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Abstract 

Purpose: Recently, the US FDA has approved “vagal blocking therapy or vBLoc® therapy” 

as a new treatment for obesity. The aim of the present study was to study the mechanism-of-

action of “VBLOC” in rat models.  

Materials and Methods: Rats were implanted with VBLOC, an intra-abdominal electrical 

device with leads placed around gastric vagal trunks through an abdominal incision and 

controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic 

parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-

gut responses were analyzed physiologically.   

Results: VBLOC reduced body weight and food intake, which was associated with increased 

satiety but not with decreased hunger. Brain activities in response to VBLOC included 

increased gene expression of leptin- and CCKb-receptors, interleukin-1β, tumor necrosis 

factor and transforming growth factor β1 in the brainstem, increased CCK, somatostatin and 

tyrosine hydroxylase in the hippocampus, increased NPY, AgRP and Foxa2 in the 

hypothalamus, and reduced CCKb receptor, melanocortin 4 receptor and insulin receptor in 

the hypothalamus. Plasma concentrations of CCK, gastrin, glucagon, GLP-1 and PYY and 

gastric acid secretion were unchanged in response to VBLOC.   

Conclusion: Based on the present study, we suggest that VBLOC induces satiety through 

vagal signaling, leading to reduced food intake and loss of body weight. 
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Introduction 

 The number of obese individuals is increasing rapidly, leading to a global obesity 

epidemic. So far, only bariatric surgery has demonstrated long-term therapeutic effects, and 

therefore the use of surgery to treat obesity is increasing (1, 2). Considering the large number 

of obese patients, the risk of surgical complications and high surgery-related cost, the 

development of minimal invasive procedures to treat obesity is urgently needed (3).  

The gut-brain axis is known to play an important role in the pathogenesis of obesity. 

Nutritional and metabolically relevant information is conveyed to the brain by gut-produced 

hormones and the vagus nerve (4). The vagus nerve responds to mechanical and chemical 

stimuli from the gastrointestinal tract and transmits satiety signals to sites in the central 

nervous system that regulate eating behavior (5-7). Through the nucleus of the tractus 

solitarius (NTS) in the brainstem, afferent vagal signals may be relayed to reach several parts 

of the brain including the parabrachial nucleus, reticular formation, hippocampus, amygdala 

and hypothalamus (8). The hypothalamus is regarded as a key regulatory component of a 

central network for food intake where orexigenic neuropeptide Y (NPY) and agouti-related 

peptide (AgRP) neurons and anorexigenic pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART) neurons are thought to play a central role (5). 

However, the brainstem also contributes in food intake and body weight regulation (9). In 

addition to the regulation of food intake, the vagus nerve also regulates gastric acid 

production and pancreatic secretion (10, 11). The central role of the vagus in the regulation of 

food intake and energy expenditure makes it an ideal target for new less or non-invasive 

procedures to treat obesity. 

Recently, the US FDA has approved “vagal blocking therapy or vBLoc® therapy” by 

which an intra-abdominal electrical device with leads is placed laparoscopically around the 

vagus nerve as a new treatment for obesity (12, 13). The term VBLOC has been often used in 
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clinical trials, patent applications and the US FDA approval documents. VBLOC was initially 

believed to be of “vagotomy effect” but in fact this is unlikely as pointed out by the FDA 

approval letter, i.e. “the specific mechanisms for weight loss due to the use of the device are 

unknown”. Hence, the aim of this study was to study the mechanism-of-action (MOA). To 

this end, we utilized animal models to examine how VBLOC impacted upon body weight, 

food intake, hunger/satiety, eating behavior, metabolic parameters, gut hormone 

concentrations, gastric acid secretion and the expression profile of candidate energy balance-

regulating genes in the hypothalamus, brainstem and hippocampus.  

 

Materials and methods 

Animals  

Rats (adult, male, Sprague-Dawley) were purchased from Taconic (Ejby, Denmark) 

and Janvier Labs (France). Rats (adult, female, Long Evan) were obtained at NTNU, 

Trondheim, Norway. They had free access to tap water and standard rat pellet food (RM1 

811004, Scanbur BK AS, Sweden). Three to four animals were housed together in 

individually ventilated cages on wood chip bedding with a 12-hour light/dark cycle, room 

temperature of 22ºC and 40-60% relative humidity. The standard housing conditions were 

specific pathogen free and in agreement with FELASA (Federation of European Laboratory 

Animal Science Association) recommendations. All animals were euthanized between 0800-

1000 A.M. Thus, the plasma concentrations of gut hormones measured at sacrifice could be 

considered as post prandial levels. Animal experiments were performed according to the 

guidelines for the design and statistical analysis of experiments using laboratory animals after 

being approved by the Norwegian National Animal Research Authority (Forsøksdyrutvalget, 

FDU). All applicable institutional and national guidelines for the care and use of animals were 

followed. 
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In all studies regarding eating behaviour the animals were acclimatized to the 

Comprehensive Laboratory Animal Monitoring System (CLAMS; Columbus Instruments 

International, Columbus, OH USA) for 24h before data collection. At data collection the 

animals were kept in CLAMS for 48h, and data from the last 24h were used for analysis. 

