
Journal of Functional Analysis 273 (2017) 2655–2718

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The Dixmier property and tracial states 

for C∗-algebras

Robert Archbold a, Leonel Robert b, Aaron Tikuisis a,∗,1

a Institute of Mathematics, University of Aberdeen, King’s College,
Aberdeen AB24 3UE, Scotland, United Kingdom
b Department of Mathematics, University of Louisiana at Lafayette,
Lafayette, 70504-3568, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2016
Accepted 28 June 2017
Available online 8 July 2017
Communicated by Stefaan Vaes

Keywords:
C∗-algebra
Dixmier property
Tracial states
Ultrapower

It is shown that a unital C∗-algebra A has the Dixmier prop-
erty if and only if it is weakly central and satisfies certain tra-
cial conditions. This generalises the Haagerup–Zsidó theorem 
for simple C∗-algebras. We also study a uniform version of the 
Dixmier property, as satisfied for example by von Neumann
algebras and the reduced C∗-algebras of Powers groups, but 
not by all C∗-algebras with the Dixmier property, and we 
obtain necessary and sufficient conditions for a simple uni-
tal C∗-algebra with unique tracial state to have this uniform 
property. We give further examples of C∗-algebras with the 
uniform Dixmier property, namely all C∗-algebras with the 
Dixmier property and finite radius of comparison-by-traces. 
Finally, we determine the distance between two Dixmier sets, 
in an arbitrary unital C∗-algebra, by a formula involving tra-
cial data and algebraic numerical ranges.
© 2017 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail addresses: r.archbold@abdn.ac.uk (R. Archbold), lrobert@louisiana.edu (L. Robert), 

a.tikuisis@abdn.ac.uk (A. Tikuisis).
1 A.T. was partially supported by an NSERC Postdoctoral Fellowship and through the EPSRC grant 

EP/N00874X/1.
http://dx.doi.org/10.1016/j.jfa.2017.06.026
0022-1236/© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/131024489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jfa.2017.06.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://creativecommons.org/licenses/by/4.0/
mailto:r.archbold@abdn.ac.uk
mailto:lrobert@louisiana.edu
mailto:a.tikuisis@abdn.ac.uk
http://dx.doi.org/10.1016/j.jfa.2017.06.026
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2017.06.026&domain=pdf


2656 R. Archbold et al. / Journal of Functional Analysis 273 (2017) 2655–2718
1. Introduction

Let A be a unital C∗-algebra with unitary group U(A) and centre Z(A). For a ∈ A, 
the Dixmier set DA(a) is the norm-closed convex hull of the set {uau∗ : u ∈ U(A)}. 
Then, acting by conjugation, U(A) induces a group of isometric affine transformations 
of the convex set DA(a), and this group of transformations has a common fixed point if 
and only if DA(a) ∩ Z(A) is non-empty. The C∗-algebra A is said to have the Dixmier 
property if DA(a) ∩Z(A) is non-empty for all a ∈ A, and A is said to have the singleton 
Dixmier property if DA(a) ∩ Z(A) is a singleton set for all a ∈ A.

In [22], it was shown that every von Neumann algebra has the Dixmier property and an 
example was given of a unital C∗-algebra for which the Dixmier property does not hold. 
Since then, there has been an extensive literature, studying variants of the averaging 
process and the form of the subsets of Z(A) obtained, and also giving several applica-
tions to a number of topics including centre-valued traces, commutators, derivations, 
C∗-simplicity, relative commutants, commutation in tensor products, and the study of 
masas and subalgebras of finite index in von Neumann algebras. See [1–7,11,12,16–23,
33,34,36–42,44–48,51,58,60,65–67,70–77,85–87,92,105] and the references cited therein.

In [37], Haagerup and Zsidó established a definitive result about the Dixmier property 
for simple C∗-algebras: a simple unital C∗-algebra has the Dixmier property if and only 
if it has at most one tracial state. For non-simple C∗-algebras, the Dixmier property 
imposes serious restrictions on the ideal structure: if a C∗-algebra has the Dixmier prop-
erty, then it is weakly central ([6, p. 275]), see Definition 1.3. One of our main results is 
a complete generalisation of Haagerup and Zsidó’s, showing that the Dixmier property 
is equivalent to this ideal space restriction together with tracial conditions:

Theorem 1.1 (Theorem 2.6). Let A be a unital C∗-algebra. Then A has the Dixmier 
property if and only if all of the following hold.

(i) A is weakly central,
(ii) every simple quotient of A has at most one tracial state, and
(iii) every extreme tracial state of A factors through some simple quotient.

A characterisation of the singleton Dixmier property is an immediate consequence of 
this result (Corollary 2.8): it corresponds to the case that in (ii), every simple quotient 
has exactly one tracial state. We also take the opportunity to remove a separability 
condition from a result in [3]: a postliminal C∗-algebra A has the (singleton) Dixmier 
property if and only if Z(A/J) = (Z(A) + J)/J for every proper closed ideal J of A
(Theorem 2.12).

The case of trivial centre in Theorem 1.1 is already an interesting generalisation of the 
Haagerup–Zsidó theorem: a unital C∗-algebra A has the Dixmier property with centre 
Z(A) = C1 if and only if A has a unique maximal ideal J , A has at most one tracial 
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state and J has no tracial states (Corollary 2.10). This result has a crucial application 
in Section 3 (see below).

In Section 3, we consider a strengthening of the Dixmier property, called the uniform 
Dixmier property, in which the number of unitaries used to approximately average an 
element depends only on the tolerance (and not the particular element). This is closely 
related to the uniform strong Dixmier property studied in [28, Section 7.2], as well as the 
uniform averaging properties recently considered in [65, Section 5] and [66, Section 6]. 
Many of the classical examples of C∗-algebras with the Dixmier property turn out to 
have the uniform Dixmier property, including von Neumann algebras and C∗

r (F2) (see 
Remark 3.4). Adding to this, we show that any C∗-algebra with the Dixmier property 
and with finite radius of comparison-by-traces has the uniform Dixmier property (Corol-
lary 3.22). We use Corollary 2.10 to characterise, in terms of two distinct uniformity 
conditions, when a tracial unital C∗-algebra with the Dixmier property and trivial cen-
tre has the uniform Dixmier property (Theorem 3.24). Finally, following a suggestion by 
the referee, we find explicit constants for the uniform Dixmier property in a number of 
examples in Section 3.3.

The starting point for our results is the following recent theorem of Ng, LR, and 
Skoufranis ([65, Theorem 4.7]), generalising a version by Ozawa ([67, Theorem 1]) in 
which all quotients have a tracial state:

Theorem 1.2. [65] Let A be a unital C∗-algebra. Let a be a self-adjoint element in A. 
Then 0 ∈ DA(a) if and only if

(a) τ(a) = 0 for all tracial states τ on A, and
(b) in no nonzero quotient of A can the image of a be either invertible and positive or 

invertible and negative.

Furthermore, if A has no tracial states then condition (a) is vacuously satisfied.

Note that, in order to verify condition (b) in Theorem 1.2, it suffices to check sim-
ple quotients (that is, quotients of A by maximal ideals). Theorem 1.1 is proven using 
the Katětov–Tong insertion theorem (see Theorem 2.5 below) to produce candidate cen-
tral elements corresponding to any given self-adjoint element a ∈ A, and then using 
Theorem 1.2 to verify that these candidates are indeed in the respective Dixmier set.

In Section 4, motivated by Theorem 1.2, we show that for elements a and b in an 
arbitrary unital C∗-algebra A, the distance between the Dixmier sets DA(a) and DA(b)
can be read off from tracial data and the algebraic numerical ranges of a and b in 
quotients of A (Theorem 4.12). This result extends Theorem 1.2 in several ways: first by 
considering the Dixmier sets of a pair of elements a and b (rather than one of them being 
zero), second by providing a distance formula between these sets (rather than focusing 
on the case that this distance is zero), and third by allowing the elements a and b to be 
non-self-adjoint. We also show that, in certain cases, the distance between DA(a) and 
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DA(b) is attained (Proposition 4.10). In this section, we obtain elements in Z(A) by 
using Michael’s selection theorem, rather than the Katětov–Tong theorem (cf. [58,90]).

1.1. Preliminaries and notation

For a C∗-algebra A, we use the standard notation S(A), P (A) and T (A) for the set 
of states, pure states and tracial states, respectively; the weak∗-topology is the natural 
topology used on these sets. The set T (A) is convex, and we use ∂eT (A) to denote its 
extreme boundary. If τ ∈ T (A) then the left kernel

{a ∈ A : τ(a∗a) = 0}

is a closed (two-sided) ideal of A and is easily seen to coincide with the kernel of the 
Gelfand–Naimark–Segal (GNS) representation πτ (and with the right kernel). We shall 
refer to this ideal as the trace-kernel ideal for τ . When C is a commutative C∗-algebra 
(generally, arising as the centre of another C∗-algebra A) and N ⊆ C is a maximal ideal, 
define φN ∈ P (C) to be the (unique) pure state satisfying

φN (N) = {0}. (1.1)

For any proper closed ideal J of A,

qJ : A → A/J

will denote the canonical quotient map. For a subset S of a C∗-algebra (or of R), we 
write co(S) for the convex hull of S.

Let A be a unital C∗-algebra with centre Z(A) and let Max(A) be the subspace of 
Prim(A) (with the hull-kernel topology) consisting of all the maximal ideals of A. It is well 
known and easy to see that there is a continuous surjection Ψ : Max(A) → Max(Z(A))
given by Ψ(M) := M ∩ Z(A) for every maximal ideal M of A.

Definition 1.3. ([60,61]) A C∗-algebra A is said to be weakly central if Ψ (as just de-
scribed) is injective.

When A is weakly central, Ψ is a homeomorphism since its domain is compact and 
its range is Hausdorff. Misonou used the Dixmier property to show that every von Neu-
mann algebra is weakly central ([60, Theorem 3]). As observed in [6, p. 275], the same 
method shows that every unital C∗-algebra with the Dixmier property is weakly central. 
Although weak centrality does not imply the Dixmier property (consider any unital sim-
ple C∗-algebra with more than one tracial state), Magajna has given a characterisation 
of weak centrality in terms of a more general kind of averaging involving elementary 
completely positive mappings ([58]).
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A Glimm ideal of a unital C∗-algebra A is an ideal NA (= ANA) generated by a 
maximal ideal N of Z(A) (see [31, Section 4]); note that NA is already closed by the 
Banach module factorisation theorem (a fact that does not require N to be maximal).

Let A be a C∗-algebra with centre Z(A). A centre-valued trace on A is a positive, linear 
contraction R : A → Z(A) such that R(z) = z (z ∈ Z(A)) and R(ab) = R(ba) (a, b ∈ A). 
The equivalence of (i) and (ii) in the next result, together with the description of the 
centre-valued trace R, is essentially well-known and easy to see. It underlies Dixmier’s 
approach to the trace in a finite von Neumann algebra [22,23,48]. A detailed proof is 
given in [3, 5.1.3] using the same methods as in the case of a von Neumann algebra 
(see, for example, [23, Corollaire III.8.4]). (The equivalence with (iii) is probably also 
well-known, although we were unable to find a reference.)

Proposition 1.4. Let A be a unital C∗-algebra with the Dixmier property. The following 
conditions are equivalent.

(i) A has the singleton Dixmier property.
(ii) There exists a centre-valued trace on A.
(iii) For every M ∈ Max(A), T (A/M) is non-empty.

When these equivalent conditions hold, the centre-valued trace R is unique,

{R(a)} = DA(a) ∩ Z(A) (a ∈ A),

and, for every M ∈ Max(A), T (A/M) is a singleton.

Proof. It remains to establish the equivalence of (iii), and also the last part of the final 
sentence. Suppose that A has the singleton Dixmier property and that R : A → Z(A)
is the associated centre-valued trace on A. Let M ∈ Max(A) and observe that, since 
A/M is simple, Z(A/M) = C1A/M = (Z(A) + M)/M . Since R(a) ∈ DA(a) (a ∈ A), 
it follows that R(M) ⊆ M and hence it is easily seen that R induces a centre-valued 
trace RM : A/M → C1A/M (cf. the proof of [3, Proposition 5.1.11]). In particular, A/M

has a tracial state τM such that τM (qM (a))1A/M = RM (qM (a)) (a ∈ A). Thus T (A/M)
is non-empty. In fact T (A/M) = {τM} since A/M has the Dixmier property [5, p. 544]
and trivial centre.

Conversely, suppose that (iii) holds, that a ∈ A and that z1, z2 ∈ DA(a) ∩ Z(A). Let 
φ ∈ P (Z(A)),

N := {a ∈ Z(A) : φ(a∗a) = 0} ∈ Max(Z(A)),

and M := Ψ−1(N) ∈ Max(A). Let τ ∈ T (A/M). Then τ ◦ qM ∈ T (A), (τ ◦ qM )|Z(A) = φ

and τ ◦ qM is constant on DA(a). Hence

φ(z1) = (τ ◦ qM )(a) = φ(z2).

Since this holds for all φ ∈ P (Z(A)), we obtain that z1 = z2 as required for (i). �
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Since the Dixmier property passes to quotients ([5, p. 544]), it is immediate from 
Proposition 1.4 (iii) that the singleton Dixmier property passes to quotients of unital 
C∗-algebras. More generally, the singleton Dixmier property passes to ideals and quo-
tients of arbitrary C∗-algebras [3, Proposition 5.1.11].

The next theorem will not be applied until Section 3, but we include it here as it 
may be of independent interest (cf. [2, Theorem 4.3]). In [64, Lemma 2.1 (i)], it is shown 
that a limit of sums of self-adjoint commutators in a quotient can be lifted (as below), 
but at a cost of ε in the norm. Theorem 1.6 shows that this ε cost can be avoided. The 
proof uses a technique from Loring and Shulman’s [57]; the result almost follows from 
[57, Theorem 3.2], except that they work with polynomials (in non-commuting variables) 
whereas we need to work with a series (of commutators). Here [A, A] means the span of 
commutators in A, i.e., the span of elements of the form [a, b] = ab − ba, where a, b ∈ A. 
Recall also that a quasicentral approximate unit of an ideal J of A is an approximate 
unit (uλ) for J which is approximately central in A.

We will need the following in the proof of this theorem.

Lemma 1.5. Let A be a C∗-algebra, J a closed ideal of A and (uλ) a quasicentral approx-
imate unit of J . Let 0 < δ < 1 and a ∈ A. Then

lim sup
λ

‖a(1 − δuλ)‖ ≤ max(‖qJ(a)‖, (1 − δ)‖a‖).

Proof. This is a special case of [57, Theorem 2.3]. �
Theorem 1.6. Let A be a C∗-algebra, let J be a closed ideal of A and let ā ∈ A/J be a 
self-adjoint element in [A/J,A/J ]. Then there exists a self-adjoint lift a ∈ [A,A] of ā
such that ‖a‖ = ‖ā‖.

Proof. We may assume without loss of generality that ‖ā‖ = 1. The strategy of the 
proof is as follows: We will construct a sequence (a(n))∞n=1 of self-adjoints lifts of ā such 
that a(n) ∈ [A,A] for all n, ‖a(n)‖ → 1, and the sequence (a(n))∞n=1 is Cauchy. This is 
sufficient to prove the theorem, for then limn a

(n) is the desired lift.
Pick any decreasing sequence 0 < δn < 2/3 such that 

∑∞
n=1 δn < ∞. Define εn such 

that (1 + 2εn)(1 − δn) = 1 for all n ≥ 1. Notice that εn is also a decreasing sequence, 
εn < 1, and εn → 0.

We shall iteratively produce a(n) with the following properties:

• it has the form

a(n) =
∞∑
i=1

[(x(n)
i )∗, x(n)

i ] (1.2)

for some x(n)
1 , x(n)

2 , · · · ∈ A;
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• a(n) is a lift of ā;
• ‖a(n)‖ ≤ 1 + εn; and
• ‖a(n) − a(n−1)‖ < 4δn−1, for n ≥ 2.

Since 
∑∞

n=1 δn < ∞, the final item ensures that the sequence is Cauchy, and so upon 
finding such a(n), we are done.

