1) ( ) ( 1)i i it t t   x x v   (10) 
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where i is the particle number and t is the iteration number. The velocity of particles vi(t) relative to the personal and global 
optimum solutions is updated at each iteration as follows: 

 1 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i it t c rand t t c rand t t        iv v pbest x gbest x  (11) 

where vi(t) and vi(t+1) represent the initial and updated velocities respectively, γ is the inertial weight, and c1 and c2 are the 
cognitive and social acceleration coefficients, respectively. 

3. PHYSICAL SYSTEM AND EXPERIMENTS  

Experimental modal analysis (EMA) was conducted on a small-scale wind turbine blade in laboratory conditions to obtain 
the modal parameters utilized in subsequent model calibration studies. This section introduces the experimental 
configuration of the blade and provides a description of the employed EMA techniques. A discussion of the experimental 
results from campaigns on the baseline and altered states of the blade is provided in this section. To model uncertainty in 
the updating parameters, uncertainty in the obtained modal parameters is modelled using the framework provided in 
Section 3.3. 

 Experimental configuration 

The test specimen used within this research is a small-scale wind turbine blade from a Fortis turbine with a 5 kW rated 
power output and 5 m rotor diameter. The blade from a domestic scale turbine is manufactured from glass-fiber reinforced 
epoxy composite with a solid E387 airfoil profile cross section and 2.36 m length. Detailed material properties for this test 
specimen were unavailable from the manufacturer with known/measured properties of the blade shown in Table 1. A 
vertically orientated fixed-free configuration of the blade was chosen to simulate the support of an in-service turbine blade 
whilst minimizing lab space required. The root edge was clamped to a heavy base, located on a concrete floor to minimize 
the influence of uncontrolled excitation from the environment. 

The dynamic response of the structure was investigated using EMA techniques, in particular a roving hammer methodology 
to calculate the modal parameters. The impact hammer, a Brüel & Kjær 8206 instrument with a sensitivity of 1.14 mV/N, 
effective mass of 0.1 kg and maximum force of 4,448 N was used to strike the blade in the 26 locations depicted in Figure 
3. To excite the desired frequency range between 0-550Hz, a soft polyurethane tip was used. The risk of poor hammer 
impacts was mitigated through striking each location ten times and averaging the results. The response was measured by 
two miniature piezoelectric accelerometers model Metra KS94B-100 with an individual weight of 3.2 g, voltage sensitivity 
of 98.95 mV/g and operational frequency range of 0.5-28 kHz attached at the tip of the blade (Figure 3). These two 
accelerometers were attached to the trailing edge (TE) and leading edge (LE) using wax, with only one accelerometer 
required to measure the response but the other for comparison and redundancy purposes. Force and acceleration readings 
were taken at a sampling rate of 2,048 Hz with a measurement time of 80 seconds for each impact. The signals were 
digitized with a National Instruments (NI) NI-9234 data acquisition card connected to a NI cDAQ-9174 chassis and laptop. 
NI LabView software was used for signal processing. 

 Experimental modal analysis 

To ensure confidence in the results and for comparison purposes, two system identification algorithms were used to 
determine the modal parameters of the blade. Accelerance frequency response functions (FRFs) describe the dynamic 
behavior of a system in terms of a mathematical model, allowing the extraction of dynamic characteristics. The averaged 
magnitude FRF (AMFRF), similar to the averaged normalized power spectral density [15], was used in this research for 
quick modal frequency identification using peak picking. The AMFRF at location i is defined as: 

 
 

1( ) 

jN

ij
j

i
j

f

AMFRF f
N


 H

=   (12) 

with Nj equal to the number of excitation locations and Hij(f) is the AMFRF estimated from numerous measurements at 
location j. Averaging of FRFs in this manner results in a loss of information regarding the local responses, however, it is 
suitable for determining the global properties of the structure. In addition to AMFRF, a subspace identification (SSI) 
algorithm developed by Overschee and De Moor [16] was used for system identification. 
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3.2.1 Experimental modal analysis results in baseline state 

EMA was conducted in the baseline state, without any structural modifications, to provide a target for further updating 
studies. With no material specifications available from the blades manufacturer, these results will be used to approximate 
the initial material properties of the blade. The AMFRF obtained from both sensors S1 and S2 (Figure 3) are shown in 
Figure 4 indicating peaks in the plot at the same natural frequencies. The first eight natural frequencies are provided in  

Table 2 with modes 1, 2, 3, 5, 6 and 8 identified as the blades bending modes whilst modes 4 and 7 as torsional vibration 
modes. The low first natural frequency is indicative of the high flexibility of the blade. The standard deviations associated 
with each methodology were found to be very low, and near perfect agreement observed between peak picking and SSI, 
therefore, these results are deemed acceptable. 