Before CLAMS the rats were habituated to their normal food as powder for three days, as the 

food in CLAMS is in powder form. Body weight development was followed throughout the 

study period (three times per week).  

 

Experimental design 

Pilot experiment 

The paradigm of VBLOC between 0.5mA – 2.0 mA with 30 Hz, 500 µs, 30 s ON and 5 min 

OFF was chosen according to the safety, tolerance and possible efficacy assessments in 

response to the long-term VBLOC. 

 

Short-term VBLOC 

In the first experiment, rats (Sprague-Dawley) received VBLOC (2 mA, 30 Hz, 500 

µs, 30 s ON and 5 min OFF) while they were subjected to in vivo electrophysiological 

recording in the hippocampus. In the second experiment, rats (Sprague-Dawley) were 

acclimatized to Bollman cages for 3 hours at 3 separate occasions before and after VBLOC 

and gastric fistula implantation, and then subjected to gastric acid secretion measurement 

(baseline and pentagastrin-stimulation). After gastric acid output measurement, VBLOC was 

turned off. Three days after, rats received VBLOC (2 mA, 30 Hz, 500 µs, 30 s ON and 5 min 

OFF) for 48h while eating behaviour and metabolic parameters were measured in CLAMS 

(14, 15). The animals were randomized into VBLOC and control groups (6 rats per group). 

The control group received the same implantations without any stimulation. Immediately after 
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48h of VBLOC, the rats were euthanized and brain samples were collected for in situ 

hybridization, and plasma was collected for radioimmunoassay.  

 

Long-term VBLOC 

In the first experiment (Sprague-Dawley rats), VBLOC was started 4 weeks after 

implantation of the device which was constantly ON while the current (mA) was gradually 

increased for 6-8 weeks. Each rat was placed in CLAMS at 4 time points for measurements of 

eating behavior and metabolic parameters; 3 weeks after VBLOC implantation (before 

stimulation, baseline), at 0.5 mA stimulation, at 1 mA stimulation and at 2 mA stimulation. 

The settings were 30 Hz, pulse width 500 µs and the ON and OFF time were 30 s and 5 min. 

The VBLOC and control groups consisted of 9 and 4 rats per group, respectively. The control 

group had the same implantation with no stimulation. At euthanization brain samples were 

taken for Taqman array analysis and RNA Sequencing. Plasma was collected for 

radioimmunoassay. In the second experiment (Long Evan rats), smaller VBLOC devices 

(µVBLOC) were developed due to device-size-related irritation. The animals were 

randomized into VBLOC and control groups (4 rats per group). VBLOC was continuously 

ON at 2 mA, 30 Hz, 500 µs, 30 s ON and 5 min OFF for 2 weeks. At euthanization plasma 

was collected for radioimmunoassay. 

 

Statistical Analysis 

The results are expressed as mean ± SEM. Statistical comparisons were performed 

using independent t-test between the surgical groups. ANOVA with Sidak test was performed 

for energy expenditure statistics, while ANOVA with Tukey’s test was performed to 

determine eating behavior and metabolic parameters. A p-value of <0.05 (two-tailed) was 
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considered statistically significant. The data analysis was performed in SPSS version 15.0 and 

20.0. 

 

Supplementary Materials and Methods 

Information regarding animal surgery, determination of eating behavior and metabolic 

parameters, gastric acid output measurement, taqman array, in situ hybridization, RNA 

sequencing, radioimmunoassay, in vivo electrophysiology and statistical analysis are provided 

in the Supplementary Materials and methods.   

 

Results 

In vivo electrophysiology tetrodes recorded VBLOC-induced activity in the brain (Fig. 

1a). In response to the short-term VBLOC (48h at 2 mA current), gene expression of NPY 

and AgRP in the arcuate nucleus (ARC) of the hypothalamus as well as NPY gene expression 

in dorsomedial hypothalamic nucleus (DMH) were up-regulated, but NPY gene expression in 

the brainstem, and plasma concentrations of gut hormones were unchanged (Fig. 1b-e). On 

the other hand, basal and pentagastrin-stimulated gastric acid secretions were unchanged in 

response to the short-term VBLOC (Fig. 1f).  

During the short-term VBLOC (48h at 2 mA current), there were no changes in body 

weight, food intake, eating behavior, and metabolic parameters including energy expenditure 

(Table 1). The animals showed no signs of discomfort stemming from the VBLOC. 