Let us start with a self-adjoint lift a(1) ∈ [A,A] of ā such that ‖a(1)‖ < 1 + ε1. This 
can be done by [64, Lemma 2.1 (i)]. By [18, Theorem 2.6], we have

a(1) =
∞∑
i=1

[(x(1)
i )∗, x(1)

i ]

for some x(1)
i ∈ A, where the series is norm convergent. Now fix n ≥ 1, and suppose that 

we have defined a self-adjoint a(n) that is a lift of ā, such that ‖a(n)‖ < 1 + εn, and such 
that a(n) has the form

a(n) =
∞∑
i=1

[(x(n)
i )∗, x(n)

i ].

Find kn ∈ N such that

‖
∑
i>kn

[(x(n)
i )∗, x(n)

i ]‖ <
εn+1

3 . (1.3)

Let (uλ) be a quasicentral approximate unit of J , and define

x
(n+1)
i :=

{
x

(n)
i , if i > kn;

x
(n)
i (1 − δnuλ) 1

2 , if i ≤ kn.

Define a(n+1) as in (1.2) using the new elements x(n+1)
i (the new series also converges 

since only finitely many terms were changed). It is clear that a(n+1) is a self-adjoint lift 
of ā and that a(n+1) ∈ [A,A]. Presently, the element a(n+1) depends on λ. We will choose 
λ suitably. We have

‖a(n+1)‖ <
∥∥∥ kn∑

i=1
[(x(n+1)

i )∗, x(n+1)
i ]

∥∥∥ + εn+1

3 .

Exploiting the approximate centrality of (uλ) (using [102, Proposition 1.8] to get that 
(1 − δnuλ) 1

2 is approximately central), we can choose λ large enough such that

‖a(n+1)‖ <
∥∥∥( kn∑

[(x(n)
i )∗, x(n)

i ]
)
(1 − δnuλ)

∥∥∥ + εn+1

3 + εn+1

3 .

i=1
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We have

∥∥∥ kn∑
i=1

[(x(n)
i )∗, x(n)

i ]
∥∥∥ ≤ 1 + εn + εn+1

3 < 1 + 2εn.

Using (1.3), we find that the norm of the image of 
∑kn

i=1[(x
(n)
i )∗, x(n)

i ] in the quotient 
A/J is less than ‖ā‖ + εn+1/3 = 1 + εn+1/3. So, by Lemma 1.5, we can choose λ large 
enough such that

‖(
kn∑
i=1

[(x(n)
i )∗, x(n)

i ])(1 − δnuλ)‖ < max(1 + εn+1

3 , (1 − δn)(1 + 2εn))

= max(1 + εn+1

3 , 1)

= 1 + εn+1

3 .

Then, for such choices of λ we have ‖a(n+1)‖ < 1 + εn+1.
Now consider a(n+1) − a(n):

a(n+1) − a(n) =
kn∑
i=1

[(x(n+1)
i )∗, x(n+1)

i ] − [(x(n)
i )∗, x(n)

i ].

Again using approximate centrality of (uλ), we may possibly increase λ to get

‖
kn∑
i=1

[(x(n+1)
i )∗, x(n+1)

i ] − [(x(n)
i )∗, x(n)

i ]‖ ≤ δn + ‖
kn∑
i=1

[(x(n)
i )∗, x(n)

i ]((1 − δnuλ) − 1)‖

≤ δn + (1 + 2εn)δn ≤ 4δn.

Thus, ‖a(n+1) − a(n)‖ ≤ 4δn, as required. �
We recall from [18, Proposition 2.7] that, for a ∈ A, a ∈ [A,A] if and only if τ(a) = 0

for all tracial states of A. Thus Theorem 1.6 can clearly be rephrased in terms of tracial 
states of A/J and of A instead of commutators.

2. Tracial characterisations of the Dixmier property and the singleton Dixmier 
property

We begin with a few straightforward (and probably well-known) facts.

Lemma 2.1. Suppose that A is a unital C∗-algebra containing a unique maximal ideal J . 
Then Z(A) = C1 and Z(J) = {0}.
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Proof. Since the map Ψ : Max(A) → Max(Z(A)) is surjective, Z(A) has only one 
maximal ideal and this must therefore be the zero ideal. Thus Z(A) = C1 and hence 
Z(J) = Z(A) ∩ J = {0}. �

The next result can be proved by using a quasicentral approximate unit or the GNS 
representation, or the invariance of the extension under unitary conjugation. A proof 
using an arbitrary approximate unit is given in [84, Lemma 3.1].

Lemma 2.2. Let J be a nonzero closed ideal of a C∗-algebra A and let τ ∈ T (J). Then 
the unique extension of τ to a state of A (see [68, 3.1.6]) is a tracial state.

Lemma 2.3. Let J be a proper closed ideal of a unital C∗-algebra A. Then for any τ ∈
∂eT (A/J), τ ◦ qJ ∈ ∂eT (A).

Lemma 2.4. Let A be a unital C∗-algebra and suppose that τ ∈ ∂eT (A). Then τ |Z(A) is 
a pure state on Z(A).

Proof. Let z ∈ Z(A) be a positive contraction. Then the function τz : A → C given by 
τz(a) := τ(za) is a tracial functional on A which clearly satisfies τz ≤ τ . Since τ is an 
extreme tracial state, it follows that τz is a scalar multiple of τ , and so

τ(za) = τz(1)τ(a) = τ(z)τ(a).

In particular, this shows that τ |Z(A) is multiplicative, and therefore a pure state. �
We will also need the following.

Theorem 2.5 (Katětov–Tong insertion theorem). Let X be a normal space and Y a closed 
subspace. Let f : X → R be upper semicontinuous, g : Y → R be continuous, and 
h : X → R be lower semicontinuous, satisfying

f(x) ≤ h(x) (x ∈ X) and f(x) ≤ g(x) ≤ h(x) (x ∈ Y ).

Then there exists g̃ : X → R continuous such that g̃|Y = g and

f(x) ≤ g̃(x) ≤ h(x) (x ∈ X). (2.1)

Proof. We reduce this to the standard form of the Katětov–Tong insertion theorem (see 
[50] or [98]), which is the case that Y = ∅. Define f1, h1 : X → R by

f1(x) :=
{
g(x), x ∈ Y,

f(x), x /∈ Y,
and
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h1(x) :=
{
g(x), x ∈ Y,

h(x), x /∈ Y.

Using that f is upper semicontinuous, that Y is closed, and that f ≤ g on Y , it follows 
that f1 is upper semicontinuous. Likewise, h1 is lower semicontinuous. It is also clear 
that f1 ≤ h1. Therefore by the standard form of the Katětov–Tong insertion theorem, 
there exists a continuous function g̃ : X → R such that

f1 ≤ g̃ ≤ h1.

The definitions of f1 and h1 ensure that (2.1) holds. �
Here is our first main theorem, characterising the Dixmier property in terms of other 

conditions that are more readily verified, namely weak centrality and tracial conditions.

Theorem 2.6. Let A be a unital C∗-algebra. The following are equivalent.

(i) A has the Dixmier property.
(ii) A is weakly central and, for every M ∈ Max(A),

(a) A/(M ∩ Z(A))A has at most one tracial state, and
(b) if A/(M ∩ Z(A))A has a tracial state τ , then τ(M/(M ∩ Z(A))A) = {0}.

(iii) A is weakly central and
(a) for every M ∈ Max(A), A/M has at most one tracial state, and
(b) every extreme tracial state of A factors through A/M for some maximal 

ideal M .

When A has the Dixmier property, ∂eT (A) is homeomorphic to the set

Y := {M ∈ Max(A) : A has a (unique) tracial state τM that annihilates M} (2.2)

via the assignment M 
→ τM , the set Y is closed in Max(A), and T (A) is a Bauer 
simplex (possibly empty).

Proof. (i)⇒(ii): Suppose that A has the Dixmier property and hence is weakly central. 
Let M ∈ Max(A) and set N := M ∩Z(A), a maximal ideal of Z(A). By weak centrality, 
M/NA is the unique maximal ideal of A/NA. Hence Z(A/NA) = C(1 + NA) and 
Z(M/NA) = {0} by Lemma 2.1. By [5, p. 544], the C∗-algebra A/NA has the Dixmier 
property. Since tracial states are constant on Dixmier sets, we conclude that if A/NA

has a tracial state then it is unique and it annihilates M/NA.
(ii)(a)⇒(iii)(a): For M ∈ Max(A), (M ∩ Z(A))A ⊆ M and so A/M is a quotient of 

A/(M ∩ Z(A))A. Hence (ii)(a) implies (iii)(a).
(ii)(b)⇒(iii)(b): Let τ be an extreme tracial state of A. By Lemma 2.4, there exists 

a maximal ideal N of Z(A) such that τ(N) = {0}. Hence τ(NA) = {0} by the Cauchy–
Schwartz inequality for states. Let M ∈ Max(A) be such that M ∩Z(A) = N ; then since 
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τ induces a tracial state on A/NA = A/(M ∩ Z(A))A, it follows from (ii)(b) that this 
tracial state annihilates M/(M ∩ Z(A))A, i.e., τ(M) = {0}, as required.

(iii)⇒(ii)(b): To prove (ii)(b), it suffices by the Krein–Milman theorem to show that 
if τ is an extreme tracial state on A/(M ∩ Z(A))A then τ(M/(M ∩ Z(A))A) = {0}. 
By Lemma 2.3, the induced tracial state τ̃ on A is also extreme, and by (iii) it factors 
through A/M ′ for some M ′ ∈ Max(A). Then (using φM∩Z(A) as defined by (1.1)),

φM ′∩Z(A) = τ̃ |Z(A) = φM∩Z(A),

and so M ′ ∩ Z(A) = M ∩ Z(A). By weak centrality, we conclude that M ′ = M and 
therefore τ(M/(M ∩ Z(A))A) = 0.

(iii) and (ii)(b)⇒(i): Assume that (iii) and (ii)(b) hold. Define X := Max(A) ∼=
Max(Z(A)) (thus a compact Hausdorff space) and Y := {M ∈ X : A/M has a tracial
state}. By the Krein–Milman theorem and (iii)(b), Y is non-empty if and only if T (A)
is non-empty. By (iii)(a), for each M ∈ Y , there is a unique tracial state τM of A that 
vanishes on M . It follows from Lemma 2.3 that τM ∈ ∂eT (A). We define G : Y → ∂eT (A)
by G(M) := τM (M ∈ Y ). If M1, M2 ∈ Y and G(M1) = G(M2) then the state τM1

vanishes on M1+M2 and so M1 = M2. Thus G is injective, and it is surjective by (iii)(b). 
We will show that Y is closed in Max(A) (and hence compact) and that the bijection G
is continuous for the weak∗-topology on the Hausdorff space ∂eT (A) (and hence G is a 
homeomorphism).

Let M belong to the closure of Y in Max(A) and let (Mi) be an arbitrary net in 
Y that is convergent to M . Since T (A) is weak∗-compact, there exist τ ∈ T (A) and a 
subnet (Mij ) such that τMij

→j τ . Then

τ |Z(A) = lim
j

φMij
∩Z(A) = φM∩Z(A).

It follows from the Cauchy–Schwartz inequality for states that τ annihilates the Glimm 
ideal (M ∩ Z(A))A and hence τ(M) = {0} by (ii)(b). Thus M ∈ Y and τ = τM . Since 
(Mi) is an arbitrary net in Y convergent to M and τMij

→j τM , G is continuous at M
and therefore continuous on Y .

Now let a ∈ A be self-adjoint. We show that DA(a) ∩ Z(A) �= ∅. Our strategy is to 
define a candidate z ∈ Z(A) and then use Theorem 1.2 to show that z ∈ DA(a). Define 
functions f, h : X → R by

f(M) := min sp(qM (a)), h(M) := max sp(qM (a)) (M ∈ Max(A))

(cf. [6, p. 279]). One can rewrite these as

f(M) = ‖a‖ −
∥∥qM (‖a‖1 − a)

∥∥ and h(M) =
∥∥qM (‖a‖1 + a)

∥∥− ‖a‖;

[68, Proposition 4.4.4] tells us that the functions M 
→
∥∥qM (‖a‖1 ± a)

∥∥ are lower semi-
continuous, and therefore, h is lower semicontinuous and f is upper semicontinuous.
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Finally define g : Y → R by g(M) := G(M)(a) = τM (a). Since G is continuous on Y , 
so is g. Evidently,

f(M) ≤ h(M) (M ∈ X).

For all M ∈ Y ,

f(M)1A/M ≤ qM (a) ≤ h(M)1A/M

and hence, by the positivity of the tracial state induced by τM on A/M ,

f(M) ≤ g(M) ≤ h(M).

By the Katětov–Tong insertion theorem (Theorem 2.5), there exists a function g̃ ∈
C(X) such that g̃|Y = g and

f(M) ≤ g̃(M) ≤ h(M) (M ∈ X).

Since g̃ ◦ Ψ−1 ∈ C(Max(Z(A))), Gelfand theory for the commutative C∗-algebra Z(A)
yields a self-adjoint element z ∈ Z(A) such that

qM (z) = g̃(M)1A/M ∈ A/M (M ∈ Max(A)).

Then τM (a − z) = 0 for all M ∈ Y . Since G is surjective, the Krein–Milman theorem 
yields

τ(a− z) = 0 (τ ∈ T (A)),

verifying (a) of Theorem 1.2. For every maximal ideal M of A, 0 is in the convex hull of 
the spectrum of qM (a −z); this is because the spectrum of this element is the translation 
of the spectrum of qM (a) by g̃(M), and g̃(M) is chosen to be between the minimum 
and the maximum of the spectrum of gM (a). Therefore 0 is in the convex hull of the 
spectrum of the image of a − z in any quotient of A. This shows that (b) of Theorem 1.2
holds. Hence by Theorem 1.2, 0 ∈ DA(a − z) and so z ∈ DA(a) as required.

Now, for a ∈ A (not necessarily self-adjoint) we may write a = b + ic, where b and c
are self-adjoint elements of A, and a standard argument of successive averaging (cf. the 
proof of [48, Lemma 8.3.3]) shows that d(DA(a), Z(A)) = 0. By [5, Lemma 2.8], A has 
the Dixmier property.

Finally, we have seen above that when A has the Dixmier property, ∂eT (A) is home-
omorphic to the compact set Y and so the Choquet simplex T (A) is a Bauer simplex 
(possibly empty). �

Suppose that A is a unital C∗-algebra with the Dixmier property and that θ : Z(A) →
C(Max(A)) is the canonical ∗-isomorphism induced by the Gelfand transform for Z(A)



R. Archbold et al. / Journal of Functional Analysis 273 (2017) 2655–2718 2667
and the homeomorphism Ψ : Max(A) → Max(Z(A)). Let a = a∗ ∈ A, let f and h be 
the associated spectral functions on Max(A) and let g be the associated function on 
the closed subset Y of Max(A) (see the proof of Theorem 2.6). Then it follows from 
Theorem 1.2 that

DA(a) ∩ Z(A) = {z ∈ Z(A) : z = z∗, f ≤ θ(z) ≤ h and θ(z)|Y = g}.

Thus DA(a) ∩Z(A) is closed under the operations of max and min (regarding self-adjoint 
elements of Z(A) as continuous functions on Max(A)). Furthermore, if z1, z2, z3 are 
self-adjoint elements of Z(A) such that z1 ≤ z2 ≤ z3 and z1, z3 ∈ DA(a) then z3 ∈ DA(a).

In the case where A is a properly infinite von Neumann algebra (and hence for a 
general von Neumann algebra), Ringrose has shown that DA(a) ∩ Z(A) is an order 
interval in the self-adjoint part of Z(A) and has given a formula for the end-points in 
terms of spectral theory (see [77, Corollary 2.3, Theorem 3.3 and Remark 3.5]). The next 
result gives a different spectral description for the end-points.

Corollary 2.7. Let A be a properly infinite von Neumann algebra and let a = a∗ ∈ A. 
Then, with the notation above, the spectral functions f and h are continuous on Max(A), 
θ−1(f), θ−1(h) ∈ DA(a) ∩ Z(A) and

DA(a) ∩ Z(A) = {z ∈ Z(A) : z = z∗ and θ−1(f) ≤ z ≤ θ−1(h)}.

Proof. For b ∈ A, the function M → ‖qM (b)‖ is continuous on Max(A) by [38, Propo-
sition 1]. It follows that the functions f and h are continuous on Max(A). Since A has 
no tracial states, the subset Y of Max(A) is empty. The result now follows from the 
discussion above. �

We now show how Theorem 2.6 leads to necessary and sufficient conditions for the 
singleton Dixmier property.

