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ABSTRACT   

Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due 
to the widespread increase in wind power generation across the world. Most of the existing studies have used structural 
reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous 
approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by 
combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with 
optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage 
occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are 
updated using the Bayesian analysis. The output of this framework would determine the optimal structural health 
monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off 
between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model 
for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially 
an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring 
system, are presented to aid in the decision-making process.  

Keywords: Decision tree analysis, pre-posterior Bayesian analysis, scheduling optimization, structural health 
monitoring, wind turbines  

1. INTRODUCTION  

The growing demands for wind energy and the need for reliable performance of Offshore Wind Turbines (OWTs) calls 
for increased research in the field of optimization of life-cycle costs and reliability of OWTs. Structural deterioration of 
many components of OWTs is a critical issue and the structures need to be inspected and maintained at regular intervals. 
The consequences of failure due to deterioration will have detrimental effects on the wind farm operations in terms of 
energy production and monetary and reputational losses. However, the operators are constantly faced with decision 
problems on choosing the optimal inspection or monitoring time intervals over the life-span of OWTs while reducing the 
operations and maintenance costs. Due to inaccessibility of OWTs during extreme weather, it is necessary to plan the 
inspections, monitoring and repair schedules in such a way that there is a good trade-off between the life-cycle costs and 
reliability of OWTs. 

Optimization for structures such as bridges and oil and gas platforms has been carried out for cost, reliability, optimal 
operation and maintenance schedules using probabilistic methods [1-6]. Straub [7, 8] developed a detailed approach to 
risk based inspection methodology incorporating the Bayesian analysis and stochastic nature of deterioration models. 
Based on the risk-based inspection framework developed for oil and gas installations, similar work has been carried out 
for wind farms using the pre-posterior Bayesian decision analysis [9, 10]. Maintenance optimization based on different 
conditions of degradation was performed for wind turbines (WT) blades where a Markov chain deterioration process has 
been adopted [11]. The costs associated with maintenance and primarily indirect costs, such as production losses and 
transportation costs, for wind power system have been minimized in [12].  

This paper proposes to extend the existing frameworks for optimizing life-cycle costs to determine optimal monitoring 
schedules by incorporating the structural reliability/risk analysis (SRA) into the Bayesian pre-posterior analysis along 
with evolutionary optimization techniques such as genetic algorithms. Section 2 outlines the proposed framework for 
decision analysis for scheduling monitoring to optimize the life-cycle costs of OWTs. Section 3 presents a numerical 
illustration to compute the expected total cost from the decision tree analysis for one monitoring campaign executed 
during the life span of a structure. Two case scenarios are discussed to illustrate the decision-making process, namely 
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whether to build initially a cheaper structure that will deteriorate at a faster rate and use an expensive monitoring system, 
or to build a robust but expensive structure and reduce the need for using expensive monitoring. Sections 4 and 5 round 
up the paper by presenting the results, conclusions and directions for future work.  

2. DECISION-MAKING MODEL 

A decision-making model is adopted herein to optimize the total expected life-cycle costs of wind turbines. The model 
comprises a structural deterioration model, a model for damage detection by an SHM system, and a cost model. All these 
are used in the pre-posterior decision analysis where the decisions need to be made to adopt or not adopt monitoring, the 
outcome of monitoring is detection or non-detection of damage, the decision rule is adopted to perform a repair action or 
not based on the SHM system indication, and the true state of the nature represents the actual state of the system. The 
analysis will be visualized with the help of a decision tree. The outcome of the decision tree analysis will determine the 
expected total life cycle cost including the cost of using a monitoring method. The different components of the decision-
making model are outlined in the following subsections.  
 
2.1 Structural deterioration model 

A WT structure is assumed to be deteriorating over time t, in a process that is quantified with a generic damage intensity 
measure, D, that follows an exponential deterioration model [6]: 

          (1) 

          (2) 

where λ is the scale parameter and t0 is the time to damage initiation in years. Methods such as the first order reliability 
methods (FORM) and simulation techniques such as Monte Carlo Simulations (MCSs) can be adopted to find the 
reliability profile of deteriorating structures based on the above Equations (1) and (2). MCS techniques using MATLAB 
[13] were adopted in this paper to calculate the probabilities of damage occurrence and failure due to deterioration.  
 
Limit state functions (LSF) demarcate between the failure and safe domains of a structure. A typical LSF is denoted by 
g(X), where X is a vector of basic random variables, and the failure criterion is represented by g(X)≤0. A typical 
formulation of the probability of failure using an LSF is as follows: 
 

         (3) 

where g(X)≤0 denote the failure domain of a probability density function, fX(x). 
 
The time-dependent probability of damage occurrence, P(D1), is calculated from an LSF considering the occurrence of 
damage greater than a certain threshold, Dth: 
 

           (4) 

Note this implies that small damages, i.e. those for which D(t)<Dth, are ignored. Similarly, the time-dependent 
probability of failure, Pf(t), is calculated from another LSF by considering failure occurs when damage progresses to a 
greater intensity, beyond a failure threshold of Fth: 
 
                                               (5) 

The annual probability of failure, P(F1), for a time interval, Δt, is calculated from Equation (5): 
 

           (6) 

where Δti refers to the time interval (1 year in our case). The above equation assumes that failure has not occurred before 
time ti [7].  
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Pf (t)= P[Fth −D(t)≤0]
		P(F1)= Pf (ti )−Pf (ti−1)Δt(1−Pf (ti−1))
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The reliability index, β, of the structure with respect to the probability of failure can be approximated taking the value of 
the inverse Gaussian cumulative distribution function, Φ-1, at the probability of failure:  
 
                 (7) 

where Φ-1(.) denotes the inverse Gaussian distribution function [14, 15]. 
 