In response to the long-term VBLOC in which the current was gradually increased 

(from 0.5 mA to 2 mA), the body weight and food intake (g) were reduced as the current was 

increased, eventually reaching reductions of 10% (p>0.05) and 30% (p<0.05), respectively 

(Fig. 2a-c). Energy expenditure (kcal/h/body weight) was reduced compared to baseline 

values (Fig. 2d). Satiety ratio particularly during nighttime was increased, but the number of 
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meals (“hunger index”) was unchanged (Fig. 2e,f). When the current was started at 2 mA, a 

10% body weight reduction was achieved within 1 week (p<0.05) (Fig. 2a). Additional 

parameters of eating behavior and metabolism were unchanged after the long-term VBLOC 

(Table 2).   

Analysis of the hypothalamus showed a significant increase in gene expression of 

NPY and forkhead box protein A2 (Foxa2), a decrease for cholecystokinin b (CCKb) receptor 

and a tendency for decreased expression of the melanocortin 4 receptor (MC4R) and insulin 

receptor (Insr) (Fig. 3a). In the brainstem, the gene expression of leptin- and CCKb -receptors, 

and interleukin-1β (IL1b), tumor necrosis factor (Tnf) and transforming growth factor β1 

(Tgfb1) was increased (Fig. 3b). In the hippocampus, VBLOC increased expression of CCK, 

somatostatin and tyrosine hydroxylase (crucial for the production of dopamine) (Fig. 3c,d). 

The plasma concentrations of CCK, gastrin, glucagon, glucagon-like peptide-1 (GLP-1) and 

peptide YY (PYY) were unchanged (Fig. 3e,f).  

 

Discussion  

The brain-gut axis functions in both afferent and efferent directions via the vagus 

nerve. To examine the effects of VBLOC on either efferent or afferent or both directions, the 

gut responses (gastric acid secretion and gut hormones) and the brain responses (electrical 

activity and gene expression) were analyzed. VBLOC was originally derived from vagus 

nerve stimulation. In the neuromodulation spectrum, it has been postulated that low frequency 

electrical impulses increases the neurophysiologic activity, resulting in neurostimulation. The 

converse occurs with higher frequency electrical impulses, resulting in neuroblocking. In the 

present study the two electrodes of VBLOC were wrapped around both the anterior and 

posterior nerve branches together with extra tissue from the esophagus. The cathode was 

placed on the proximal part and anode on the distal part (Fig. 4a). During VBLOC the cathode 
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induced depolarization, leading to a stimulation of the afferent fibers. The afferent fibers are 

believed to be involved in the sensory feedback on satiety, satiation and energy metabolism. 

As shown in the present study, VBLOC induced satiety signaling in the brainstem and satiety 

ratio (but not hunger) in eating behavior. During VBLOC the distal anode hyperpolarized the 

membrane and imposed an anodic block on the efferent fibers (Fig. 4b). The stimulation of 

vagus nerve is known to induce gastric acid secretion via the efferent fibers on the parietal 

cells and the gastrin-producing G cells in the stomach (16, 17). As shown in the present study, 

VNS did not affect the acid secretion and gut hormones (particularly gastrin, CCK, GLP-1 

and PYY), indicating a functional blockade of vagal efferent fibers, named as VBLOC. The 

long-term application of VBLOC  (6-8 weeks), particularly with the application of the highest 

current for 2 weeks, resulted in reduced food intake and body weight in the rat model. 

Previously, several animal studies reported reduced body weight gain and food intake 

in response to VNS that was applied mostly at the left vagal branch in the neck. However, the 

results reported were of low quality due to large variations, and no SD or SEM values were 

given in the figures (18-23). In the present study, the short-term (48h) VBLOC was unable to 

alter eating behavior. However, the long-term (6-8 weeks) VBLOC, particularly when started 

with a high current (2 weeks), reduced food intake and body weight. This is in line with a 

report that subdiaphragmatic VNS attenuated weight gain in obese minipigs during 14 weeks 

(24). 

It should be noticed that in response to VBLOC, the gene expression, especially 

NPY/AgRP, in the hypothalamus, was unexpectedly changed with a drive for increased food 

intake and a reduction in energy expenditure (5, 25-27). However, the gene expression in the 

brainstem and the hippocampus was changed, which was compatible with an anorexigenic 

drive in response to VBLOC, being consistent with the weight loss. The brainstem is the first 

target for vagal afferent fibers in the central nervous system. VBLOC-induced afferent signals 
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can be sent from the brainstem to the hippocampus, which has also been observed  in previous 

studies (28). In fact, the hippocampus is not only involved in memory, but also has a role in 

incentive motivation (e.g. for food), in the processing of hormonal signals (CCK, ghrelin, and 

motilin), and in the regulation of food intake (29-33).  

Gut hormones are thought to be central in appetite regulation in the gut-brain axis, and 

satiety hormones such as CCK, glucagon, GLP-1, and PYY are known to reduce food intake 

(4). However, these gut hormones were unaltered after both short and long-term VBLOC. 

Thus, we speculate that there are the two pathways, i.e. gut hormone – hypothalamus and 

vagus nerve – brainstem, within the gut-brain axis, and that these are independent each other. 