3.2.2 Experimental modal analysis results in altered state 

In modelling damage on this blade, consideration had to be given to realistic damage location, realistic damage 
representation and preventing permanent structural damage to the test specimen. Typical damage locations of full-scale 
wind turbine blades were investigated by Ataya and Ahmed [17], who carried out visual inspections of ninety nine 100 
kW and 300 kW blades. The authors noted damage in the form of cracking was most likely to occur at around 73% blade 
length and on the TE. This work was in agreement with studies by Ciang et al. [18] which found the TE region, at 72% 
length to be highly susceptible to damage. Based on these observations, the location of the structural alteration in this 
research was chosen to be 70% length on the TE. To non-destructively simulate damage at this location, a structural 
alteration through addition of small masses was introduced. 

This structural alteration will induce a structural change that can be studied in lieu of damage whilst preventing permanent 
damage to the structure. To facilitate this, a thin metal plate was glued to the location specified in Figure 3, which enabled 
the attachment of small magnets. The damage scenario investigated represents addition of 0.405 kg to the blade edge. The 
frequencies obtained through the AMFRF methodology can be seen in Table 3 with percentage reduction compared to 
baseline state highlighted. As shown in Table 3 the effect of added mass vary significantly between 0.4% and 11.8%, 
which is of sufficient magnitude to distinguish between the effects of structural alteration and noise and environmental 
influences in the lab. 

Table 1 – Known/measured properties of experimental wind 
turbine blade 

Property Value 

Length 2.36 m 

Width 0.16 m 

Mass 7.11 kg 

Mass density 2,300 kg/m3 

Profile E387 

 
 
 
 
 
 
 
 
 
 

 
Figure 3 –Impact, sensor and damage locations on 

experimental blade 
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 Fuzzification of experimental results  

To introduce uncertainty into the experimental results, the experimental values obtained in Section 3.2.1 and 3.2.2 were 
used as inputs to the fuzzification process. The AMFRF values shown in Table 3 were considered deterministic values 
with membership values equal one (=1). To account for uncertainty in measurement and system identification, 
experimental data were modelled as symmetric fuzzy numbers with triangular membership functions. Intervals at level 
=0 were chosen based on typical measurement error variance and assumed modelling error variance. The measurement 
error at each -level was defined as [7]: 

 , (1 )D
j jz       (13) 

where σj estimates the standard deviation of measurement error associated with the jth eigenvalue and ݖ incorporates a 
confidence interval of errors into the -level. The modelling error at each -level was defined as [7]: 

 , (1 )G
j j ejz        (14) 

where εj determines the magnitude of the modelling error. For this investigation, it was assumed based on our own 
experimental results reported earlier that σj=0.01 Hz, εj=0.01 represents an assumed 1% modelling error, and ݖ is a function 

 

Table 2- Experimental natural frequencies in baseline state 

 
Table 3 - Comparison of experimental natural frequencies 

between baseline and damaged state 

Mode 
no. 

AMFRF 
frequency 
(Hz) 

Standard 
deviation 
(Hz) 

SSI 
frequency 
(Hz) 

Standard 
deviation 
(Hz) 

1 1.75 0.00 1.75 0.00 

2 11.2 0.00 11.2 0.00 

3 31.3 0.00 31.3 0.00 

4 38.8 0.00 38.8 0.01 

5 61.3 0.00 61.3 0.00 

6 100.4 0.01 100.5 0.00 

7 116.3 0.01 116.4 0.01 

8 149.4 0.01 149.3 0.00 
 

Mode 
no. 