Corollary 2.8. Let A be a unital C∗-algebra. The following are equivalent.

(i) A has the singleton Dixmier property.
(ii) A is weakly central and, for every M ∈ Max(A), A/(M ∩ Z(A))A has a unique 

tracial state and this state annihilates M/(M ∩ Z(A))A.
(iii) A is weakly central and

(a) for every M ∈ Max(A), A/M has a unique tracial state, and
(b) every extreme tracial state of A factors through A/M for some M ∈ Max(A).

(iv) (a) for every M ∈ Max(A), A/M has a unique tracial state, and
(b) the restriction map r : T (A) → S(Z(A)) is a homeomorphism for the 

weak∗-topologies.
(v) (a) for every M ∈ Max(A), T (A/M) is non-empty, and

(b) the restriction map re : ∂eT (A) → P (Z(A)) is injective.
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Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 2.6 and Proposition 1.4. 
It is also clear that (iv) implies (v) (note that re maps extreme tracial states into P (Z(A))
by Lemma 2.4).

(i)⇒(iv): Suppose that A has the singleton Dixmier property. Then (iv)(a) holds by 
Proposition 1.4. For (iv)(b), we proceed as in the well-known case of a finite von Neu-
mann algebra (cf. [23, Proposition III.5.3]). For the surjectivity of r, we observe that if 
φ ∈ S(Z(A)) then φ ◦R ∈ T (A), where R : A → Z(A) is the unique centre-valued trace of 
A, and (φ ◦R)|Z(A) = φ. The injectivity of r follows from the facts that A has the Dixmier 
property and tracial states are constant on Dixmier sets. Since r is a weak∗-continuous 
bijection from the compact space T (A) to the Hausdorff space S(Z(A)), it is a homeo-
morphism.

(v)⇒(iii): Suppose that A satisfies (v) and let M ∈ Max(A). By (v)(a) and the Krein–
Milman theorem, there exists τM ∈ ∂eT (A/M). Then τM◦qM ∈ ∂eT (A) (Lemma 2.3) and 
(τM ◦qM )|Z(A) = φM∩Z(A). Since re is injective, τM is unique and hence T (A/M) = {τM}
by the Krein–Milman theorem. This establishes (iii)(a).

For weak centrality, suppose that M1, M2 ∈ Max(A) and M1 ∩ Z(A) = M2 ∩ Z(A). 
Then

re(τM1 ◦ qM1) = φM1∩Z(A) = φM2∩Z(A) = re(τM2 ◦ qM2).

Since re is injective, τM1 ◦qM1 = τM2 ◦qM2 , which is a state annihilating M1 +M2. Hence 
M1 = M2.

For (iii)(b), let τ ∈ ∂eT (A). By Lemma 2.4, there exists N ∈ Max(Z(A)) such that

τ |Z(A) = φN .

Let M ∈ Max(A) satisfy M ∩ Z(A) = N , so that

τ |Z(A) = φM∩Z(A) = (τM ◦ qM )|Z(A).

Since re is injective, τ = τM ◦ qM . �
Corollary 2.9. Let A be a unital C∗-algebra with the Dixmier property and suppose that 
T (A) is non-empty. Then there exists a unique proper closed ideal J of A with the 
following property: for every proper closed ideal K of A, A/K has the singleton Dixmier 
property if and only if K ⊇ J .

Proof. From Theorem 2.6, we have that

Y := {M ∈ Max(A) : T (A/M) is non-empty}

is a non-empty closed subset of Max(A). Let N :=
⋂

M∈Y (M ∩ Z(A)) and J := NA. 
Since Y is non-empty, J is a proper ideal of A.
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Let K be a proper closed ideal of A and suppose that A/K has the singleton Dixmier 
property. Let P be a primitive ideal of A containing K and let M be a maximal ideal of 
A containing P . Since A/K has the singleton Dixmier property, it follows from Propo-
sition 1.4 that T ((A/K)/(M/K)) is non-empty and hence M ∈ Y . On the other hand, 
P ∩ Z(A) is a prime ideal of Z(A) and hence

P ∩ Z(A) = M ∩ Z(A) ⊇ N.

It follows that P ⊇ NA = J . Since this holds for all P ∈ Prim(A/K), we obtain that 
K ⊇ J .

Conversely, suppose that K ⊇ J . Since A has the Dixmier property, so does A/K. Let 
M be a maximal ideal of A that contains K. Since M ∩Z(A) ⊇ J ∩Z(A) ⊇ N and Ψ(Y )
is closed in Max(Z(A)), we obtain that M ∈ Y . Thus T ((A/K)/(M/K)) is non-empty 
and so A/K has the singleton Dixmier property by Proposition 1.4.

The uniqueness of J is immediate from its stated property. �
We highlight the special case of Theorem 2.6 in which Z(A) is trivial, which generalises 

results from [37]. This case plays a crucial role in our investigation of the uniform Dixmier 
property for C∗-algebras with trivial centre, in Section 3.2.

Corollary 2.10. Suppose that A is a unital C∗-algebra. The following conditions are equiv-
alent.

(i) Z(A) = C1 and A has the Dixmier property.
(ii) A has a unique maximal ideal J , A has at most one tracial state and J has no 

tracial states.
(iii) A has a unique maximal ideal J , A/J has at most one tracial state and J has no 

tracial states.

When these hold, A has the singleton Dixmier property exactly when it has a tracial 
state τ , and in this case,

J = {x ∈ A : τ(x∗x) = 0},

the trace-kernel ideal for τ .
If A has the Dixmier property and no tracial states then

DA(a) ∩ C1 = {t1 : t ∈ co(sp(qJ(a))}.

Proof. Suppose that (i) holds. By Theorem 2.6 ((i) ⇒ (ii)), A is weakly central and 
hence, since Z(A) = C1, A has a unique maximal ideal J . Since J ∩ Z(A) = {0}, A has 
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at most one tracial state by Theorem 2.6(ii)(a) and if A does have a tracial state then 
it annihilates J by Theorem 2.6(ii)(b). By Lemma 2.2, J has no tracial states. Thus (ii) 
holds.

Conversely, suppose that (ii) holds. Then Z(A) = C1 (by Lemma 2.1) and A is weakly 
central. If A has a tracial state then it must annihilate J since J has no tracial states. 
Thus (i) holds by Theorem 2.6((ii) ⇒ (i)).

(ii)⇔(iii) is immediate.
The statement concerning the singleton Dixmier property follows from Corollary 2.8

(i)⇔(ii), and the final statement follows from Theorem 1.2. �
An example of a non-simple C∗-algebra with a unique maximal ideal, with the Dixmier 

property but not the singleton Dixmier property is the “Cuntz–Toeplitz algebra” A :=
C∗(S1, . . . , Sn) where 2 ≤ n < ∞ and S1, . . . , Sn are isometries on an infinite dimensional 
Hilbert space with mutually orthogonal range projections having sum less than 1 (cf. [8, 
Theorem 11]).

Corollary 2.10 above motivates the following question. Is there an example of a unital 
C∗-algebra A containing a unique maximal ideal J such that A has a unique tracial 
state and A/J has no tracial states? A non-separable example is the multiplier algebra 
M(J) where J is a non-unital hereditary subalgebra of a UHF algebra; here, J is simple 
and has a unique trace, and by [25, Theorem 3.1 and its proof], M(J)/J is simple and 
infinite. Thus J is the unique maximal ideal of M(J), and the extension of the trace 
on J is the unique trace on M(J).

For a separable nuclear example, one may utilise a construction of Kirchberg [52] as 
pointed out by Ozawa at the end of [67, Section 3]. Thus J and A are C∗-subalgebras 
of the CAR algebra M2∞ such that J is hereditary in M2∞ and is an ideal in A such 
that A/J ∼= O∞. Since M2∞ is simple and has a faithful, unique tracial state, J also has 
both of these properties (note that any tracial state of J can be extended to a bounded 
tracial functional on M2∞). Suppose that A has a maximal ideal M distinct from J . 
Then M ∩ J = {0} and so

O∞ ∼= (M + J)/J ∼= M/M ∩ J = M,

contradicting the fact that A has a faithful tracial state induced from M2∞ . It follows 
from a theorem of Cuntz and Pedersen [18, Theorem 2.9], as in the proof of [62, Theo-
rem 14], that A has a faithful, unique tracial state. Even though A/J satisfies a strong 
form of the Dixmier property [8, Theorem 8], A itself does not have the Dixmier property 
because its tracial state does not vanish on J .

This example also shows that, in Corollary 2.8, the condition (v)(a) does not follow 
from condition (v)(b). On the other hand, to see that condition (v)(a) does not imply 
condition (v)(b) in Corollary 2.8, consider any simple unital C∗-algebra with more than 
one tracial state.
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The following concerns the Dixmier property for non-unital C∗-algebras; a non-unital 
C∗-algebra A is said to have the (singleton) Dixmier property if the unitisation A + C1
has the same property.

Corollary 2.11. Let A be a C∗-algebra with no tracial states. Then the following condi-
tions are equivalent.

(i) A has the Dixmier property and Z(A) = 0.
(ii) A has the singleton Dixmier property and Z(A) = 0.
(iii) A is the unique maximal ideal of the unitisation A + C1.

Proof. (i)⇔(iii) is Corollary 2.10 (i)⇔(iii) applied to A +C1, while the singleton Dixmier 
property in (ii) is the final sentence of Corollary 2.10. �

A C∗-algebra A (with or without an identity) is said to have the centre-quotient 
property if Z(A/J) = (Z(A) + J)/J for every proper closed ideal J of A. Vesterstrøm 
showed that, for unital A, the centre-quotient property is equivalent to weak centrality 
([99, Theorems 1 and 2]). Dixmier observed that the centre-quotient property is a simple 
consequence of the Dixmier property in a von Neumann algebra ([23, p. 259, Ex. 7]). 
Similarly, it is easily seen that if a C∗-algebra has the Dixmier property then it also has 
the centre-quotient property ([3, 2.2.2]). The next result was obtained in [3, 4.3.1, 5.1.9]
under the additional assumption that either A is separable or there is a finite bound on 
the covering dimension of compact Hausdorff subsets of the spectrum Â. The method 
was very different from that used below.

Theorem 2.12. Let A be a postliminal C∗-algebra. The following conditions are equiva-
lent.

(i) A has the centre-quotient property.
(ii) A has the singleton Dixmier property.
(iii) A has the Dixmier property.

Proof. (i)⇒(ii): Suppose first of all that A is a unital postliminal C∗-algebra with the 
centre-quotient property. Then A is weakly central ([99]). Furthermore, A automatically 
satisfies conditions (iii)(a) and (iii)(b) of Corollary 2.8. For (iii)(a), recall that a simple, 
unital C∗-algebra of type I is ∗-isomorphic to Mn for some n ∈ N. For (iii)(b), note that 
if τ ∈ ∂eT (A) then πτ (A)′′ is a finite factor of type I (see [24, 6.8.7 and 6.8.6]) and so 
kerπτ is maximal. By Corollary 2.8, A has the singleton Dixmier property.

Secondly, suppose that A is a non-unital postliminal C∗-algebra with the centre-
quotient property. Then it is easily seen that A + C1 has the centre-quotient property 
(note that if J is a closed ideal of A + C1 then either J ⊆ A or else (A + C1)/J is 
canonically ∗-isomorphic to A/(A ∩ J)). Thus A +C1 is a unital postliminal C∗-algebra 
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with the centre-quotient property and so has the singleton Dixmier property by the first 
part of the proof.

(iii)⇒(i): For the convenience of the reader, we give the details in the case where A is 
a non-unital C∗-algebra with the Dixmier property. The unital case is even easier (and 
could alternatively be obtained via weak centrality and [99]). Let J be a closed ideal of A
and let q : A + C1 → (A + C1)/J be the canonical quotient map. Suppose that a ∈ A

and that q(a) ∈ Z(A/J) ⊆ Z((A + C1)/J). Since DA+C1(a) ⊂ A and Z(A + C1) ∩ A =
Z(A), there exists z ∈ DA+C1(a) ∩ Z(A). Then q(z) ∈ Dq(A+C1)(q(a)) = {q(a)} and so 
q(a) ∈ (Z(A) + J)/J , as required. �
Corollary 2.13. Let A be a postliminal C∗-algebra such that every irreducible representa-
tion of A is infinite dimensional. Then A has the singleton Dixmier property.

Proof. As in the proof of [3, 4.3.2], the use of a composition series with liminal quotients 
shows easily that the centre of A is {0}. Since the same applies to any nonzero quotient 
of A, it follows that A has the centre-quotient property and hence the singleton Dixmier 
property. �
3. The uniform Dixmier property

In this section, we introduce and study the following uniform version of the Dixmier 
property (cf. [66, Section 6] and [65, Section 5]).

Definition 3.1. A unital C∗-algebra A has the uniform Dixmier property if for every ε > 0
there exists n ∈ N such that for all a ∈ A, there exist unitaries u1, . . . , un ∈ U(A) such 
that

d
( n∑

i=1

1
n
uiau

∗
i , Z(A)

)
≤ ε‖a‖.

Theorem 3.2. Let A be a unital C∗-algebra. The following are equivalent:

(i) A has the uniform Dixmier property.
(ii) There exist m ∈ N and 0 < γ < 1 such that for every self-adjoint a ∈ A we have 

that

∥∥∥ m∑
i=1

1
m
uiau

∗
i − z

∥∥∥ ≤ γ‖a‖,

for some z ∈ Z(A) and u1, . . . , um ∈ U(A).
(iii) There exist m ∈ N and 0 < γ < 1 such that for every self-adjoint a ∈ A we 

have that
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∥∥∥ m∑
i=1

tiuiau
∗
i − z

∥∥∥ ≤ γ‖a‖, (3.1)

for some z ∈ Z(A), some u1, . . . , um ∈ U(A), and some t1, . . . , tm ∈ [0, 1] such that ∑m
i=1 ti = 1.

(iv) There exists a function Φ : A → Z(A) such that for every ε > 0 there exists n ∈ N
such that for all a ∈ A we have that

∥∥∥ n∑
i=1

1
n
uiau

∗
i − Φ(a)

∥∥∥ ≤ ε‖a‖,

for some unitaries u1, . . . , un ∈ U(A).

Proof. This proof uses known ideas from the theory of the Dixmier property and of 
sequence algebras, and is included for completeness.

The implications (i)⇒(ii)⇒(iii) and (iv)⇒(i) are clear.
Let us prove that (iii)⇒(iv). Given an arbitrary element a ∈ A, we can decompose 

a as b + ic where b, c are self-adjoint and ‖b‖, ‖c‖ ≤ ‖a‖. By a standard argument of 
successive averaging (cf. the proofs of [48, Lemmas 8.3.2 and 8.3.3]), we deduce from 
(3.1) the existence of m2k unitaries v1, . . . , vm2k such that

∥∥∥m2k∑
i=1

tiviav
∗
i − z

∥∥∥ ≤ 2γk‖a‖,

for some z ∈ Z(A) and some scalars ti ∈ [0, 1] such that 
∑m2k

i=1 ti = 1. In this way, we 
extend (3.1) to all a ∈ A at the expense of changing (m, γ) for (m2k, 2γk) (where k is 
chosen so that 2γk < 1). Henceforth, let us instead assume, without loss of generality, 
that the constants (m, γ) are such that (3.1) is valid for all a ∈ A.

Let a ∈ A. Then there exists z1 ∈ Z(A) such that

∥∥∥ m∑
i=1

tiuiau
∗
i − z1

∥∥∥ ≤ γ‖a‖,

for some unitaries u1, . . . , um ∈ A and scalars t1, . . . , tm ∈ [0, 1] such that 
∑m

i=1 ti = 1. 
Set a1 :=

∑m
i=1 tiuiau

∗
i so that ‖a1−z1‖ ≤ γ‖a‖. Applying the same argument to a1−z1

we find z2 ∈ Z(A), and a convex combination of m unitary conjugates of a1 − z1, call 
it b2, such that

‖b2 − z2‖ ≤ γ‖a1 − z1‖ ≤ γ2‖a‖.

Notice that b2 = a2−z1, where a2 is a convex combination of m unitary conjugates of a1
(whence, also a convex combination of m2 unitary conjugates of a). Then
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‖a2 − z1 − z2‖ ≤ γ2‖a‖.