Ghrelin levels were not included due to a technical problem. However, it is unlikely that 

ghrelin plays a role in VBLOC-induced weight loss, because  the hunger index was not 

changed  during both daytime and nighttime.  

Taken together, we suggest that the VBLOC, by activating the vagal signaling to the 

brainstem and hippocampus and blocking the vagal signaling to the gut, leads to increased 

satiety, reduced food intake and eventually the loss of body weight. It is our hope that this 

study will serve as the basis for many more experimental studies to better understand the 

mechanism-of-action of VBLOC therapy in the future.  
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Figure Legends 

Fig. 1: The effects of short-term VBLOC. A. In vivo electrophysiological recordings of 

stimulation-induced activity in the brain. The graph depicts the average waveform of 

measured activity, the insert show the raw data from which the average waveform was 

constructed. B. Effects of short-term VBLOC (48h) on mRNA expression of NPY, AgRP and 

POMC in the arcuate nucleus (ARC) and dorsomedial hypothalamic nucleus (DMH). 

*:p<0.05 between sham-VBLOC (white) and VBLOC (black). C. Effect of short-term 

VBLOC (48h) on NPY expression in the brainstem. Note: no significant difference between 

sham-VBLOC (white) and VBLOC (black). D&E. Effects of short-term VBLOC (48h) on 

plasma concentrations of gut hormones. Note: no significant difference between sham-

VBLOC (white) and VBLOC (black). F. Effects of VBLOC on baseline and pentagastrin 

(PG)-stimulated gastric acid secretion. Note: no significant difference between any VBLOC 

currents with or without PG injection.   

Fig. 2: The effects of long-term VBLOC on body weight, eating behavior and metabolic 

parameters. A. Effects of different currents of VBLOC on body weight. Note: when current 

was started at 2 mA a weight reduction was accomplished instantly (p<0.05) (white). B. 

Effects of long-term VBLOC on food intake (g/24h). *:p<0.05 between sham-VBLOC 

(white) and VBLOC (black). C. Effects of long-term VBLOC on food intake (g/100g body 

weight). *:p<0.05 between values before VBLOC and at 2 mA. Note: white columns 

represent sham-VBLOC, black columns represent VBLOC. D. Effect of long-term VBLOC 

on energy expenditure (kcal/h/body weight). **:p<0.01 between values before VBLOC and at 

2 mA (ANCOVA with Sidak test). Note: white columns represent sham-VBLOC, black 

columns represent VBLOC. E. Effects of long-term VBLOC on satiety ratio (min/g) during 

nighttime. Note: *p<0.05 (one-tailed) between sham-VBLOC (white) and VBLOC (black) at 
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2 mA. F. Effects of long-term VBLOC on number of meals (24h). Note: no significant 

difference between sham-VBLOC (white) and VBLOC (black).  

Fig. 3: The effects of long-term VBLOC (2 mA) on brain gene expression and gut 

hormones. A. Effects of long-term VBLOC (2 mA) on hypothalamic mRNA expression of 

neuropeptide Y (NPY), forkhead box protein A2 (Foxa2), CCKb receptor, melanocortin 4 

receptor (Mc4r) and insulin receptor (Insr). *:p<0.05 between sham-VBLOC (white) and 

VBLOC (black). Note: p=0.067 on Insr and p=0.086 on Mc4r (two-tailed). B. Effects of long-

term VBLOC (2 mA) on mRNA expression of leptin receptor (Lepr) and CCKB/2 receptor 

(Cckbr), interleukin-1β (IL1b), tumor necrosis factor (Tnf) and transforming growth factor β1 

(Tgfb1) in the brainstem. *:p<0.05 between sham-VBLOC (white) and VBLOC (black). 

C&D. Effects of long-term VBLOC (2 mA) on mRNA expression of CCK, somatostatin and 

tyrosine hydroxylase in hippocampus. *, **, ***:p<0.05, 0.01, 0.001 between sham-VBLOC 

(white) and VBLOC (black). E&F. Effects of long-term VBLOC (2 mA) on plasma 

concentrations of gut hormones. Note: no significant difference between sham-VBLOC 

(white) and VBLOC (black).  

Fig. 4: Overview of VBLOC device position and function. A. Photograph showing the 

position of the implanted VBLOC electrodes around the gastric vagus nerve in a rat. B. 

Drawing illustrating how the cathode induces depolarization and stimulation of the afferent 

fibers, while the anode hyperpolarizes the membrane and imposes an anodic block on the 

efferent fibers. 
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Table 1: Responses of body weight, food intake, eating behavior and metabolic parameters to 

short-term VBLOC at 2 mA.  