Baseline 
frequency 
(Hz) 

Damaged 
frequency 
(Hz) 

Relative 
difference 
(%) 

1 1.75 1.67 -4.8 

2 11.2 11.1 -0.7 

3 31.3 29.3 -6.6 

4 38.8 34.6 -10.9 

5 61.3 60.7 -1.0 

6 100.4 99.4 -1.0 

7 116.3 115.8 -0.4 

8 149.4 131.8 -11.8 
 

 

Figure 4 -AMFRF results in baseline state - comparison between two sensors highlighting natural frequencies (peaks) occurring at  
the same values 
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of the normal inverse cumulative distribution function. With a 99% confidence interval chosen the corresponding value 
was z=2.58. The interval bounds were then linearly interpolated to obtain the upper and lower bounds of measured data at 
each -level as [7]: 

 , , , ,,e e D G e D G
j j j j j j j   

               
   (15) 

4. RESULTS 

FEMU is an inverse process using the observed dynamic behavior of a system to determine the model parameters. Although 
consideration must be given to uncertainty in experimental techniques, it is common practice within FEMU to assume 
experimental data is accurate and use this data as a target for updating the numerical model. FFEMU breaks from this 
assumption. This section starts with a description of the numerical model constructed for calibration studies. FFEMU of 
the model in its baseline (healthy) state is conducted first to obtain an estimate of the blades material properties. Finally, 
the results of FFEMU for damage identification indicating its location and severity are presented. 

 Numerical model 

A numerical model of the experimental test specimen defined in Section 3.1 was modelled using ABAQUS software as 
shown in Figure 5. The model consists of 9,828 nodes and 1,775 solid elements. The blade was supported with encastre 
boundary conditions imposed upon the bottom face to simulate the clamp configuration within the laboratory experiments. 
An initial estimate of the material properties were obtained from Soden et al. [19] by assuming the blade was an epoxy 
composite with unidirectional glass fiber reinforcement known as E-glass 21xK43 Gevetex. These material properties, 
shown in Table 4, were specified in the initial numerical model prior to updating. These properties were updated as shown 
in Section 3.2.1 to obtain a calibrated baseline FEM. 

 Fuzzy finite element model updating in baseline state 

As discussed in Section 4.1, initial material properties to be used for updating studies can be seen in Table 4, with the 
longitudinal modulus, E1, and in-plane shear modulus, G12, chosen as updating parameters. The first stage of fuzzy updating 
involves the minimization of the deterministic objective function shown in Eq. (2) containing the difference between 
analytical and experimental eigenvalues. Within this work, two algorithms were utilized for this purpose, namely PSO and 
FA. 

To initialize PSO, a swarm of 10 particles were generated with a maximum number of iterations specified as 50. A 
methodology developed by Clerc and Kennedy [20] suggests PSO parameters such as the inertial weight () equal to 0.73 

  

Material property 
Initial 

estimate 
Updated 
(PSO) 

Updated 
(FA) 

Longitudinal modulus, E1 

(GPa) 
53.48 62.14 62.15 

Transverse modulus, E2 
(GPa) 

17.7 17.7 17.7 

In-plane shear modulus, G12 
(GPa) 

5.83 8.37 8.33 

Major Poisson’s ratio, v12 
0.278 0.278 0.278 

Through thickness 
Poisson’s ratio, v23 

0.4 0.4 0.4 

Table 4 - Initial estimate [19] and PSO and FA-updated value of blade 
material properties 

Figure 5 -Blade FEM 
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and the personal/social acceleration coefficients (c1/c2) as both equal to 1.45. At each iteration of the PSO algorithm, 
updated frequency values were obtained using the ABAQUS2Matlab toolbox [13]. The updated deterministic material 
properties E1 and G12 obtained through PSO were found to be 62.14 GPa and 8.37 GPa, respectively (Table 4). The 
objective function value calculated for this solution was 0.0357. 

To initialize FA, a population of 10 particles were generated with the maximum number of iterations specified as 10. The 
light absorption (γ), attraction (β0) and mutation () coefficients were specified as 1, 2 and 0.2, respectively. At each 
iteration of the FA algorithm, updated frequency values were again obtained using the ABAQUS2Matlab toolbox [13]. 
The updated deterministic material properties E1 and G12 obtained through FA were found to be 62.15 GPa and 8.33 GPa 
(Table 4). The objective function value calculated for this solution was 0.0359. 