Continuing this process ad infinitum we find ak ∈ D(a) and zk ∈ Z(A) for k = 1, 2, . . .
such that ak is a convex combination of m unitary conjugates of ak−1 and

∥∥∥ak −
k∑

i=1
zi

∥∥∥ ≤ γk‖a‖

for all k ≥ 1. For each k ≥ 1 we have that

‖zk‖ ≤ γk‖a‖ +
∥∥∥ak −

k−1∑
i=1

zi

∥∥∥,
and since ak−

∑k−1
i=1 zi is a convex combination of unitary conjugates of ak−1−

∑k−1
i=1 zi,

‖zk‖ ≤ γk‖a‖ +
∥∥∥ak−1 −

k−1∑
i=1

zi

∥∥∥
≤ γk‖a‖ + γk−1‖a‖.

It follows that 
∑∞

i=1 zi is a convergent series. Define Φ(a) :=
∑∞

i=1 zi. Let us show that 
Φ is as desired. We have that

‖ak − Φ(a)‖ ≤
∥∥∥ak −

k∑
i=1

zi

∥∥∥ +
∑
i>k

‖zi‖ ≤ 2‖a‖ γk

1 − γ
.

Recall that ak is a convex combination of mk unitary conjugates of a. Notice also that 
the rightmost side tends to 0 as k → ∞. This shows that for each ε > 0 there exists n
such that ‖a′−Φ(a)‖ ≤ ε‖a‖ for all a ∈ A, where a′ is a convex combination of n unitary 
conjugates of a. It remains to show that this convex combination may be chosen to be 
an average (for a larger n). Let ε > 0. Pick n ∈ N such that for any a ∈ A we have

∥∥∥ n∑
i=1

λiviav
∗
i − Φ(a)

∥∥∥ ≤ ε

2‖a‖,

for some v1, . . . , vn ∈ U(A) and λ1, . . . , λn ≥ 0 such that 
∑n

i=1 λi = 1. Now let N ≥ 2n/ε. 
We can find non-negative rational numbers of the form μi = pi/N for i = 1, . . . , n, such 
that

n∑
μi = 1 and |μi − λi| <

1
N

, i = 1, . . . , n.

i=1
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(To find such μi, first set p1 to be the greatest integer such that p1
N ≤ λ1; then having 

picked p1, . . . , pi−1, pick pi to be the greatest integer such that p1+···+pi

N ≤ λ1 + · · ·+λi.) 
Let u1, . . . , uN be given by listing each unitary vi a total of pi times, so that

N∑
i=1

1
N

uiau
∗
i =

n∑
i=1

μiviav
∗
i .

Then

∥∥∥ N∑
i=1

1
N

uiau
∗
i − Φ(a)

∥∥∥ =
∥∥∥ n∑

i=1
μiviav

∗
i − Φ(a)

∥∥∥
≤

∥∥∥ n∑
i=1

(μi − λi)viav∗i
∥∥∥ +

∥∥∥ n∑
i=1

λiviav
∗
i − Φ(a)

∥∥∥
≤ n

N
‖a‖ + ε

2‖a‖

≤ ε‖a‖.

Thus, N is as desired. �
Remark 3.3. The map Φ in Theorem 3.2 (iv) clearly satisfies that Φ(a) ∈ DA(a) ∩Z(A) for 
all a ∈ A. Hence, the uniform Dixmier property implies the Dixmier property. Moreover, 
if A has the singleton Dixmier property, then Φ must be the centre-valued trace. That 
Theorem 3.2 (ii) implies the Dixmier property has been used many times before to show 
the Dixmier property (e.g., [23,72]).

We will find it useful to keep track of the constants (m, γ) such that Theorem 3.2 (ii) 
is satisfied. If there exist m ∈ N and 0 < γ < 1 such that for every self-adjoint a ∈ A we 
have that

∥∥∥ m∑
i=1

1
m
uiau

∗
i − z

∥∥∥ ≤ γ‖a‖, (3.2)

for some z ∈ Z(A) and some u1, . . . , um ∈ U(A), then we say that A has the uniform 
Dixmier property with constants (m, γ).

Remark 3.4. Some examples of C∗-algebras with the uniform Dixmier property are all 
von Neumann algebras and C∗

r (F2). Von Neumann algebras have the uniform Dixmier 
property since condition (ii) of Theorem 3.2 follows from [23, Lemma 1 of §III.5.1]. 
In this case we have constants (m, γ) = (2, 3/4) (this can be somewhat improved; see 
Theorem 3.28 below). In particular, all finite dimensional C∗-algebras have the uniform 
Dixmier property with constants m = 2 and γ = 3/4. For C∗

r (F2), Powers’s original 
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argument that C∗
r (F2) is simple can be used to derive explicit constants, and more 

generally, C∗
r (G) has the uniform Dixmier property for any Powers group G as defined 

in [20, p. 244]. See Example 3.8.

There have been significant recent advances in the understanding of when C∗
r (G) has 

the properties of simplicity and of unique trace (for a discrete group G) [15,36,49,51,56]; 
in particular, if C∗

r (G) is simple, then it also has a unique trace. Therefore, simplicity 
and the Dixmier property coincide for C∗

r (G); it turns out that, in fact, the Dixmier 
property is witnessed using only group unitaries to do the averaging ([36, Theorem 4.5]
or [51, Theorem 5.3]). However, it is not clear when C∗

r (G) has the uniform Dixmier 
property.

Question 3.5. Is there a discrete group G for which C∗
r (G) has the Dixmier property (i.e., 

is simple), but not the uniform Dixmier property? Is the uniform Dixmier property for 
C∗

r (G) the same as being able to average uniformly using group unitaries?

In Corollary 3.11 below we show that all AF C∗-algebras with the Dixmier property 
have the uniform Dixmier property. In Section 3.2 we show that all C∗-algebras with the 
Dixmier property and finite radius of comparison-by-traces have the uniform Dixmier 
property. More examples, and explicit constants, are discussed in Section 3.3.

Theorem 3.6. Let m ∈ N and 0 < γ < 1.

(i) If A is a unital C∗-algebra with the uniform Dixmier property with constants (m, γ), 
then all of the quotients of A have the uniform Dixmier property, also with constants 
(m, γ).

(ii) If A1, A2, . . . are unital C∗-algebras with the uniform Dixmier property with con-
stants (m, γ), then 

∏∞
n=1 An has the uniform Dixmier property, also with constants 

(m, γ).

Proof. This is straightforward.
(i): For every self-adjoint a ∈ A/I we can find a self-adjoint lift ã ∈ A with the same 

norm. Then there exist unitaries u1, . . . , um ∈ U(A) such that (3.2) holds for ã. Passing 
to the quotient A/I we get the same for a.

(ii): Let a = (an)n ∈
∏

n An be self-adjoint. For each n we may find m unitaries 
u1,n, . . . , um,n ∈ U(An) and zn ∈ Z(A) such that

∥∥∥ m∑
i=1

1
m
ui,nanu

∗
i,n − zn

∥∥∥ ≤ γ‖an‖.

Let ui = (ui,n)n for i = 1, . . . , m and define z := (zn)n ∈
∏∞

n=1 Z(An) (note that the 
sequence (zn)n is bounded since ‖zn‖ ≤ (1 + γ)‖a‖ for all n). Then
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∥∥∥ m∑
i=1

1
m
uiau

∗
i − z

∥∥∥ ≤ γ‖a‖,

as desired. �
It will be convenient in the proof of Proposition 3.7 below to use the following notation 

from [5]: For a unital C∗-algebra A and a subgroup V of U(A), Av(A, V) is the set of all 
mappings (called averaging operators) α : A → A which can be defined by an equation 
of the form

α(a) =
n∑

j=1
λjujau

∗
j (a ∈ A),

where n ∈ N, λj > 0, uj ∈ V (1 ≤ j ≤ n), and 
∑n

j=1 λj = 1. Elementary properties of 
such mappings α are described in [5, 2.2].

Proposition 3.7. Let (Ak)∞k=1 be an increasing sequence of C∗-subalgebras of A whose 
union is dense in A, all containing the unit. Suppose that Ak has the singleton Dixmier 
property for all k. The following are equivalent:

(i) A has the Dixmier property.
(ii) The limit limk→∞ Rk(a) exists for all a ∈

⋃∞
k=1 Ak, where Rk denotes the centre-

valued trace on Ak for all k.
(iii) A has the singleton Dixmier property and

R(a) = lim
k→∞

Rk(a) for all a ∈
∞⋃
k=1

Ak,

where R denotes the centre-valued trace on A.

Note that an inductive limit of C∗-algebras with the singleton Dixmier property need 
not have the Dixmier property (e.g., there exist simple, unital AF algebras with more 
than one tracial state).

Proof. Glimm’s argument for UHF algebras [30, Lemma 3.1] shows that 
⋃

k≥1 U(Ak) is 
norm-dense in U(A) (in brief, if an → u then an(a∗nan)−1/2 → u). Since multiplication 
is jointly continuous for the norm-topology on A, it follows that, for all a ∈ A,

DA(a) =
⋃
k≥1

{
α(a) : α ∈ Av

(
A,U(Ak)

) }
. (3.3)

We shall use this repeatedly.
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(i)⇒(iii): Let us first show that A has the singleton Dixmier property. Suppose that 
z1, z2 ∈ DA(a) ∩ Z(A) for some a ∈ A. Let ε > 0. By (3.3), there exists n ∈ N and 
α, β ∈ Av(A, U(An)) such that

‖z1 − α(a)‖ <
ε

4 and ‖z2 − β(a)‖ <
ε

4 .

Enlarging n if necessary, we can find b ∈ An such that ‖a − b‖ < ε/4. Notice then that 
‖z1 − α(b)‖ < ε/2. Since z1 is invariant under conjugation by unitary elements of A, 
‖z1 − Rn(α(b))‖ ≤ ε/2. But Rn is constant on Dixmier sets in An and so Rn(α(b)) =
Rn(b). Thus

‖z1 −Rn(b)‖ ≤ ε

2 and similarly ‖z2 −Rn(b)‖ ≤ ε

2 .

It follows that ‖z1 − z2‖ ≤ ε and hence that z1 = z2, as required.
Let R : A → Z(A) be the unique centre-valued trace on A. Let k ≥ 1, a ∈ Ak and 

ε > 0. By (3.3), there exists M ≥ k and α ∈ Av(A, U(AM )) such that ‖R(a) − α(a)‖ <
ε/2. For each n ≥ M , there exists βn ∈ Av(An, U(An)) such that

‖Rn(α(a)) − βn(α(a))‖ <
ε

2 .

Since Rn is constant on Dixmier sets in An, Rn(α(a)) = Rn(a), and since R(a) ∈ Z(A), 
‖R(a) − βn(α(a))‖ < ε/2. Hence

‖R(a) −Rn(a)‖ ≤ ‖R(a) − βn(α(a))‖ + ‖βn(α(a)) −Rn(α(a))‖ < ε.

Thus Rn(a) → R(a) as n → ∞.
(iii)⇒(ii) is obvious.
(ii)⇒(i): Let k ≥ 1 and a ∈ Ak. Then (ii) yields z ∈ A such that, for n ≥ k, Rn(a) → z

as n → ∞. Since Rn(a) ∈ Z(An), z belongs to the relative commutant of ∪j≥kAj in A
and hence z ∈ Z(A). Since Rn(a) ∈ DAn

(a) ⊆ DA(a) (n ≥ k), z ∈ DA(a). Thus, by [5, 
Lemma 2.8], A has the Dixmier property. �

Suppose that A has the singleton Dixmier property. Let R : A → Z(A) denote its 
centre-valued trace. If A also has the uniform Dixmier property then by Theorem 3.2 (iv) 
(applied to a − R(a)) and Remark 3.3, there exist M ∈ N and 0 < Υ < 1 such that for 
every self-adjoint a ∈ A we have that

∥∥∥ M∑
i=1

1
M

uiau
∗
i −R(a)

∥∥∥ ≤ Υ‖a−R(a)‖ (3.4)

for some u1, . . . , uM ∈ U(A). We will find it necessary to keep track of these constants in 
the theorem below, so we will say in this case that A has the uniform singleton Dixmier 
property with constants (M, Υ).
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Example 3.8. By [20, Lemma 1 and Proposition 3], C∗
r (G) has the uniform single Dixmier 

property with constants (M, Υ) = (3, 0.991) for any Powers group G as defined in [20, 
p. 244].

Note that if A has the singleton Dixmier property, then A has the uniform singleton 
Dixmier property if and only if (3.4) holds for every self-adjoint a ∈ A such that R(a) = 0. 
But, since tracial states are constant on Dixmier sets, T (A) = {φ ◦R : φ ∈ S(Z(A))} and 
hence R(a) = 0 if and only if τ(a) = 0 for all τ ∈ T (A). In turn, [18, Proposition 2.7]
tells us that τ(a) = 0 for all τ ∈ T (A) if and only if a ∈ [A,A]. Thus, if A has the 
singleton Dixmier property, then A has the uniform singleton Dixmier property if and 
only if (3.4) holds for every self-adjoint a ∈ [A,A].

As with the uniform Dixmier property constants, if A has the uniform singleton 
Dixmier property with constants (M, Υ), then it also has the uniform singleton Dixmier 
property with constants (Mk, Υk) (k = 2, 3, . . .). The constants (m, γ) for which we have 
(3.2) may not satisfy (3.4), nor vice versa. However, we do have the following.

Lemma 3.9. Let A be a unital C∗-algebra with the singleton Dixmier property.

(i) If A has the uniform Dixmier property with constants (m, γ) then A has the uniform 
singleton Dixmier property with constants M = mk and Υ = 2γk for all natural 
numbers k such that 2γk < 1.

(ii) If A has the uniform singleton Dixmier property with constants (M, Υ) then A has 
the uniform Dixmier property with constants m = Mk and γ = 2Υk for all natural 
numbers k such that 2Υk < 1.

Proof. (i): Since A has the uniform Dixmier property with constants (mk, γk) for all 
k ∈ N, it suffices to show that if γ < 1/2 then A has the uniform singleton Dixmier 
property with constants M = m and Υ = 2γ. Let us prove this. Let h = h∗ ∈ A. Then 
h −R(h) is self-adjoint (where R is the centre-valued trace). Hence there exist z ∈ Z(A)
and u1, . . . , uM ∈ U(A) such that

∥∥∥ M∑
i=1

1
M

uihu
∗
i −R(h) − z

∥∥∥ =
∥∥∥ M∑

i=1

1
M

ui(h−R(h))u∗
i − z

∥∥∥ ≤ γ‖h−R(h)‖.

Since R is contractive, tracial and fixes elements of Z(A), ‖z‖ ≤ γ‖h −R(h)‖. Hence

∥∥∥ M∑
i=1

1
M

uihu
∗
i −R(h)

∥∥∥ ≤ 2γ‖h−R(h)‖.

(ii): This is immediate since we always have ‖a −R(a)‖ ≤ 2‖a‖. �
Theorem 3.10. Let A1, A2, . . . be unital C∗-algebras with the uniform singleton Dixmier 
property, all of them satisfying (3.4) for some constants (M, Υ). Let A = limAi be a 
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unital inductive limit C∗-algebra. If A has the Dixmier property, then it has the uniform 
singleton Dixmier property with constants (M, Υ′) for any Υ < Υ′ < 1.

Proof. The uniform singleton Dixmier property, and indeed the constants (M, Υ), pass 
to quotients (by the same proof as for Theorem 3.6 (i), using Theorem 1.6 in place of 
lifting self-adjoint elements to self-adjoint elements); thus, we may reduce to the case 
that the connecting maps of the inductive limit are inclusions. So let us assume that 
the C∗-algebras (Ak)∞k=1 form an increasing sequence of subalgebras of A whose union is 
dense in A. We denote the centre-valued trace on Ak by Rk. By Proposition 3.7, A has 
the singleton Dixmier property. We denote its centre-valued trace by R.

Let a ∈ A be a self-adjoint contraction with R(a) = 0. Let ε > 0. Find a self-adjoint 
contraction b ∈ Ak, for k large enough, such that ‖a − b‖ < ε. Find n > k such that 
‖Rn(b) −R(b)‖ < ε (its existence is guaranteed by Proposition 3.7). Thus,

‖Rn(b)‖ ≤ ‖Rn(b) −R(b)‖ + ‖R(b− a)‖ < 2ε.