2.2 Damage detection model 

The uncertainties associated with the ability of a monitoring technique to detect damage can be expressed using 
probabilistic approaches, e.g. using the probability of detection (POD) curves. The POD curves represent the probability 
of damage being detected by a monitoring method conditional on its extent (e.g. crack length or corrosion depth). POD is 
normally a monotonic curve that increases with the increase in damage intensity. The probability of minimum detectable 
damage is modeled herein using a cumulative lognormal probability distribution function, which is widely used for this 
purpose and can be expressed as [6]: 
 

               (8) 

where Φ(.) is the standard normal cumulative distribution function, and α and β are the location and scale parameters, 
respectively, associated with the performance and quality of the monitoring method [16]. A comparison between POD 
curves of different hypothetical monitoring methods with different parameters α= 0.1, 0.3, 0.5 and β=-0.1ln(α) is 
presented in Figure 1. As seen from the figure, a monitoring method with a lower α has better quality as it detects 
smaller damage intensities.   

 
Figure 1. POD curves for different qualities of hypothetical monitoring methods 

The incidence of false damage indications will arise for any monitoring method adopted. Events De0-1 represent the non-
indication and indication of damage, respectively. The conditional probabilities of not indicating or indicating damage 
given the absence or presence of actual damage are expressed as P(De0-1/D0-1), see Table 1. True positive values are the 
probability values of indicating damage when there exists actual damage. True negative values correspond to the 
probability of not indicating damage when there is no actual damage. False negative values correspond to Type 1 errors, 
i.e. when damage detection is missed when there exists actual damage. False positive values are Type II errors which 
arise from detection outcomes when there is no actual damage.  

A graphical representation of the different scenarios of damage indication by a monitoring method is represented in 
Figure 2. A detection threshold is shown that acts as an acceptance criterion for damage detection such that the values to 
the right/left of the threshold will produce Type I/II errors [17, 18]. 

β −= −Φ 1 1( ( ))P F

		POD=Φ ln(D)− lnα
β

⎛

⎝⎜
⎞

⎠⎟
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 0≤ Ps ≤min(P(Dth −D(t)≤0),P(Dde −D(t)≤0))      (12) 
 
An average of the lower and upper bounds is considered from the above simple bounds. It should be noted that the 
simple bounds are practically wide and second-order bounds should be considered for accurate calculation of 
probabilities. The probabilities outlined in Table 1 are computed in an equivalent manner.  
 
2.3 Cost model 

The total costs in each branch of the decision tree will comprise of the cost of initial construction, failure, monitoring and 
repair. This cost in each branch is calculated using the discounted rate of money, r. At any time monitoring is 
undertaken, tmonit, the total discounted costs can be calculated as [4]: 
 

        (13) 

 

where Cinitial is the cost of initial construction at tinitial=0; Cmonit is the cost of a monitoring campaign (Cmonit=0 when no 
monitoring/inspection is performed), Cr is the cost of repair, Cf, is the cost of failure, and r is the annual discount rate of 
money. Binary variables x and y represent the occurrence of repair and failure event in the decision tree branch:    

     (14) 

     (15) 

 

2.4 Decision tree analysis 

The probabilities calculated from the deterioration and damage detection models are used in the construction of a 
decision tree to determine the optimal monitoring time(s) during the life-cycle of the wind turbine. Let M0 and M1 
represent the decision to not adopt a monitoring method and adopt it, respectively, De0 and De1 be, as before, the event of 
not indicating and indicating a damage (corresponding to an outcome of monitoring), R0 and R1 represent the decision to 
not repair or repair (corresponding to a decision rule), D0 and D1 denote no occurrence or occurrence of actual damage 
(corresponding to the true state of nature), and F0 and F1 denote no failure or failure of the structure (corresponding to the 
true state of nature). A decision tree formulated for adopting one monitoring campaign is presented in Figure 3.  

A decision is made to employ (M1) or not employ (M0) a monitoring system. In the top branch, when monitoring is not 
adopted (M0), the repair actions are performed based on the prior probabilities of damage occurrence. The random 
outcomes or states of nature are the occurrence of the damage and further consequences such as failure of the structure 
are represented in Nodes 1-2. In the alternative lower branch corresponding to adopting a monitoring scheme (M1), the 
decision will lead to a monitoring detection outcome (Node 10) that may subsequently lead to performing repair actions 
(Node 6 and 9). The true states of nature (damage and failure) are represented in Nodes 4-5 and 7-8. The posterior 
probabilities of damage and failure given the detection or non-detection are updated using the Bayes rule [21] in this 
branch. In the event of damage detection, the updated probability of damage indication is given as follows [22]: 

PDe1 ,updated = P(gi(Χ)≤0 De1 ≤0)= P(gi(Χ)≤0∩De1 ≤0)P(De1 ≤0)                                 (16) 

 
In the event of non-detection of damage, the updated probability is given as follows: 

PDe0 ,updated = P(gi(Χ)≤0 De0 ≤0)= (P(gi(Χ)≤0))−(P(gi(Χ)≤0 De1 ≤0)P(De1 ≤0))1−P(De1 ≤0)                 (17) 

		CB1−B18 = Cinitial ,i(1+ r)tinitial + Cmonit ,i +Cr ,i × xt ,i +C f ,i × yt ,i(1+ r)tmonit ,i

⎧
= ⎨
⎩

10 if repair action appears in the decision tree branch
x

otherwise

⎧
= ⎨
⎩

10 if failure occurs in the decision tree branch
y

otherwise
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and reliability of the WT structure that would determine the optimal monitoring times. This will be further illustrated by 
considering a specific deterioration model such as fatigue on a component of the WT.  
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