  Parameters 
Sham-VBLOC 
(n=6) 

VBLOC 2 mA  
short-term (n=6) p-value 

 Body weight 401.87±10.05 371.88±10.63 0.068 

24 hours 

Food intake (g) 25.58±1.69 25.48±1.51 0.966 

Food intake (g/100g body weight) 6.6±0.44 6.99±0.37 0.517 

Calories intake (kcal) 65.37±4.35 65.47±3.89 0.966 

Calories intake (kcal/100g body weight) 16.95±1.14 17.95±0.96 0.517 

Number of meals 25.5±6.43 24±8.25 0.889 

Meal size (g/meal) 1.24±0.19 1.47±0.27 0.490 

Meal size (kcal/meal) 3.18±0.5 3.79±0.69 0.490 

Satiety ratio (min/g) 51.37±3.91 50.66±3.58 0.895 

Rate of eating (g/min) 0.29±0.03 0.25±0.02 0.286 

Energy expenditure (kcal/h) 2.24±0.04 2.03±0.09 0.072 

Energy expenditure (kcal/h/100g body weight) 0.58±0.01 0.56±0.02 0.357 

Energy expenditure (kcal/h/cm2 body surface) 0.005±0 0.005±0 0.187 

RER 1.13±0.01 1.1±0.03 0.260 

Daytime 

Food intake (g) 9.41±0.92 9.91±0.99 0.715 

Food intake (g/100g body weight) 2.43±0.24 2.72±0.26 0.429 

Calories intake (kcal) 24.17±2.37 25.48±2.54 0.715 

Calories intake (kcal/100g body weight) 6.23±0.62 6.99±0.67 0.429 

Number of meals 10.33±3.03 11±5.05 0.912 

Meal size (g/meal) 1.2±0.21 1.55±0.38 0.432 

Meal size (kcal/meal) 3.09±0.54 3.99±0.96 0.432 

Satiety ratio (min/g) 68.12±7.09 63.27±6.7 0.629 

Rate of eating (g/min) 0.3±0.02 0.28±0.02 0.506 

Energy expenditure (kcal/h) 1.92±0.07 2.09±0.04 0.074 

Energy expenditure (kcal/h/100g body weight) 0.54±0.01 0.53±0.01 0.490 

Energy expenditure (kcal/h/cm2 body surface) 0.004±0 0.004±0 0.201 

RER 1.11±0.02 1.08±0.02 0.305 

Nighttime 

Food intake (g) 16.17±1.02 15.56±1.67 0.763 

Food intake (g/100g body weight) 4.17±0.27 4.27±0.45 0.857 

Calories intake (kcal) 41.56±2.63 39.99±4.3 0.763 

Calories intake (kcal/100g body weight) 10.72±0.69 10.96±1.14 0.857 

Number of meals 15.17±3.49 13±3.32 0.662 

Meal size (g/meal) 1.27±0.19 1.49±0.27 0.522 

Meal size (kcal/meal) 3.28±0.48 3.84±0.7 0.522 

Satiety ratio (min/g) 38.46±2.81 40.66±4.83 0.701 

Rate of eating (g/min) 0.28±0.03 0.23±0.03 0.217 

Energy expenditure (kcal/h) 2.38±0.05 2.13±0.12 0.093 

Energy expenditure (kcal/h/100g body weight) 0.61±0.01 0.58±0.03 0.316 

Energy expenditure (kcal/h/cm2 body surface) 0.005±0 0.005±0 0.192 

RER 1.15±0.02 1.11±0.03 0.257 
Data are expressed as means ± SEM. No significant difference between sham-VBLOC and VBLOC (two-tailed). 
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Table 2: Responses of food intake, eating behavior and metabolic parameters to long-term 

VBLOC at 2 mA. 

  Parameters 
Sham-VBLOC 
(n=4) 