A comparison between the frequency values obtained for the initial material property specifications and the frequency 
values obtained for the deterministic levels updated by both PSO and FA can be seen in Table 5. The results from both 
algorithms show a significant decrease in the maximum percentage variation obtained with this variation decreasing for 
both algorithms to under 2.5% for the first mode of vibration. The over error in the first bending mode frequency could be 
due to the modelling inaccuracies resulting from idealizing the encastre boundary conditions; further study will involve 
modelling the boundary conditions as springs and including these as updating parameters during model calibration. 

In subsequent stages of fuzzy updating, fuzzy experimental results, calculated through the method described in Section 3.3 
were used to conduct interval model updating at each individual -level. This was achieved through minimization of the 
fuzzy objective function shown in Eq. (3) containing the frequency variation at the lower and upper bounds. Using the 
PSO and FA parameters defined above, the two algorithms were run to obtain interval vectors of updating parameters 
containing the lower and upper values of updated parameter at each -level. The final fuzzy parameters were obtained by 
combining the deterministic and interval valued updating parameters at each level as shown in Figure 6. Comparison 
between the fuzzy updated parameters obtained through both algorithms highlight the coherence between solutions and 
increase the confidence this solution is in fact the global optimum. A slight difference is noted between the results obtained 
in the updating of parameter G12, however, this is thought to be due to the small number of iterations allowed for the FA 
algorithm, with the FA algorithm converging on a higher objective function value at each -level. Time permitting, this 
algorithm will be run again with a greater number of iterations and more detailed investigation into parameters to avoid 
premature convergence. 

Table 5 – Frequency comparison between experimental, initial model, and PSO and FA-updated models in baseline state 

Mode no. 1 2 3 4 5 6 7 8 

Experimental (Hz) 1.75 11.2 31.3 38.8 61.3 100.5 116.4 149.3 

Initial model (Hz) 1.66 10.4 29.0 32.5 56.6 92.9 99.7 138.0 

PSO-updated model (Hz) 1.79 11.2 31.3 38.8 61.2 100.5 117.2 149.3 

FA-updated model (Hz) 1.79 11.2 31.3 38.8 61.1 100.5 117.1 149.3 

Initial model error (%) -5.0 -7.1 -49.3 -25.2 -47.0 -43.6 -20.1 -36.6 

PSO-updated model error (%) 2.46 0.1 0.0 0.0 -0.2 0.0 0.7 0.0 

FA-updated model error (%) 2.44 0.1 0.0 -0.1 -0.2 0.0 0.7 0.0 
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  Fuzzy finite element model updating in altered state 

In this section, FFEMU for damage identification is demonstrated with only a singular experimental modification location 
investigated and natural frequencies of the blade considered as targets for updating. The section begins with the method 
for simulating experimental damage in the numerical model and progresses onto the updating results obtained via PSO and 
FA. 

Figure 6 - Fuzzy updated parameters obtained 
through PSO (black solid line) and FA 

(dashed line) 

 

Figure 7 - Comparison between experimental fuzzy frequencies (red solid line) 
and those obtained through PSO (black solid line) and FA (black dashed line) 

 

Figure 8 - Blade FEM with added 
numerical added masses highlighted.  

 
Table 6 - Deterministic damage identification by PSO and FA 

 
 

Added mass M1 M2 M3 M4 
Objective 

function value 

Experimental (kg) 0.000 0.000 0.405 0.000 - 

PSO-updated (kg) 0.000 0.066 0.393 0.000 0.0537 

FA-updated (kg) 0.000 0.053 0.380 0.000 0.0682 
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 Simulating effects of structural modification 

The updated FEM created in Section 4.2 was utilized in further study to identify magnitude and location of experimentally 
simulated structural alteration on the blades TE. As discussed in Section 3.2.2, structural alteration was simulated 
experimentally through addition of mass to the TE of the blade corresponding to a commonly observed damage location, 
in this case at 70% length. To locate damage on the numerical model, four masses were modelled at defined points along 
the TE, as shown in Figure 8. This enabled the mass value of each individual structural alteration to be considered as an 
updating parameter. With knowledge of experimental alteration location, in addition to common realistic damage locations, 
it was decided to locate more masses in the 50%-75% length region of the blade. This will provide the benefit of accurate 
comparison between experimental and numerical results. 