Since An has the uniform singleton Dixmier property with constants (M, Υ), we have 
that

∥∥∥ M∑
i=1

1
M

uibu
∗
i −Rn(b)

∥∥∥ ≤ Υ‖b−Rn(b)‖

for some unitaries u1, . . . , uM ∈ U(An). Hence,

∥∥∥ M∑
i=1

1
M

uiau
∗
i

∥∥∥ ≤ ‖a− b‖ +
∥∥∥ M∑

i=1

1
M

uibu
∗
i −Rn(b)

∥∥∥ + ‖Rn(b)‖

≤ ε + Υ‖b−Rn(b)‖ + 2ε

≤ Υ(1 + 2ε) + 3ε.

Thus, A has the uniform singleton Dixmier property with constants (M, Υ(1 + 2ε) + 3ε)
for any sufficiently small ε > 0. �
Corollary 3.11. All unital AF C∗-algebras with the Dixmier property have the uniform 
singleton Dixmier property with constants M = 4 and 1/2 < Υ < 1 (i.e., satisfy (3.4)
for M = 4 and any 1/2 < Υ < 1).

Proof. Finite dimensional C∗-algebras have the uniform singleton Dixmier property with 
constants M = 4 and Υ = 1/2 by Proposition 3.29 below. �

Necessary and sufficient conditions for a unital AF C∗-algebra to have the Dixmier 
property have been given in [6, Theorem 6.6]. The example in [6, Example 6.7] shows 
how these conditions can be verified by using a Bratteli diagram.
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In the following, we let ω be a free ultrafilter on N and denote by Aω the ultra-
power of A under ω. Generally, many of the arguments used with sequence algebras ∏

n An/ 
⊕

n An also work with Aω (and more generally, ultrapowers 
∏

ω An); for ex-
ample we could have used ultraproducts in Theorem 3.6 instead of sequence algebras. 
However, Aω has some advantages in terms of its size. For example, if A is simple and 
purely infinite then Aω is simple [81, Proposition 6.2.6], whereas 

∏
n A/ 

⊕
n A has a max-

imal ideal corresponding to each free ultrafilter. Likewise, if A has a unique trace then 
Aω has a unique distinguished trace (which is potentially unique – see Theorem 3.24), 
whereas 

∏
n A/ 

⊕
n A has a (distinguished) trace corresponding to each free ultrafilter. 

For more about ultrapowers, see [54, Section 3]. The following theorem is a standard 
application of ultraproducts.

Theorem 3.12. Let A be a unital C∗-algebra. The following are equivalent.

(i) A has the uniform Dixmier property.
(ii) Aω has the Dixmier property and Z(Aω) = Z(A)ω.

Proof. (i)⇒(ii): Let m ∈ N and 0 < γ < 1 be such that A has the uniform Dixmier 
property. By Theorem 3.6 (i), �∞(A) has the uniform Dixmier property (with the same 
constants), and then by Theorem 3.6 (ii), so does the quotient Aω. Moreover, since 
Z(�∞(A)) = �∞(Z(A)), and �∞(A) has the centre-quotient property (since it has the 
Dixmier property), �∞(Z(A)) is mapped onto the centre of Aω by the quotient map. 
Thus, Z(A)ω = Z(Aω).2

(ii)⇒(i): Suppose that (ii) holds and, for a contradiction, that (i) does not. Using 
Theorem 3.2 (iii)⇒(i), we have that condition (iii) of Theorem 3.2 does not hold, and in 
particular it does not hold for γ = 1/2. Thus, for each n ≥ 1 there exists an ∈ A such 
that ‖an‖ = 1 and for all u1, . . . , un ∈ U(A) and t1, . . . , tn ∈ [0, 1] with 

∑n
i=1 ti = 1,

d
( n∑

i=1
tiuianu

∗
i , Z(A)

)
≥ 1

2 .

Let a ∈ Aω be the element represented by the sequence (an)n. Since Aω has the Dixmier 
property, there exist u1, . . . , uk ∈ U(Aω), t1, . . . , tk ∈ [0, 1] with 

∑k
i=1 ti = 1, and z ∈

Z(Aω) such that

∥∥∥ k∑
i=1

tiuiau
∗
i − z

∥∥∥ <
1
2 .

Since Z(A)ω = Z(Aω), we can lift z to a bounded sequence (zn)n from Z(A). We may 
also lift each ui to a sequence (ui,n)n from U(A) (either by using [5, Proposition 2.5] in 

2 In fact, one only needs the (not necessarily uniform) Dixmier property to get Z(Aω) = Z(A)ω, by 
Proposition 3.14 below and the fact that K(A) ≤ 1 when A has the Dixmier property.
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the initial choice of the elements ui or the fact that unitaries from Aω always lift to a 
sequence of unitaries). We have

lim
n→ω

∥∥∥ k∑
i=1

tiui,nanu
∗
i,n − zn

∥∥∥ <
1
2 .

In particular, for some n ≥ k we must have
∥∥∥ k∑

i=1
tiui,nanu

∗
i,n − zn

∥∥∥ <
1
2 ,

which gives a contradiction. �
Remark 3.13. The argument in the previous proof shows, more generally, that for a 
class C of C∗-algebras, the following are equivalent:

(i) There exist constants (m, γ) such that every algebra A in C has the uniform Dixmier 
property with constants (m, γ).

(ii) For every sequence (An)∞n=1 from C, 
∏

ω An has the Dixmier property and 
Z(

∏
ω An) =

∏
ω Z(An).

For a C∗-algebra A, the condition Z(Aω) = Z(A)ω is related to norms of inner 
derivations, as follows. Firstly, recall that the triangle inequality shows that ‖ad(a)‖ ≤
2d(a, Z(A)), where ad(a) is the inner derivation of A induced by a ∈ A (that is, 
ad(a)(x) := xa −ax). In the reverse direction, K(A) is defined to be the smallest number 
in [0, ∞] such that d(a, Z(a)) ≤ K(A)‖ad(a)‖ for all a ∈ A ([6]). It was shown in the 
proof of [46, Theorem 5.3] that K(A) < ∞ if and only if the set of inner derivations of 
A is norm-closed in the set of all derivations of A. If A is non-commutative (as we shall 
assume from now on in this summary) then K(A) ≥ 1

2 . If A is a von Neumann algebra 
(or, more generally, an AW ∗-algebra) or a unital primitive C∗-algebra (in particular, 
a unital simple C∗-algebra) then K(A) = 1

2 ([26,29,44,91,104]). These and other such 
cases are covered by Somerset’s characterisation for unital A: K(A) = 1

2 if and only if 
the ideal P ∩Q ∩R is primal whenever P , Q and R are primitive ideals of A such that 
P ∩ Z(A) = Q ∩ Z(A) = R ∩ Z(A) ([89]). If a unital C∗-algebra A has the Dixmier 
property then K(A) ≤ 1 (see [76, Section 2] and [6, Proposition 2.4]) (this holds more 
generally if A is weakly central, see [6,89]). On the other hand, in [46, 6.2], an example 
is given where K(A) = ∞. By [88, Corollary 4.6], finiteness of K(A) depends only on 
the topological space Prim(A). Further information on possible values of K(A) may be 
found in [9,10] and the references cited therein.

Proposition 3.14. Let A be a C∗-algebra. The following are equivalent:

(i) Z(Aω) = Z(A)ω.
(ii) K(A) < ∞.
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Proof. (i)⇒(ii): Suppose that K(A) = ∞. For each n ≥ 1, there exists bn ∈ A such that

0 < n‖ad(bn)‖ < d(bn, Z(A)).

By scaling, we may assume that d(bn, Z(A)) = 1 for all n ≥ 1. Then, for each n ≥ 1, 
there exists zn ∈ Z(A) such that ‖bn−zn‖ < 2. Let cn := bn−zn (n ≥ 1) and let c ∈ Aω

correspond to the bounded sequence (cn)n. Note that

d(cn, Z(A)) = d(bn, Z(A)) = 1 (n ≥ 1)

and ‖ad(cn)‖ = ‖ad(bn)‖ → 0 as n → ∞. For any bounded sequence (an)n in A, 
limn→ω ‖ancn − cnan‖ = 0 and so c ∈ Z(Aω). On the other hand, for any bounded 
sequence (yn)n in Z(A), limn→ω ‖cn − yn‖ ≥ 1 and so c /∈ Z(A)ω.

(ii)⇒(i): The containment Z(A)ω ⊆ Z(Aω) is clear. For the other way, let b ∈ Z(Aω)
be represented by a bounded sequence (bn)n in A. For each n ≥ 1, there exists zn ∈ Z(A)
such that

‖bn − zn‖ ≤ d(bn, Z(A)) + 1
2n ≤ K(A)‖ad(bn)‖ + 1

2n

and there exists an ∈ A such that ‖an‖ ≤ 1 and

K(A)‖ad(bn)‖ ≤ K(A)‖bnan − anbn‖ + 1
2n.

Then, for all n ≥ 1,

‖bn − zn‖ ≤ K(A)‖bnan − anbn‖ + 1
n
.

Recalling that b ∈ Z(Aω), we obtain that limn→ω ‖bnan − anbn‖ = 0 and hence that 
limn→ω ‖bn − zn‖ = 0. Since ‖zn‖ ≤ 2‖bn‖ + 1

2n , (zn)n is a bounded sequence and so 
b ∈ Z(A)ω. �

It is easily seen that the method of proof of Proposition 3.14 also shows that 
K(A) < ∞ if and only if the centre of �∞(A)/c0(A) is the canonical image of �∞(Z(A))/
c0(Z(A)).

Bearing in mind that the Dixmier property is a necessary condition for the uniform 
Dixmier property, we record the following simple corollary of the results in this section.

Corollary 3.15. Suppose that A is a unital C∗-algebra with the Dixmier property. The 
following conditions are equivalent.

(i) A has the uniform Dixmier property.
(ii) Aω has the Dixmier property.
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Proof. Since A has the Dixmier property, K(A) ≤ 1 (see [76, Section 2] or [6, Propo-
sition 2.4]) and so Z(Aω) = Z(A)ω by Proposition 3.14. The result now follows from 
Theorem 3.12. �
Question 3.16. If Aω has the Dixmier property, does it follow that A has the Dixmier 
property? (In other words, by Theorem 3.12, if Aω has the Dixmier property, is Z(A)ω =
Z(Aω)?)

3.1. Radius of comparison-by-traces

Let A be unital with the Dixmier property. If A has strict comparison of positive 
elements by traces (see Remark 3.18), then if follows from [65, Theorem 1.2] that A has 
the uniform Dixmier property. We now show that this holds more generally when strict 
comparison by traces is replaced by finite radius of comparison-by-traces.

Let A be a unital C∗-algebra. For each tracial state τ define dτ :
⋃∞

n=1 Mn(A)+ →
[0, ∞) by

dτ (a) := lim
n∈N

τ(a1/n).

This is the dimension function associated to τ ([13]).

Definition 3.17. Let r ∈ [0, ∞). Let A be a unital C∗-algebra. Let us say that A has 
radius of comparison-by-traces at most r if for all positive elements a, b ∈

⋃∞
k=1 Mk(A), 

with b a full element, if

dτ (a) + r′ ≤ dτ (b) (3.5)

for all τ ∈ T (A) and some r′ > r, then a is Cuntz below b. (Recall that a is said to 
be Cuntz below b if dnbd∗n → a for some sequence (dn) in 

⋃∞
k=1 Mk(A).) The radius of 

comparison-by-traces of A is the minimum r such that A has radius of comparison-
by-traces at most r. If no such r exists then we say that A has infinite radius of 
comparison-by-traces.

In [14] the radius of comparison of A is defined as above, except that in (3.5) τ ranges 
through all 2-quasitraces of A normalised at the unit. We use the name “radius of 
comparison-by-traces” to emphasise that the comparison of a and b in (3.5) is done 
only on tracial states. Clearly, the radius of comparison-by-traces dominates the radius 
of comparison. If the C∗-algebra A is exact, then by [35] its bounded 2-quasitraces are 
traces so the two numbers agree.

Remark 3.18. For simple C∗-algebras, strict comparison of positive elements by traces 
is the same as having radius of comparison-by-traces 0 (by the same argument as in 
[96, Proposition 6.4], cf. [14, Proposition 3.2.4]). All Z-stable C∗-algebras have strict 
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comparison of positive elements (and therefore strict comparison of positive elements by 
traces) by [83, Proposition 3.2 and Theorem 4.5].

The seminal examples of simple nuclear C∗-algebras constructed by Villadsen in [100]
and [101] have nonzero radius of comparison-by-traces; variations on the first of these 
examples can be arranged to achieve any possible value of radius of comparison ([97, 
Theorem 5.11]). Of particular interest here are Villadsen’s second examples, which have 
stable rank in {2, 3, . . . }; they have nonzero finite radius of comparison while being simple 
and having unique trace, see Remark 3.23.

Theorem 3.19. Let A1, A2, . . . be unital C∗-algebras with radius of comparison-by-traces 
at most r and let A :=

∏∞
i=1 Ai. The following are true:

(i) A has radius of comparison-by-traces at most r.
(ii) The convex hull of 

⋃∞
i=1 T (Ai) is dense in T (A) in the weak∗-topology. (We regard 

T (Ai) as a subset of T (A) via the embedding induced by the quotient map A → Ai.)

Proof. (i): Let K be the weak∗-closure in T (A) of the convex hull of 
⋃∞

i=1 T (Ai). Let 
a, b ∈ Mk(A) be positive elements, with b full. Suppose that a and b satisfy (3.5) for all 
tracial states τ ∈ K and some r′ > r. We will prove that a is Cuntz below b (which 
clearly shows that A has radius of comparison-by-traces at most r). Let ε > 0 and choose 
r < r′′ < r′. We claim that there exists δ > 0 such that

dτ ((a− ε)+) + r′′ ≤ dτ ((b− δ)+) for all τ ∈ K. (3.6)

Indeed, let gε ∈ C0((0, ‖a‖])+ be such that gε(t) = 1 for t ≥ ε. Then

dτ ((a− ε)+) ≤ τ(gε(a)) ≤ dτ (a) for all τ ∈ T (A).

The function τ 
→ τ(gε(a)) + r′′ is continuous on T (A) while τ 
→ dτ ((b − 1
n )+) is lower 

semicontinuous for all n. Since

sup
n

dτ

((
b− 1

n

)
+

)
= dτ (b) > τ(gε(a)) + r′′

for all τ ∈ K and K is compact, there exists n such that

dτ

((
b− 1

n

)
+

)
> τ(gε(a)) + r′′

for all τ ∈ K, thus yielding the desired δ. Decreasing δ if necessary, let us also assume 
that (b − δ)+ is full. Letting τ range through T (Ai) ⊆ K in (3.6), and using that Ai

has radius of comparison-by-traces at most r, we obtain that (ai − ε)+ is Cuntz below 
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(bi − δ)+ for all i. Hence, using [80, Proposition 2.4], we obtain xi ∈ Mk(Ai) such that 
(ai − 2ε)+ = x∗

i xi and xix
∗
i ≤ Mbi for all i, where M > 0 is a scalar independent of i. 

Then (a − 2ε)+ = x∗x and xx∗ ≤ Mb, where x := (xi)i ∈
∏∞

i=1 Mk(Ai) ∼= Mk(A). Since 
ε is arbitrary, we get that a is Cuntz below b, as desired.

(ii): Here we follow closely arguments from [63]. We first establish two claims.
Claim 1 : If a, b ∈ Mk(A) are positive elements, with b full, such that dτ (a) ≤ dτ (b)

for all τ ∈ K then dτ (a) ≤ dτ (b) for all τ ∈ T (A). Let us prove this. Choose a natural 
number r′ > r. Then

dτ (a⊕n) + r′ ≤ dτ (b⊕n ⊕ 1r′)

for all n = 1, 2, . . . and all τ ∈ K. By the proof of (i), a⊕n is Cuntz below b⊕n ⊕ 1r′ for 
all n ∈ N. Now let τ ∈ T (A). Then ndτ (a) ≤ ndτ (b) + r′. Letting n → ∞ we get that 
dτ (a) ≤ dτ (b), proving our claim.