VBLOC 2 mA  
long-term (n=9) p-value 

24 hours 

Food intake (g) 23.03±1.1 15.22±2.74 0.024*  

Food intake (g/100g body weight) 5.44±0.65 3.93±0.65 0.192 

Calories intake (kcal) 59.17±2.83 39.13±7.04 0.024*  

Calories intake (kcal/100g body weight) 13.99±1.66 10.11±1.68 0.192 

Number of meals 17.5±2.6 21.11±9.14 0.803 

Meal size (g/meal) 1.38±0.15 1.51±0.43 0.782 

Meal size (kcal/meal) 3.54±0.38 3.87±1.12 0.782 

Satiety ratio (min/g) 56.6±2.7 164.02±61.51 0.119 

Rate of eating (g/min) 0.36±0.04 0.28±0.04 0.229 

Energy expenditure (kcal/h) 2.26±0.08 1.92±0.12 0.095 

Energy expenditure (kcal/h/100g body weight) 0.53±0.06 0.49±0.02 0.417 

Energy expenditure (kcal/h/cm2 body surface) 0.005±0 0.004±0 0.218 

RER 1.18±0.01 1.08±0.03 0.063 

Daytime 

Food intake (g) 5.94±1.7 5.15±1.04 0.692 

Food intake (g/100g body weight) 1.5±0.55 1.38±0.29 0.836 

Calories intake (kcal) 15.26±4.38 13.25±2.68 0.692 

Calories intake (kcal/100g body weight) 3.85±1.4 3.55±0.74 0.836 

Number of meals 5.75±1.18 7.56±3.89 0.770 

Meal size (g/meal) 0.99±0.17 1.43±0.43 0.369 

Meal size (kcal/meal) 2.54±0.44 3.67±1.11 0.369 

Satiety ratio (min/g) 129.53±35.36 4180.21±3966.1 0.520 

Rate of eating (g/min) 0.35±0.05 0.28±0.05 0.447 

Energy expenditure (kcal/h) 2.1±0.1 1.83±0.09 0.103 

Energy expenditure (kcal/h/100g body weight) 0.5±0.06 0.47±0.02 0.532 

Energy expenditure (kcal/h/cm2 body surface) 0.004±0 0.004±0 0.285 

RER 1.15±0.03 1.06±0.03 0.080 

Nighttime 

Food intake (g) 17.09±2.02 10.07±2.02 0.061 

Food intake (g/100g body weight) 3.94±0.35 2.55±0.46 0.087 

Calories intake (kcal) 43.91±5.2 25.88±5.19 0.061 

Calories intake (kcal/100g body weight) 10.14±0.9 6.56±1.18 0.087 

Number of meals 11.75±3.3 13.56±5.41 0.837 

Meal size (g/meal) 1.64±0.23 1.66±0.52 0.983 

Meal size (kcal/meal) 4.22±0.59 4.26±1.34 0.983 

Satiety ratio (min/g) 36.85±3.52 103.58±32.29 0.073 

Rate of eating (g/min) 0.37±0.04 0.27±0.04 0.137 

Energy expenditure (kcal/h) 2.41±0.07 2.02±0.14 0.098 

Energy expenditure (kcal/h/100g body weight) 0.57±0.06 0.52±0.03 0.346 

Energy expenditure (kcal/h/cm2 body surface) 0.005±0 0.004±0 0.190 

RER 1.21±0.01 1.11±0.03 0.015* 
Data are expressed as means ± SEM. *:p<0.05 between sham-VBLOC and VBLOC (two-tailed). 
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Animal surgery 

All surgeries were performed under general anesthesia with isofluran (4% for 

induction, 2% for maintenance). Atropin was given at a dose of 0.04 mg/kg subcutaneously 

20 min before anesthesia. Buprenorphine was injected subcutaneously (0.05 mg/kg) 

immediately after surgery in all animals, and one day postoperatively when needed. 

Physiological saline (0.9% NaCl) was given subcutaneously at 10 mL after surgeries to keep 

the animals hydrated. 

VBLOC implantation was performed through a midline abdominal incision. The 

subdiaphragmatic truncal vagus nerve was dissected from the esophagus and two electrodes 

(Lead Model 302, Cyberonics, Houston, TX) were wrapped around both the anterior and 

posterior nerve (Fig 4a). The wire from the electrodes was attached to fat tissue around the 

stomach and to the muscular layer using 6-0 and 4-0 absorbable sutures (Vicryl, Ethicon Inc., 

Sommerville, NJ, USA), respectively. On the back of the rat a subcutaneous pocket for the 

stimulator (model 102 Pulse Generator, Cyberonics, Houston, TX) was made and here it was 

connected to the wire. The abdomen was closed in two layers using 4-0 absorbable sutures 

and the back was closed using the same sutures (Ethicon). The control and VBLOC rats 

received the same procedure. Implantation of the µ-VBLOC device followed the same 

procedure. In the gastric acid secretion experiment a gastric fistula was in addition implanted 

in the stomach. Before this procedure the animals were fasted overnight, and after surgery 

they were given water immediately and food the same evening.  

 

Determination of Eating Behavior and Metabolic Parameters 

Rats were placed in the Comprehensive Laboratory Animal Monitoring System 

(CLAMS; Columbus Instruments International, Columbus, OH, USA) with free access to 

standard rat powder food (RM1 811004, Scanbur BK AS, Sweden) and tap water. This system 
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is composed of a four-chamber open circuit indirect calorimeter designed for continuous 

monitoring of individual rats. Eating behavior and metabolic parameters were recorded 

automatically. High-resolution feeding data was generated by monitoring all feeder balances 

every 0.5 s. The end of an eating event (meal) was determined when the balances were stable 

for more than 10 s and a minimum of 0.05 g of food were eaten. An air sample was 

withdrawn every 5 min. Energy expenditure (EE) (kcal/h) was calculated according to the 

equation: (3.815+1.232 RER) × VO2, where RER (respiratory exchange ratio) was the volume 

of CO2 produced per volume of O2 consumed. VO2 was the volume of O2 consumed per h per 

kilogram of mass of the animal. Parameters that were obtained during daytime (7 am–7 pm) 

and nighttime (7 pm–7 am) for each individual rat included number of meals, meal size, meal 

duration, accumulated food intake, intermeal interval, rate of eating, satiety ratio, drinking 

activity, energy expenditure and ambulatory activity. The intermeal interval was defined as 

the interval in minutes between two meals. Rate of eating was calculated by dividing the 

average meal size by the average duration of a meal, and satiety ratio, an index of the non-

eating time produced by each gram of food consumed, was calculated by dividing the average 

intermeal interval by the average meal size. 