Updating parameters will be referred to as Mn with n denoting the number of the added mass. Updating for damage 
identification using a similar methodology has been successfully implemented by Behmanesh and Moaveni [4, 5]. Using 
the process defined in Section 3.3, AMFRF results of the blade in the altered state shown in Table 3 were constructed as 
fuzzy numbers with triangular membership functions 

 

 Results of updating with structural alteration 

For the damage identification problem, PSO was initialized with the same parameters as in Section 4.2, however, due to 
the increased dimensionality of the problem, it was decided to carry out 100 iterations of the algorithm to ensure 
convergence. Similarly, FA was initialized with the same parameters as above, also increasing the amount of iterations of 
the algorithm to 30. 

As before, deterministic updating at level =1 was carried out through construction of an objective function and subsequent 
minimization of this function firstly using PSO and then FA. Updating at the deterministic level for both algorithms indicate 
a higher magnitude of mass detected at M3 with the PSO algorithm predicting this damage with a high level of accuracy 
(Table 6). Both algorithms performed well, predicting the experimental mass magnitude to within 3% for PSO and 6.5% 
for FA.  The deterministic frequency values obtained through both methods can be seen in Table 7 with percentage error 
from the baseline highlighted.  

Table 7 - Frequency comparison between experimental, initial model, and PSO and FA-updated models in altered state 

Mode no. 1 2 3 4 5 6 7 8 

Experimental (Hz) 1.67 11.1 29.3 34.6 60.7 99.5 116.8 144.2 

PSO-updated model (Hz) 1.72 11.1 29.1 34.7 60.0 99.8 116.6 143.4 

FA-updated model (Hz) 1.72 11.1 29.3 34.5 59.9 99.6 115.3 142.6 

PSO-updated model error (%) 3.2 0.0 -0.1 0.3 -1.0 0.1 0.0 -0.7 

FA-updated model error (%) 3.2 0.0 0.0 -0.2 -1.2 0.1 -1.2 -1.1 

 

As shown in Table 6, the objective function value was lower for the PSO algorithm with future studies focusing on 
refinement of the FA parameters to improve accuracy. During updating, alteration of a significant magnitude was also 
detected on segment M2 by both algorithms. This could potentially be attributed to issues identified within section 4.2 
relating to the large frequency error in updating of the first mode. 

Fuzzy updated parameters were constructed through the method described in Section 4.2 with the results acquired through 
PSO and FA shown in Figure 9 and Figure 10, respectively. The similarity between results obtained by both algorithms is 
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highlighted, but with the FA consistently being less accurately updated, achieving higher objective function values at each 
level shown in  

Table 8. A comparison between the experimental and updated fuzzy frequency values obtained can be seen in Figure 11. 
As shown both algorithms are in relatively good agreement through all 8 modes, however for mode 1, 5 and 7 the frequency 
values vary noticeably from the experimental values. This issue could potentially be caused by the slightly worse updating 
outcome for these modes within the baseline study described in section 4.2 and Figure 7.  

The ability to detect magnitude of structural alteration was successful demonstrated using both algorithms with PSO 
consistently providing a superior accuracy. Future research will involve refinement of the numerical model created and 
investigation of the algorithms used for updating. 

Figure 9 – PSO-updated fuzzy mass (black) and actual 
experimental mass (red) 

Figure 10 - FA-updated fuzzy mass (black) and actual 
experimental mass (red) 

 
 

Table 8 – Objective function values 
obtained by PSO and FA 

Membership 
Function 

Value 

PSO 
Objective 

Value 

FA 
Objective 

Value 

1 0.0537 0.0682 

0.75 0.1193 0.1440 

0.5 0.1305 0.1582 

0.25 0.1492 0.1746 

0 0.1555 0.1968 
 

Figure 11 - Experimental fuzzy frequencies (red solid line) and obtained through 
PSO (black solid line) and FA (black dashed line) 

5. CONCLUSIONS 

In this research, FFEMU was discussed and implemented to update a small-scale wind turbine blade in laboratory 
conditions. The numerical model was updated using the experimental results obtained from EMA in both baseline and 
altered states. Updating the model in its baseline state (no added mass) provided a realistic estimate of the material 
properties to be used in further damage estimation studies. FFEMU was then utilized to detect location and predict 
magnitude of structural alteration (added mass) with fuzzy updated parameters constructed accounting for the uncertainty 
within the updating parameters. This methodology was able to predict a more significant magnitude of structural alteration 
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on the region where it was actually located using both algorithms. Further refinement of the numerical model and 
algorithms used for updating will be the focus of further research. 
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