Claim 2 : If a, b ∈ A+, with b full, are such that τ(a) ≤ τ(b) for all τ ∈ K then 
τ(a) ≤ τ(b) for all τ ∈ T (A). Let us prove this. Let ε > 0. Since

σ(c) =
‖c‖∫
0

dσ((c− t)+) dt,

for all positive elements c ∈ A and all σ ∈ T (A) (see for example [27, Proposition 4.2]), 
one can construct positive elements an, bn (in matrix algebras over A), and find natural 
numbers rn, sn such that

lim
n→∞

1
rn

dσ(an) = σ((1 − ε)a)

and

lim
n→∞

1
sn

dσ(bn) = σ(b)

for all tracial states σ, with both sequences increasing. Since b is full, we have that

τ((1 − ε)a) ≤ τ((1 − ε)b) < τ(b)

for all τ ∈ K. Using lower semi-continuity and the compactness of K, as in part (i), we 
obtain n ∈ N such that τ((1 − ε)a) ≤ 1

sn
dτ (bn) for all τ ∈ K. Hence,

1
rm

dτ (am) ≤ 1
sn

dτ (bn), for all τ ∈ K,

for all m and for all sufficiently large n. By the first claim applied to the positive elements 
a⊕sn
m and b⊕rm

n ,
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1
rm

dσ(am) ≤ 1
sn

dσ(bn)

for any σ ∈ T (A). Taking the limit as m → ∞, we obtain σ((1 − ε)a) ≤ σ(b). Letting 
ε → 0 proves the claim.

Let us now show that K = T (A). By the Hahn–Banach theorem, it suffices to show 
that for all self-adjoint a ∈ A, if τ(a) = 0 for all τ ∈ K then τ(a) = 0 for all τ ∈ T (A). 
If a is a self-adjoint such that τ(a) = 0 for all τ ∈ K then τ(a + t1) = τ(t1) for all τ ∈ K. 
Moreover, for t > ‖a‖ both a + t1 and t1 are positive and full. It follows by Claim 2 that 
τ(a + t1) = τ(t1) for all τ ∈ T (A) and t > ‖a‖, which yields the desired result. �

In the proof of the next result we make use of Theorem 4.4, proven in Section 4
below, and whose proof is independent from the results of this section. Theorem 4.4 is 
an extension of Theorem 1.2 from the introduction to non-self-adjoint elements.

Theorem 3.20. Let r ∈ [0, ∞). There exists M ∈ N such that if A is a unital C∗-algebra 
with radius of comparison-by-traces at most r and a ∈ A is such that 0 ∈ DA(a), then

∥∥∥ 1
M

M∑
i=1

uiau
∗
i

∥∥∥ ≤ 1
2‖a‖

for some unitaries u1, . . . , uM ∈ A.

Proof. Suppose, for the sake of contradiction, that there exist unital C∗-algebras 
A1, A2, . . . with radius of comparison-by-traces at most r, and contractions an ∈ An

such that 0 ∈ DA(an) for all n, but any average of n unitary conjugates of an has norm 
greater than 1/2. Let A :=

∏∞
n=1 An and a := (an)n ∈ A. We will show that 0 ∈ DA(a)

relying on Theorem 4.4 from Section 4. To show that 0 ∈ DA(a), it suffices to check 
conditions (a) and (b) of Theorem 4.4. Notice that τ(a) = τ(an) = 0 for all τ ∈ T (An)
and all n. It follows by Theorem 3.19 (ii) that τ(a) = 0 for all τ ∈ T (A), i.e., condition 
(a) holds. In order to show that a satisfies condition (b), we prove that it satisfies the 
equivalent form (b”), stated right before the proof of Theorem 4.4. Let t′, t > 0 be such 
t′ > t and let w ∈ C. Since 0 ∈ DAn

(an), we have, by condition (b”) applied to an, that 
(Re(wan) + t)+ is a full element of An (i.e., it generates An as a closed two-sided ideal). 
For all τ ∈ T (An) we have

dτ ((Re(wan) + t)+) ≥ 1
|w| + t

τ((Re(wan) + t)+)

≥ 1
|w| + t

τ(Re(wan) + t) = t

|w| + t
,

where we have used that dτ (c) ≥ τ(c)/‖c‖ for any c ≥ 0 in the first inequality. Choose 
N ≥ (2 + r)(|w| + t)/t. Then
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dτ ((Re(wan) + t)⊕N
+ ) ≥ 2 + r.

Since An has radius of comparison-by-traces at most r, the above (including fullness of 
(Re(wan) + t)+) implies that 1 ∈ An is Cuntz below (Re(wan) + t)⊕N

+ . Thus, there exists 
a partial isometry vn ∈ MN (An) such that 1 = v∗nvn and

vnv
∗
n ≤ C · (Re(wan) + t′)⊕N

+ ,

where C > 0 depends on t and t′ but not on n. Then, setting v := (vn)n ∈ MN (A), we 
get 1 = v∗v and vv∗ ≤ C · (Re(wan) + t′)⊕N

+ . Hence, (Re(wa) + t′)+ is full for all t′ > 0
and w ∈ C. This proves condition (b”). It follows that 0 ∈ DA(a). Thus, there is a finite 
convex combination of unitary conjugates of a whose norm is less than 1

2 . Enlarging 
the number of terms if necessary, we may assume that this convex combination is an 
average (see the proof of Theorem 3.2 (iii)⇒(iv)). So, there exist M ∈ N and unitaries 
u1, . . . , uM ∈ A such that

∥∥∥ 1
M

M∑
i=1

uiau
∗
i

∥∥∥ ≤ 1
2 .

We arrive at a contradiction by projecting onto AM . �
Remark 3.21. For the case of self-adjoint elements (which is all that is needed in the next 
corollary), Theorem 3.20 can be proven using Theorem 1.2 in place of Theorem 4.4.

Corollary 3.22. Let r ∈ [0, ∞). Then there exist constants (m, γ) such that every unital 
C∗-algebra with the Dixmier property and with radius of comparison-by-traces at most 
r has the uniform Dixmier property with constants (m, γ). In particular, every simple 
unital C∗-algebra with at most one tracial state and radius of comparison-by-traces at 
most r has the uniform Dixmier property with constants (m, γ).

Proof. Let M ∈ N be as in Theorem 3.20. Suppose that A is a unital C∗-algebra with 
the Dixmier property and radius of comparison-by-traces at most r. Now let a ∈ A be a 
self-adjoint element and choose z ∈ DA(a) ∩ Z(A). Then 0 ∈ DA(a − z), and so

∥∥∥ 1
M

M∑
i=1

uiau
∗
i − z

∥∥∥ ≤ 1
2‖a‖,

for some unitaries u1, . . . , uM . Hence, A has the uniform Dixmier property with constants 
(M, 1/2). �
Remark 3.23. In [101] Villadsen obtains examples of finite, simple, unital C∗-algebras 
with stable rank in {2, 3, . . . , ∞}. These C∗-algebras are nuclear and have a unique 
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tracial state ([101, Section 6]). It can be shown that the examples constructed by Vil-
ladsen with finite stable rank have finite non-zero radius of comparison-by-traces. Thus, 
these C∗-algebras have the uniform Dixmier property, although they fail to have strict 
comparison of positive elements by traces.

Let us explain why these examples have finite radius of comparison-by-traces (which 
is the same as finite radius of comparison, since they are exact). For n ∈ N, Villadsen’s 
algebra A with stable rank n + 1 is constructed, according to [101, Section 3], as A =
lim−−→Ai where Ai = pi(C(Xi) ⊗K)pi, with Xi a certain space of dimension n(1 + 2 · 1! +
4 · 2! + · · · + 2i · i!) and pi a certain projection of constant rank (i + 1)!. We compute

dim(Xi) − 1
2 rank(pi)

≤ 2n(1! + 2! + · · · + i!)
2i!

≤ n(i− 1)(i− 1)!
i! + ni!

i!
≤ 2n

By [97, Theorem 5.1], it follows that Ai has radius of comparison at most 2n. Hence by 
[14, Proposition 3.2.4], the radius of comparison of A is at most 2n.

3.2. C∗-algebras with trivial centre

If A is a unital C∗-algebra with trivial centre, then by Corollary 2.10 A has the 
Dixmier property if and only if we have one of the following four cases:

(1) A is simple and has no tracial states,
(2) A is simple and has a unique tracial state,
(3) A has no tracial states and a unique non-zero maximal ideal,
(4) A has a unique tracial state and its trace-kernel ideal is the unique nonzero maximal 

ideal of A.

Cases (2) and (4) have the singleton Dixmier property while cases (1) and (3) do not. 
Now, since A is unital and has the Dixmier property, K(A) ≤ 1 < ∞ and so Z(Aω) =
Z(A)ω = C1 by Proposition 3.14. (That Cω = C is because every bounded sequence of 
complex numbers has a unique limit under ω, i.e., the map taking (xn)∞n=1 ∈

∏
n C to 

limn→ω xn induces an isomorphism Cω → C.) Thus, by Corollary 3.15, in order for A to 
have the uniform Dixmier property Aω must also fall in one of the four cases above. In 
Theorem 3.24 below we take this analysis further to obtain explicit conditions for having 
the uniform Dixmier property when A falls in cases (2) and (4) above.

Suppose that A is in either case (2) or (4). Let τ denote the unique tracial state of A. 
Then τ induces a canonical tracial state τω on Aω, by

τω(a) := lim τ(an),

n→ω
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whenever a is represented by the sequence (an)n. Let

J := {a ∈ Aω : τω(a∗a) = 0},

the trace-kernel ideal for τω. Using the Kaplansky density theorem, one can see that 
Aω/J is isomorphic to the tracial von Neumann ultrapower of πτ(A)′′, where πτ is the 
GNS representation associated to τ ([54, Theorem 3.3]). In particular, this quotient is a 
finite factor, and is therefore simple, so that J is a maximal ideal.

In the next result, conditions (i) and (iii) are both expressed purely in terms of the 
C∗-algebra A. However, in order to show that these conditions are equivalent, we intro-
duce Aω so that we can apply Corollary 2.10 and Corollary 3.15.

Theorem 3.24. Let A be a C∗-algebra with the Dixmier property, trivial centre, and unique 
tracial state τ . The following are equivalent:

(i) A has the uniform Dixmier property.
(ii) τω is the unique tracial state on Aω and the trace-kernel ideal J is the unique 

maximal ideal of Aω.
(iii) Both of the following hold:

(a) there exists m ∈ N such that if a ∈ A is a self-adjoint contraction satisfying 
τ(a) = 0 then there exist contractions x1, . . . , xm ∈ A such that

∥∥∥a−
m∑
i=1

[xi, x
∗
i ]
∥∥∥ ≤ (1 − 1/m)‖a‖, and

(b) for every ε > 0 there exists n ∈ N such that, if a ∈ A+ is a positive contraction 
and τ(a) > ε then there exist contractions x1, . . . , xn ∈ A such that

n∑
i=1

xiax
∗
i = 1.

Proof. Recall that since A is unital and has the Dixmier property, K(A) ≤ 1 < ∞ and 
so Z(Aω) = Z(A)ω = C1 by Proposition 3.14.

(i)⇔(ii): By Corollary 3.15, (i) is equivalent to Aω having the Dixmier property. Thus, 
(i)⇔(ii) follows from Corollary 2.10.

(ii)⇔(iii): We will first show that (a) is equivalent to τω being the unique tracial state 
on Aω, then that (b) is equivalent to J being the unique maximal ideal of Aω.

For a unital C∗-algebra B, set B0 equal to the norm-closure of the R-span of the 
set of self-commutators [x, x∗]. For a tracial state τB on B, by [18, Theorem 2.6 and 
Proposition 2.7], τB is the unique tracial state of B if and only if

B0 = {b ∈ B : b is self-adjoint and τB(b) = 0}.
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Suppose that τω is the unique tracial state on Aω and, for a contradiction, that (a) 
doesn’t hold. Then for each n ∈ N there exists a self-adjoint contraction an ∈ A such 
that τ(an) = 0 and

∥∥∥an −
n∑

i=1
[xi, x

∗
i ]
∥∥∥ ≥ (1 − 1/n) (3.7)

for all tuples (x1, . . . , xn) of contractions in A.
Since the sequence (an)n is bounded, it defines a self-adjoint element a ∈ Aω, and 

this element clearly satisfies τω(a) = 0. Since τω is the unique tracial state, it follows (as 
mentioned above) that there exist m ∈ N and y1, . . . , ym ∈ Aω such that

∥∥∥a−
m∑
i=1

[yi, y∗i ]
∥∥∥ <

1
2 .

By increasing m if necessary, we may assume that all of the elements yi are contractions.
Lifting each yi to a sequence (xi,n)n of contractions in A, we have for ω-almost all 

n ∈ N,

∥∥∥an −
m∑
i=1

[xi,n, x
∗
i,n]

∥∥∥ <
1
2 .

In particular, for some n ≥ m, we obtain a contradiction to (3.7). This proves that if Aω

has a unique tracial state then (a) holds.
Now suppose that (a) holds, which provides a number m. If a ∈ Aω is a self-adjoint 

contraction satisfying τω(a) = 0, then we may lift a to a sequence (an)∞n=1 of self-adjoint 
elements satisfying τ(an) = 0 and ‖an‖ ≤ ‖a‖ for all n. (To achieve this, we first lift a
to any bounded sequence of self-adjoint elements, then correct the tracial state on each 
element by adding an appropriate scalar, and finally scale to obtain ‖an‖ ≤ ‖a‖.) By 
applying (a) to each an, we can arrive at elements x1, . . . , xm ∈ Aω such that

∥∥∥a−
m∑
i=1

[xi, x
∗
i ]
∥∥∥ ≤ (1 − 1/m)‖a‖.

In other words, this shows that Aω satisfies (a), with τω in place of τ .
Next, by iterating, we see that if a ∈ Aω is a self-adjoint contraction and satisfies 

τω(a) = 0, then for any k ∈ N , there exist mk contractions x1, . . . , xmk ∈ Aω such that

∥∥∥a−
mk∑
i=1

[xi, x
∗
i ]
∥∥∥ ≤ (1 − 1/m)k‖a‖.

It follows that a ∈ (Aω)0. By R-linearity,
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(Aω)0 = {a ∈ Aω : a is self-adjoint and τω(a) = 0}

and hence τω is the unique tracial state of Aω.
Now, suppose that J is the unique maximal ideal of Aω and let us prove that (b) 

holds. Suppose for a contradiction that (b) doesn’t hold. Then there exists ε > 0 and, 
for each n ∈ N, a contraction an ∈ A+ such that τ(an) > ε yet

n∑
i=1

xianx
∗
i �= 1 (3.8)

for all contractions x1, . . . , xn ∈ A.
Define a ∈ Aω by the sequence (an)n, so that τω(a) ≥ ε. Since J is the unique maximal 

ideal of Aω, the ideal generated by a is Aω. Hence, there exists y1, . . . , ym ∈ Aω such 
that

m∑
i=1

yiay
∗
i = 1,

and by increasing m if necessary we may assume that all of the elements yi are contrac-
tions. Lift each yi to a sequence (yi,k)k of contractions. Then, for ω-almost all indices k, 
we have

∥∥∥ m∑
i=1

yi,kaky
∗
i,k − 1

∥∥∥ <
1
2 .

Pick k ≥ 2m such that this holds. Set

b :=
m∑
i=1

yi,kaky
∗
i,k,

so that the spectrum of b is contained in [1/2, 3/2]. Therefore, (2b)−1/2yi,k is a contrac-
tion, and

1 = 2
m∑
i=1

(2b)−1/2yi,kaky
∗
i,k(2b)−1/2,

in contradiction to (3.8).
Finally assume that (b) holds, and we’ll prove that J is the unique maximal ideal 

of Aω. Let I be an ideal of Aω, such that I � J . Therefore, I contains a positive 
contraction a /∈ J , so that r := τω(a) > 0. Using ε := r/2, we get some n ∈ N from (b).

We may lift a to a sequence (ak)k of positive contractions such that τ(ak) > r/2 for 
each k. Then for each k there exist n contractions x1,k, . . . , xn,k ∈ A such that
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1 =
n∑

i=1
xi,kakx

∗
i,k.

Letting xi ∈ Aω be the element represented by the sequence (xi,k)k, we have

1 =
n∑

i=1
xiax

∗
i ∈ I,

and therefore I = Aω. This shows that J is the unique maximal ideal of Aω. �
Under the hypotheses of Theorem 3.24, it is unclear whether there is any relation 

between the conditions that τω is the unique tracial state on Aω (equivalently, condi-
tion (a)) and that J is the unique maximal ideal of Aω (equivalently, condition (b)).