In all studies performed food intake was higher and satiety ratio lower during 

nighttime than daytime for all animals at every timepoint. 

 

Gastric acid output measurement 

The rats were fasted for 24h before measurement. Gastric acid output was collected for 

30 min at baseline, 0.5 mA, 1.0 mA, 2.0 mA, 3.5 mA and at the same settings with 

pentagastrin subcutaneous injection (10 µg/kg). Between each collection the stimulation was 

turned off and there was a break of 90 min. The rats received 1 ml physiological saline 



4 
 

subcutaneously every second hour. The gastric acid was investigated for pH, H+-secretion and 

amount (ml). 

 

Taqman array 

Hindbrain (medulla and pons) and hypothalamus were dissected at euthanization and 

stored in RNAlater (Qiagen) at -80°C. Brain samples were then homogenized in Qiazol 

(Qiagen, Hilden, Germany) using a TissueLyzer. Total RNA was extracted using RNeasy 

Lipid Tissue Mini Kit (Qiagen), both with additional DNAse treatment (Qiagen). RNA 

quality and quantity were assessed by spectrophotometric measurements (Nanodrop 1000, 

NanoDrop Technologies, USA). For cDNA synthesis, total RNA was reversed transcribed 

using random hexamers (Applied Biosystems, Sundbyberg, Sweden), and Superscript III 

reverse transcriptase (Invitrogen Life Technologies, Paisley, UK), according to the 

manufacturer's description. Recombinant RNaseout® Ribonuclease Inhibitor (Invitrogen) was 

added to prevent RNase-mediated degradation. Samples were run in duplicates. Real-time RT 

PCR was performed using TaqMan®Low Density Array (LDA) custom-made platforms. 

Platfoms were designed with TaqMan probe and primer sets for target genes chosen from an 

on-line catalogue (Applied Biosystems). The sets were factory-loaded into the wells of 

TaqMan® LDAs. Each port on the LDA card was loaded with cDNA corresponding to 100 

ng total RNA, combined with nuclease free water and 50 µl TaqMan® Gene Expression 

Master Mix (Applied Biosystems) to a final volume of 100 µl. The LDA cards were analyzed 

using the 7900HT system with a TaqMan LDA Upgrade (Applied Biosystems). Thermal 

cycling conditions were: 50°C for 2 min, 94.5°C for 10 min, followed by 40 cycles of 97°C 

for 30 s, and 59.7°C for 1 min. Gene expression values were calculated based on the Ct 

method (Livak 2001), where the saline-treated group was designated the calibrator. 

Hydroxymethylbilane synthase (hmbs) was used as reference gene. Target genes as well as 
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the primer sets were Hmbs, Foxa2, Npy, Lepr, Insr, Cckbr, Mc4r, Il1b, Tnf, Tgfb1 (catalogue 

number Rn00565886_m1,  Rn01415600_m1, Rn01410145_m1, Rn01433205_m1, 

Rn00567070_m1, Rn00565867_m1, Rn01491866_s1, Rn00580432_m1, Rn01525859_g1 and 

Rn00572010_m1, respectively). 

 

In situ hybridization 

Brain samples were taken at euthanization and snap-freezed in isopentane on dry ice 

before stored at -80°C wrapped in alufolie. The frozen brains were cut (14 µm) in the region 

spanning the hypothalamus between Bregma –0.10 to –2.54 mm and brainstem (NTS) 

according to the Mouse Brain Atlas of Franklin & Paxinos 1997 and sections were mounted 

onto poly-L-lysine-coated slides.  Briefly, sections were fixed in 4% paraformaldehyde in 0.1 

M phosphate buffer (PB), washed in 0.1 M PB, acetylated in 0.25% acetic anhydrate in 0.1 M 

triethanolamine, and washed again in PB. Sections were dehydrated using graded ethanol. 

DNA templates for the generation of anti-sense riboprobes for AgRP and POMC were 

generated by PCR. Briefly, primers for the amplification of AgRP were based on Genbank 

sequence U89484 to amplify the sequence between bases 113-341 (forward primer 5’-

TGTTCCCAGAGTTCCCAGGTC-3’, reverse primer 5’-

GCATTGAAGAAGCGGCAGTAGCAC-3’). Primers for the amplification of POMC were 

based on Genbank sequence J00162 to amplify the sequence between bases 263-665 (forward 

primer 5’-GGGCAAGCGCTCCTACTCCAT-3’, reverse primer 5’-

GCCCTTCTTGTRSRCGTTCTTGA-3’). The DNA sequence for NPY was a full-length 

cloned rat NPY gene sequence. 35S antisense probes were made using 150ng amplified cloned 

insert bearing transcription factor binding sites using T7 (AgRP), T3 (NPY) or SP6 (POMC) 