Question 3.25. Does condition (a) in Theorem 3.24 (iii) imply condition (b), or vice 
versa?

In [79, Theorem 1.4], LR showed that there is a simple unital (and nuclear, in fact AH) 
C∗-algebra A with unique tracial state, which doesn’t satisfy (iii)(a) in Theorem 3.24
(i.e., Aω doesn’t have a unique tracial state). Since A has the Dixmier property by 
[37], this shows that the Dixmier property is strictly weaker than the uniform Dixmier 
property.

Let us briefly discuss the cases when A is unital, has the Dixmier property, trivial 
centre, and no tracial states (i.e., cases (1) and (3) from the beginning of this section). 
If A is simple and purely infinite, then Aω is also simple and purely infinite ([81, Propo-
sition 6.2.6]), whence has the Dixmier property, and so A has the uniform Dixmier 
property. In the cases that A is not simple and purely infinite, we have little to say 
about whether A has the uniform Dixmier property. In such cases, Aω has no tracial 
states either, but it is not simple, for if Aω is simple and non-elementary then A must 
be simple and purely infinite ([53, Remark 2.4]). Rørdam has constructed examples of 
simple unital separable (even nuclear) C∗-algebras which are not purely infinite, yet have 
no tracial states ([82]).

Question 3.26. Are there simple unital C∗-algebras with the uniform Dixmier property 
and without tracial states other than the purely infinite ones?

Let A be a simple unital C∗-algebra with no tracial states, which is not purely infinite. 
Then there is a bounded sequence of self-adjoint elements (an)∞n=1 with 1 ∈ DA(an) for 
all n, but 1 /∈ DAω

((an)n). (However, it is conceivable that DAω
((an)n) meets Z(Aω) in 

another point, so this does not show that A does not have the uniform Dixmier property.) 
To see this, first, since Aω is non-simple, there exists a positive element a ∈ Aω of 
norm 2 that is not full. Lift a to a bounded sequence (an)n of positive elements. Since 
‖a‖ = 2 and a is not invertible, for ω-almost all n, the convex hull of the spectrum of an
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contains 1. Modifying an for n in an ω-null set, we can arrange that the convex hull of 
the spectrum of an contains 1 for all n. Since A is simple, it follows that 1 ∈ DA(an) for 
all n. However, if 1 ∈ DAω

(A) then with I := Ideal(a), 1 ∈ DAω/I(qI(a)) = DAω/I(0), 
which is a contradiction.

3.3. Explicit constants

Suppose that A is a unital C∗-algebra that has the Dixmier property as well as one 
of the following properties:

(1) finite nuclear dimension, or
(2) finite radius of comparison by traces.

Then A has the uniform Dixmier property for suitable constants (m, γ) (i.e., (3.2) holds). 
For finite nuclear dimension, this follows from [65, Theorem 5.6]. For finite radius of com-
parison, this is Corollary 3.22 obtained above. These results are proven by contradiction, 
with repeated use of the Hahn–Banach Theorem, thereby not yielding explicit values for 
the constants (m, γ). In fact, we do not know explicit values for (m, γ) holding globally 
in either one of these two cases. (On the other hand, explicit constants may be extracted 
from the methods used in [87] and [66], for simple C∗-algebras with real rank zero, strict 
comparison by traces, and a unique tracial state.) In this section, prompted by an inter-
esting question posed by the referee, we find explicit values for the constants (m, γ) for 
a variety of C∗-algebras with the uniform Dixmier property. When the C∗-algebras have 
the singleton Dixmier property, we also estimate the constants (M, Υ) (i.e., for which 
(3.4) holds).

Let A be a C∗-algebra. Let h ∈ A be a self-adjoint element and let [l(h), r(h)] be 
the smallest interval containing the spectrum of h, i.e., the numerical range of h. Set 
ω(h) := r(h) − l(h) and note that ω(h) ≤ 2‖h‖.

We first consider uniform Dixmier property constants for von Neumann algebras 
(slightly improving the constants that can be extracted from Dixmier’s original argu-
ment [23, Lemma 1 of §III.5.1]). Let W be a von Neumann algebra and h a self-adjoint 
element of W . Let e ∈ W be a central projection. In the next lemma ωe(h) denotes ω(eh)
in the von Neumann algebra eW .

Lemma 3.27. Let W be a von Neumann algebra. Let h ∈ W be a self-adjoint element 
with finite spectrum. Then there exist central projections e1, . . . , en adding up to 1 and 
a unitary u ∈ W such that

ωek

(h + uhu∗

2

)
≤ 1

2ωek(h) for all k.

Proof. It is shown in [65, Proposition 3.2] that given two self-adjoint elements h1, h2 ∈ W

with finite spectrum, it is possible to find projections P1, . . . , PN adding up to 1, a unitary 
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u ∈ W , and self-adjoint central elements λ1, μ1, . . . , λN , μN ∈ Z(W ) with finite spectrum 
such that

h1 =
N∑
i=1

λiPi, uh2u
∗ =

N∑
i=1

μiPi,

and

λ1 ≥ . . . ≥ λN , μ1 ≥ . . . ≥ μN .

(Note: [65, Proposition 3.2] is stated for positive elements but it is easily extended to 
self-adjoint elements by adding a scalar.) Let us apply this result to the self-adjoint 
elements h and −h. We then get

h =
N∑
i=1

λiPi and uhu∗ =
N∑
i=1

νiPi,

where λ1 ≥ . . . ≥ λN and ν1 ≤ . . . ≤ νN . Since all of the λi and νi have finite spectrum, 
there exist central projections e1, . . . , en with sum 1 such that ekλi and ekνi are scalar 
multiples of ek for all i and k. Let us show that e1, . . . , en and u are as desired. Let 
h̃ := (h + uhu∗)/2. Fix 1 ≤ k ≤ n. Let S := {i ∈ {1, . . . , N} : ekPi �= 0}. Denote the 
scalars ekλi and ekνi (in ekW ) simply as λi and νi. Then the spectrum of ekh in ekW
is {λi : i ∈ S} and also (since ekh is unitarily equivalent to ekuhu∗) {νi : i ∈ S}. On the 
other hand, the spectrum of ekh̃ in ekW is the set

{λi + νi
2 : i ∈ S

}
.

Let i, j ∈ S with i ≤ j. Then
∣∣∣λi + νi

2 − λj + νj
2

∣∣∣ =
∣∣∣λi − λj

2 − νj − νi
2

∣∣∣
≤ max

(λi − λj

2 ,
νj − νi

2

)
≤ ωek(h)

2 .

Thus, ωek(h̃) ≤ ωek(h)/2 for all k, as desired. �
Theorem 3.28. Let W be a von Neumann algebra. Then W has the uniform Dixmier 
property with constants (m, γ) for m = 2 and every γ ∈ (1/2, 1). If W is finite, then it 
has the uniform singleton Dixmier property with constants (M, Υ) for M = 4 and every 
Υ ∈ (1/2, 1).

Proof. Let 0 < ε < 1/2 and let 0 �= g = g∗ ∈ W . By the spectral theorem, there is a 
self-adjoint element h ∈ W with finite spectrum such that ‖g−h‖ < ε‖g‖ and ‖h‖ ≤ ‖g‖. 
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Apply Lemma 3.27 to h to obtain a unitary u ∈ W and central projections e1, . . . , en as 
in the statement of that lemma, and then define the central element z :=

∑n
k=1 αkek, 

where αk is the midpoint of the spectrum of ek(h +uhu∗)/2 in ekW (that is, the midpoint 
of the interval [l(ek(h + uhu∗)/2), r(ek(h + uhu∗)/2)]). Then we see that

∥∥∥ek(h + uhu∗

2 − z
)∥∥∥ =

∥∥∥ek h + uhu∗

2 − αkek

∥∥∥
= 1

2ωek

(h + uhu∗

2

)
≤ 1

4ωek(h)

≤ 1
2‖ekh‖ ≤ 1

2‖h‖.

Since the ek are orthogonal central projections, it follows that ‖(h +uhu∗)/2 −z‖ ≤ 1
2‖h‖. 

Then

‖(g + ugu∗)/2 − z‖ ≤ ‖h‖/2 + ε‖g‖ ≤ (1/2 + ε)‖g‖.

Suppose now that W is finite and hence has the singleton Dixmier property. For all 
ε > 0 such that (1/2 + ε)2 < 1/2, W has the uniform Dixmier property with con-
stants (22, (1/2 + ε)2) and hence the uniform singleton Dixmier property with constants 
(4, 2(1/2 +ε)2) (by Lemma 3.9). Since 2(1/2 +ε)2 → 1/2 as ε → 0, we obtain the required 
result. �
Proposition 3.29. The C∗-algebra Mn has the uniform Dixmier property with constants 
m = 2 and γ = 1/2 and the uniform singleton Dixmier property with constants M = 4
and Υ = 1/2.

Proof. That Mn has the uniform Dixmier property with constants m = 2 and γ = 1/2
follows at once from Lemma 3.27 above. The constants M = 4 and Υ = 1/2 are obtained 
from Lemma 3.9. �
Theorem 3.30. Let X be a compact Hausdorff space with covering dimension d < ∞. Let 
n ∈ N. The following are true:

(i) The C∗-algebra C(X, Mn) has the uniform Dixmier property with constants (m, γ)
for m = d +2 and every γ ∈ ((d +1)/(d +2), 1). It has the uniform singleton Dixmier 
property with constants (M, Υ) for M = 3d +4 and every Υ ∈ ((3d +2)/(3d +4), 1).

(ii) If d ≤ 2 and in the Čech cohomology we have Ȟ2(X) = 0 (e.g., X = [0, 1] or 
X = [0, 1]2), then C(X, Mn) has the uniform Dixmier property with constants (m, γ)
for m = 2 and every γ ∈ (1/2, 1) and the uniform singleton Dixmier property with 
constants (M, Υ) for M = 4 and every Υ ∈ (1/2, 1).
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Proof. It is well-known that C(X, Mn) has the singleton Dixmier property: for example, 
the Dixmier property holds by [5, Proposition 2.10] and the singleton Dixmier property 
is then a consequence of the fact that every simple quotient has a tracial state (see 
Proposition 1.4). We prove (ii) first, because the argument is more similar to the previous 
proof.

(ii): Let h ∈ C(X, Mn) be a self-adjoint element. By [94, Theorem 10], h is approx-
imately unitarily equivalent to a diagonal self-adjoint h′ = diag(λ1, . . . , λn), where the 
eigenvalue functions λ1, . . . , λn ∈ C(X, R) are arranged in decreasing order: λ1 ≥ λ2 ≥
· · · ≥ λn. Note that a self-adjoint element a in a unital C∗-algebra satisfies (3.2) if and 
only if every unitary conjugate of a does so (with the same central element z). Hence, 
by an approximation argument similar to that in the proof of Theorem 3.28, it suffices 
to establish (3.2) with m = 2 and γ = 1/2 for diagonal self-adjoint elements of the form 
above. So assume that h is diagonal with decreasing eigenvalue functions. Let u ∈ Mn

be the permutation unitary such that uhu∗ = diag(λn, . . . , λ1). Set h̃ := (h + vhv∗)/2, 
where v ∈ U(C(X, Mn)) is given by v(x) := u (x ∈ X). Then,

h̃ = diag
(λ1 + λn

2 ,
λ2 + λn−1

2 , . . . ,
λn + λ1

2

)
.

The same estimates used in the proof of Lemma 3.27 show that ω(h̃) ≤ ω(h)/2. It follows 
that

‖h̃− λ1 + λn

2 · 1n‖ ≤ 1
2‖h‖.

As observed above, this shows that C(X, Mn) has the uniform Dixmier property with 
m = 2 and every γ ∈ (1/2, 1). The constants M = 4 and Υ ∈ (1/2, 1) are then derived 
from the constants (m, γ) as in the proof of Theorem 3.28.

(i): Let ε > 0 be given. Let f ∈ C(X, Mn) be a self-adjoint contraction. For each 
x ∈ X, by Proposition 3.29, we may find λx ∈ R and a unitary ux ∈ Mn such that

∥∥∥∥1
2 (f(x) + uxf(x)u∗

x) − λx1
∥∥∥∥ ≤ 1

2 .

Evidently, we may assume λx ∈ [−1, 1]. By continuity, we may then find a neighbourhood 
Wx of x such that∥∥∥∥1

2 (f(y) + uxf(y)u∗
x) − λx1

∥∥∥∥ <
1
2 + ε for all y ∈ Wx.

From the open cover {Wx : x ∈ X} of X, using compactness and the fact that X has 
dimension d, we may find a finite refinement of the form {W (i)

j }i=0,...,d; j=1,...,r which 
covers X, and such that

W
(i)
j ∩W

(i)
j′ = ∅
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for all j �= j′. Denote u(i)
j the unitary corresponding to the open set W (i)

j and λ(i)
j the 

scalar, i.e., such that

∥∥∥∥1
2

(
f(y) + u

(i)
j f(y)(u(i)

j )∗
)
− λ

(i)
j 1

∥∥∥∥ <
1
2 + ε

for all y ∈ W
(i)
j . For i ∈ {0, . . . , d}, since all unitaries in Mn are homotopic to the 

identity, we may produce a unitary u(i) ∈ C(X, Mn) such that

u(i)(y) = u
(i)
j whenever y ∈ W

(i)
j ,

as follows. We may find disjoint open sets V (i)
1 , . . . , V (i)

r containing W (i)
1 , . . . , W (i)

r re-
spectively, and then we may use a homotopy of unitaries to get a unitary in C(V (i)

j , Mn)
which is identically u(i)

j on W (i)
j and identically 1 on ∂V (i)

j . We may then define the 
continuous unitary u(i) ∈ C(X, Mn) so that it restricts to the unitary just defined on 

each V (i)
j and is identically 1 outside of V (i)

1 ∪ · · · ∪ V
(i)
r .

We claim that f̃ := 1
d+2 (f + u(0)f(u(0))∗ + · · · + u(d)f(u(d))∗) has distance at most 

(d +1)/(d +2) +ε to the centre. Note that, by a partition-of-unity argument, the distance 
from f̃ to the centre is equal to the supremum over all x ∈ X of the distance from f̃(x)
to Z(Mn) = C1n (see [89, Theorem 2.3] for a more general result). For x ∈ X, pick i0, j
such that x ∈ W

(i0)
j . Without loss of generality, i0 = 0. Then

∥∥∥∥f̃(x) − 2
d + 2λ

(0)
j 1

∥∥∥∥ ≤ 2
d + 2

∥∥∥∥1
2(f(x) + u(0)(x)f(x)(u(0)(x))∗) − λ

(0)
j 1

∥∥∥∥
+ 1

d + 2

d∑
i=1

‖u(i)(x)f(x)(u(i)(x))∗‖

= 2
d + 2

∥∥∥∥1
2(f(x) + u

(0)
j f(x)(u(0)

j )∗) − λ
(0)
j 1

∥∥∥∥
+ 1

d + 2

d∑
i=1

‖u(i)(x)f(x)(u(i)(x))∗‖

<
2

d + 2

(
1
2 + ε

)
+ d

d + 2

≤ d + 1
d + 2 + ε

as required.
A similar argument is used to get uniform singleton Dixmier property constants. Here 

we may replace f with f −R(f), so that f(x) has trace 0 for all x ∈ X. Then we use the 
same argument as above, with the uniform singleton Dixmier property constants (4, 1)
2
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from Proposition 3.29, and with λx = 0 for all x (and thereby λ(i)
j = 0 for all i, j), to get 

M = 3(d + 1) + 1 = 3d + 4 and (for any sufficiently small ε > 0)

Υ = 1
2

4
3d + 4 + 3d

3d + 4 + ε = 3d + 2
3d + 4 + ε. �

Consider the following property of unital C∗-algebras A:

(P): There exist M ∈ N and 0 < Υ < 1 such that if h ∈ A is a self-adjoint such that 
τ(h) = 0 for all τ ∈ T (A) then

∥∥∥ 1
M

M∑
i=1

uihu
∗
i

∥∥∥ ≤ Υ‖h‖ (3.9)

for some unitaries u1, . . . , uM .

Note that if A has the property (P) for some (M, Υ) then it also has (P) for (Mk, Υk)
(k = 2, 3, . . .).