RNA polymerase as stated. The radioactive probes were applied to the slides in 70 µl 

hybridization mixture (0.3 M NaCl, 10 mM Tris-HCL (pH 8), 1 mM EDTA, 0.05% transfer 
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RNA, 10 mM dithiothreitol, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% BSA and 10% 

dextran sulphate) and hybridized overnight at 58°C. Post-hybridization, slides were rinsed in 

4x SSC and treated with ribonuclease A (20 µg/µl) at 37°C before being washed in decreasing 

concentrations of SSC and dehydrated using graded ethanol. Slides were dried and exposed to 

Kodak Biomax MR film for various lengths of time. Autoradiographic films were scanned at 

600 dpi on an Epson scanner linked to a computer running Image-Pro PLUS version 

Autoradiographic films were scanned at 600 d.p.i. and analysed using Image Pro Plus v.7.0 

(Media Cybernetics UK, Marlow, Bucks, UK), analysis software (Media Cybernetics UK, 

Wokingham, UK). Integrated optical density was obtained by reference to the 14C microscale. 

NPY, POMC and AgRP mRNA expression was measured in three sections NPYmRNAs were 

quantified from 3 sections containing the NTS. Values were averaged for each animal.  

 

RNA sequencing 

Hippocampus was dissected at euthanization and stored in RNAlater (Qiagen) at -

80°C. Total RNA was isolated using an Ultra-Turrax rotating-knife homogenizer and the 

mirVana™ miRNA Isolation Kit (AM1560, Ambion, USA) according to the manufacturer’s 

instructions. Concentration and purity of total RNA were assessed using a NanoDrop 

(NanoDrop Technologies, Inc., Wilmington, DE, USA) photometer. The A260/280 ratios 

were 2.09 ± 0.02 (mean ± SEM). RNA integrity was assessed using a Bioanalyzer (Agilent 

Technologies, Palo Alto, CA, USA) and found satisfactory with RIN values 9.1±0.3. High-

throughput cDNA sequencing (RNA-seq) was performed at Norwegian Sequencing Centre, 

Dept. of Medical Genetics Ullevål, Oslo University Hospital, using HiSeq2000. Differential 

expression analysis on the data was performed, where reads for all samples were aligned to 

the rat genome and differential expression was calculated using cuffcompare in the Cufflinks 

package. 
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Radioimmunoassay 

Plasma samples were collected at euthanization and kept at -80°C. Radioimmunoassay 

was performed to analyze GLP-1, PYY, gastrin, CCK and glucagon using specific antibodies 

with commercially available kets. Results were expressed  as pmol/l (GLP-1, gastrin, CCK, 

glucagon) and pg/ml (PYY). 

 

In vivo electrophsyiology 

Rats were anaesthetized with 0.1ml/100gr i.m. Hypnorm and 0.05ml/100gr i.p. 

Midazolam. Anesthesia was maintained for the duration of surgery and recordings through 

additional administration of Hypnorm (i.e. 10% every half hour). Eye drops (CAF; ceva Sante 

Animale b.v., Naaldwijk, The Netherlands) were given for the duration of the experiment. 

Body temperature was maintained at 37.5°C by means of a heating pad.  Following placement 

of the VBLOC, as previously described, the animals were mounted in a stereotaxic frame 

(Kopf Instruments) and the cranium was exposed. At this time a local anesthetic was applied 

to the skull (Xylocaine spray; 10%, Astra, Hässle AB, Mölndal, Sweden). A hole was drilled 

over the hippocampal area (coordinates AP -3.2, ML 2.2; Paxinos and Watson, 2005), the 

dura was removed, and a bundle 4 tetrodes (0.005”, Pt/Ir, Fine Wire, California, US) were 

lowered into the brain (DV -3.2) until stable neuronal activity was measured. The drill hole 

was subsequently filled with mineral oil (Sigma-Aldrich Chemie B.V., Zwijndrecht, The 

Netherlands) and a surgical screw was placed into the scull to serve as ground. Following 

measurements animals were sacrificed with an overdose of sodium pentobarbital. During 

VBLOC (at 2.0 mA, 30 Hz, 500 µs, 30 s ON and 5 min OFF) data was recorded at 40Khz 

using a Multineuron Acquisition Processor (MAP) recording system (Plexon, Dallas, USA). 

Signals were passed through a unity-gain amplifier (20×), amplified and filtered with a Plexon 

16-channel preamplifier (PBX3 /16sp-r-G50, 50x amplification, 150-8000 Hz filtered). 
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Subsequently, a 1200µs digitized data sample was stored by the MAP system whenever the 

signal crossed a preset voltage threshold. The data were subsequently analyzed with offline 

cluster cutting procedures based on the average waveforms across the four leads of each 

tetrode (Offline Sorter x64 V3; Plexon).  
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