Suppose that A has the Dixmier property and has the property (P) for some (M, Υ). 
For h = h∗ ∈ A and z1, z2 ∈ DA(h) ∩Z(A), we have τ(z1 − z2) = 0 for all τ ∈ T (A) and 
hence 0 ∈ DA(z1 − z2) = {z1 − z2}. Thus z1 = z2. An elementary argument with real 
and imaginary parts shows that A has the singleton Dixmier property. It then follows 
from (P) that A has the uniform singleton Dixmier property with the same constants 
(M, Υ) (as introduced in (3.4)).

Conversely, suppose that A has the uniform singleton Dixmier property with constants 
(M, Υ). If h = h∗ ∈ A vanishes on all tracial states of A then h also vanishes on the 
centre-valued trace of A. Thus A has the property (P) with the same (M, Υ).

But (P) may hold much more generally: if every quotient of A has a bounded trace 
and A has either finite nuclear dimension or finite radius of comparison by traces then 
A has (P) for some (M, Υ) ([65, Theorem 5.6] for the former case, Theorem 3.20 in the 
latter).

In the following results, it will occasionally be convenient to write a ≈ε b to mean 
‖a − b‖ < ε.

Theorem 3.31. Let A be a unital C∗-algebra with decomposition rank one and stable rank 
one. Then A has (P) with constants (M, Υ) for M = 15 and every Υ ∈ (11/15, 1). 
In particular, if A also has the Dixmier property, then it has the uniform singleton 
Dixmier property with these constants.

Proof. Let ε > 0 be given. Let us factorise the diagonal embedding ι : A → A∞ as ∑1
i=0 φi ◦ ψi, where ψ0, ψ1 are unital homomorphisms, φ0, φ1 are c.p.c. order zero, and 

where N0, N1 have the form 
∏

λ Fλ/ 
⊕

λ Fλ, for finite dimensional algebras Fλ. (The 
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existence of such a factorisation follows from the proof of [78, Proposition 2.2], using [55, 
Proposition 5.1] in place of [103, Proposition 3.2].)

Suppose that, for every n ∈ N, Mn has the uniform Dixmier property with constants 
(m, γ) (we shall describe suitable values m > 1 and γ towards the end of the proof). Then 
any product of finite-dimensional C∗-algebras has the uniform Dixmier property with 
constants (m, γ) (Theorem 3.6(ii)), hence the Dixmier property and hence the singleton 
Dixmier property by Proposition 1.4 (note that the product of the centre-valued traces 
is a centre-valued trace on the product). Hence N0 and N1 have the uniform Dixmier 
property with constants (m, γ) (Theorem 3.6) and the singleton Dixmier property (see 
the remark after Proposition 1.4). By Lemma 3.9, N0 and N1 have the uniform singleton 
Dixmier property with constants (m, 2γ) (and for this we require 2γ < 1). Hence, as 
noted above, N0 and N1 have property (P) with constants M ′ = m > 1 and Υ′ = 2γ.

Let h ∈ A be a self-adjoint contraction that is zero on every tracial state. Then 
the same is true for ψi(h) for i = 0, 1. So for i = 0, 1 there exist unitaries ui,1, . . . ,
ui,M ′−1 ∈ Ni such that

∥∥∥ψi(h) +
∑M ′−1

j=1 ui,jψi(h)u∗
i,j

M ′

∥∥∥ ≤ Υ′. (3.10)

Set hi := φi(ψi(h)) for i = 0, 1, so that h = h0 + h1. We set xi,j = φ
1
n
i (ui,j) ∈ A∞, so 

that xi,j depends on n, and

|xi,j |hi → hi and xi,jhix
∗
i,j → φi(ui,jψi(h)u∗

i,j) as n → ∞.

Since A has stable rank one, every element in A∞ has a unitary polar decomposition, 
with the unitary element belonging to A∞. (Indeed, since A has stable rank one every 
element of A∞ lifts to an element (ak) ∈

∏∞
k=1 A such that ak is invertible for all k; 

further, such an (ak) has polar decomposition in 
∏∞

k=1 A.) So xi,j = Ui,j |xi,j | for some 
unitary Ui,j ∈ A∞. Then, remembering that xi,j depends on n,

Ui,jhiU
∗
i,j → φi(ui,jψi(h)u∗

i,j) and Ui,jφi(1)U∗
i,j → φi(1) as n → ∞.

From (3.10), for n sufficiently large we get

∥∥∥hi +
∑M ′−1

j=1 Ui,jhiU
∗
i,j

M ′

∥∥∥ ≤ Υ′ + ε,

for i = 0, 1. We choose n so that in addition,

‖Ui,jφi(1)U∗
i,j − φi(1)‖ < ε. (3.11)

Consider
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h̃ := 1
2M ′ − 1

(
h +

M ′−1∑
j=1

U0,jhU
∗
0,j +

M ′−1∑
j=1

U1,jhU
∗
1,j

)
;

we will estimate its norm. We manipulate the sum on the right side:

h +
∑
i=0,1

M ′−1∑
j=1

Ui,jhU
∗
i,j = (h0 +

M ′−1∑
j=1

U0,jh0U
∗
0,j) + (h1 +

M ′−1∑
j=1

U1,jh1U
∗
1,j)

+
M ′−1∑
j=1

(U1,jh0U
∗
1,j + U0,jh1U

∗
0,j). (3.12)

Let e0 := φ0(1) and e1 := φ1(1). Then h0 ≤ e0, h1 ≤ e1, and e0 + e1 = 1. Next from 
(3.11) and the fact that e0 + e1 = 1, it follows that ‖[Ui,j , e1−i]‖ < ε for i = 0, 1 and 
j = 1, . . . , M ′ − 1. Hence,

U1,jh0U
∗
1,j + U0,jh1U

∗
0,j ≤ U1,je0U

∗
1,j + U0,je1U

∗
0,j ≈2ε e0 + e1 = 1,

which implies that U1,jh0U
∗
1,j + U0,jh1U

∗
0,j ≤ (1 + 2ε)1. A similar argument shows that 

U1,jh0U
∗
1,j + U0,jh1U

∗
0,j ≥ −(1 + 2ε)1. The norm of the right side of (3.12) is at most 

2M ′(Υ′ + ε) + (M ′ − 1)(1 + 2ε) from which we obtain that

‖h̃‖ ≤ 2M ′(Υ′ + ε) + (M ′ − 1)(1 + 2ε)
2M ′ − 1 .

Thus A has property (P) with constants M = 2M ′ − 1 and Υ = (2M ′Υ′ + M ′ − 1)/
(2M ′ − 1) + 2ε (provided that this value of Υ is less than 1).

It follows from Proposition 3.29 that, for every n, the C∗-algebra Mn has the uniform 
Dixmier property with constants m = 23 = 8 and γ = (1/2)3 = 1/8. By the discussion 
above, we may take M ′ = 8 and Υ′ = 1/4 and hence obtain that A has (P) with constants 
(M, Υ) for M = 15 and every Υ ∈ (11/15, 1). �

Our next goal is to prove Theorem 3.33 below. But first we need a lemma and some 
preliminaries.

Given a self-adjoint element h, let us say that the spectrum of h has gaps of size at 
most δ if every closed subinterval of [l(h), r(h)] of length δ intersects the spectrum of h.

Lemma 3.32. Let A be simple, unital, and non-elementary. Let h ∈ A be a self-adjoint 
element and ε > 0. The following are true:

(i) There exists a unitary u ∈ A such that the spectrum of

1
3h + 2

3uhu
∗

has gaps of size at most ω(h)/3 + ε.
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(ii) If the spectrum of h has gaps of size at most δ > 0 then there exist a self-adjoint 
h̃ ∈ A and x ∈ A such that ‖x‖2 = δ/2, x2 = 0,

‖h− (h̃ + [x∗, x])‖ < ε,

and the spectrum of h̃ is the interval [l(h) − δ/2, r(h) + δ/2].

Proof. (i): The result is trivial if l(h) = r(h). So assume that l(h) < r(h). If the result has 
been proven for a given h (and arbitrary ε > 0) then it at once follows for any αh + β1, 
with α, β ∈ R. Thus, we may assume that 0 ≤ h ≤ 1 and that [l(h), r(h)] = [0, 1]. Let 
us perturb h slightly using functional calculus with a continuous function that is close 
to the identity function but takes the constant value 0 in a neighbourhood of 0 and the 
constant value 1 in a neighbourhood of 1, so that for the new element k (still a positive 
contraction) we have that ‖h − k‖ < ε/2 and that ke = e and kf = 0 for some non-zero 
e, f ∈ A+. Since A is simple (whence prime), there exists a positive element a ∈ A such 
that eaf �= 0. Let x = eaf . Then x∗x ∈ fAf and xx∗ ∈ eAe. Since x2 = 0, x is in the 
closure of the invertible elements of A. By [69, Theorem 5], for each t > 0 there exists 
a unitary u ∈ A such that u(x∗x − t)+u∗ = (xx∗ − t)+. Choose one such u for some 
t < ‖x‖. Set ẽ := (x∗x − t)+ and f̃ := (xx∗ − t)+. Now consider

k̃ := 1
3k + 2

3(uku∗).

Then k̃ẽ = (1/3)ẽ and k̃f̃ = (2/3)f̃ . Since ẽ and f̃ are nonzero, 1/3 and 2/3 are in the 
spectrum of k̃.

Let h̃ := 1
3h + 2

3 (uhu∗), a positive contraction in A such that ‖h̃− k̃‖ < ε/2. Suppose, 
towards a contradiction, that the spectrum of h̃ does not intersect (1/3 − ε/2, 1/3 + ε/2). 
Define b := h̃ − (1/3)1 and c := k̃ − (1/3)1, so that b is self-adjoint, the spectrum of b
does not intersect (−ε/2, ε/2) and ‖b − c‖ < ε/2. We have

‖1 − b−1c‖ ≤ ‖b−1‖‖b− c‖ <
ε

2‖b
−1‖ ≤ 1.

Hence b−1c is invertible and so c is invertible, which contradicts that 1/3 is in the 
spectrum of k̃. A similar argument shows that the spectrum of h̃ intersects (2/3 − ε/2,
2/3 + ε/2). It follows that the spectrum of h̃ has gaps of size at most 1/3 + ε.

(ii): Choose points l(h) = t0 < t1 < . . . < tn = r(h) in the spectrum of h such that 
ti+1 − ti ≤ δ for all i. Perturb h by functional calculus using an increasing continuous 
function close to the identity function that takes the constant value ti in a small neigh-
bourhood of each ti, so that the new h′ satisfies ‖h′−h‖ < ε, has spectrum contained in 
[l(h), r(h)] and has the property that there exist pairwise orthogonal non-zero positive 
elements e0, e1, . . . , en such that h′ei = tiei. For each i = 0, 1, . . . , n, choose xi ∈ eiAei
such that x2

i = 0 and x∗
i xi (and hence xix

∗
i ) has spectrum equal to [0, 1]. This is possible 

since eiAei is simple and non-elementary. Now let
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x :=
n∑

i=0
(δ/2) 1

2xi and h̃ := h′ − [x∗, x].

We claim that h̃ and x are as desired. It follows from the pairwise orthogonality of the ei
that x2 = 0, that

‖x‖2 = δ

2

∥∥∥ n∑
i=0

x∗
i xi

∥∥∥ = δ

2

and that

h̃ = h′ −
n∑

i=0
(δ/2)(x∗

i xi − xix
∗
i ).

Let us show that h̃ has spectrum [l(h) − δ/2, r(h) + δ/2]. Note that all of the elements 
h′, x∗

i xi and xix
∗
i (0 ≤ i ≤ n) lie in a commutative C∗-subalgebra C containing the 

unit 1 of A. Evaluating the right-hand side of the expression for h̃ on the points of the 
spectrum of C where x∗

i xi is supported, all other terms except for h′ vanish, while h′

takes the constant value ti. Since the spectrum of x∗
i xi is [0, 1], we obtain the interval 

[ti − δ/2, ti] in the spectrum of h̃. Evaluating on the points where xix
∗
i is supported, we 

obtain the interval [ti, ti + δ/2] in the spectrum of h̃. Doing this for all i, we obtain the 
interval [l(h) −δ/2, r(h) +δ/2] in the spectrum of h̃. Evaluating on any other point in the 
spectrum of C, we obtain a value in the spectrum of h′ which is contained in [l(h), r(h)]. 
Thus the spectrum of h̃ is as required. �

Let A be simple, unital, non-elementary, with stable rank one and with strict compar-
ison by traces. Using Cuntz semigroup classification results, one can prove the existence 
of a nuclear C∗-subalgebra B ⊆ A with rather special properties. [64, Theorem 4.1] spells 
out the properties of B that we need:

(i) B ∼= C ⊗ W , where C is a simple AF C∗-algebra and W is the Jacelon–Razak 
algebra.

(ii) Every tracial state τ on B extends uniquely to a tracial state on A.
(iii) Every non-invertible self-adjoint element h in A with connected spectrum is approx-

imately unitarily equivalent to a self-adjoint element in B. (Note: In the statement 
of [64, Theorem 4.1] the hypothesis that the self-adjoint h must be non-invertible 
is missing, though this is clearly necessary since B is non-unital. Moreover, this 
hypothesis is tacitly used in the last paragraph of the proof of [64, Theorem 4.1].)

A technique in [43] and [64] involves using these properties to reduce the proof of 
certain properties of self-adjoint elements in A to the case of self-adjoint elements in B. 
We will use the same technique to prove the following theorem. In this theorem, the 
initial hypotheses on A ensure that T (A) is non-empty (surely, if we had T (A) = ∅ then 
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the strict comparison-by-traces property and the simplicity of A would imply that A
is purely infinite, contradicting that A has stable rank one.) Thus the later additional 
assumption that A has the Dixmier property is equivalent to assuming that A has a 
unique tracial state [37].

Theorem 3.33. Let A be a simple, unital, non-elementary C∗-algebra with stable rank one 
and strict comparison by traces. Then A has (P) with constants M = 3 ·73 and Υ = 0.86. 
Suppose, in addition, that A has the Dixmier property. Then A has the uniform singleton 
Dixmier property with these constants.

Proof. Suppose that the unitisation B + C1 of B has (P) with constants (M ′, Υ′). We 
show how to obtain constants for A. Suppose that h ∈ A is a self-adjoint element that 
is zero on every trace and such that ‖h‖ = 1. Let ε > 0. From Lemma 3.32 (i), we 
obtain h1 = (1/3)h + (2/3)uhu∗ whose spectrum has gaps at most 2/3 + ε. Applying 
Lemma 3.32 (ii) to h1 with δ = 2/3 + ε, we obtain h̃1, x ∈ A, as described, such that

h1 ≈ε h̃1 + [x∗, x]. (3.13)

Notice, for later use, that since the positive elements x∗x and xx∗ are orthogonal

‖[x∗, x]‖ = max{‖x∗x‖, ‖xx∗‖} = δ

2 = 1
3 + ε

2 .

Also, by our choice of δ, the spectrum of h̃1 is exactly the interval

[l(h1) −
1
3 − ε

2 , r(h1) + 1
3 + ε

2 ].

From this and ‖h1‖ ≤ 1, we see that ‖h̃1‖ ≤ 4/3 +ε/2. Moreover, h̃1 is non-invertible. In-
deed, its spectrum contains the closed interval [l(h1), r(h1)] and the latter contains 0 since 
h1 is zero on all traces and T (A) �= ∅ (as argued before this theorem). By property (iii) 
of the C∗-subalgebra B above, there is a self-adjoint element b ∈ B which is approxi-
mately unitarily equivalent to h̃1. Notice, from (3.13), that sup{|τ(h̃1)| : τ ∈ T (A)} < ε. 
Hence sup{|τ(b)| : τ ∈ T (A)} < ε. But

sup{|τ(b)| : τ ∈ T (A)} = sup{|τ(b)| : τ ∈ T (B)},

since tracial states of B extend to tracial states of A (property (ii) of B above). Hence 
sup{|τ(b)| : τ ∈ T (B)} < ε. It follows that there exists a self-adjoint b′ ∈ B such that 
τ(b′) = 0 for all τ ∈ T (B) and ‖b − b′‖ < ε (by [18, Theorem 2.9] and [95, Proof of 
Lemma 3.1]). Hence there is a unitary conjugate of h̃1 which has distance from b′ less 
than ε. Thus, since B has (P) with constants (M ′, Υ′), there exists an average of M ′

unitary conjugates of h̃1 of norm at most
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Υ′(‖h̃1‖ + ε) + ε ≤ Υ′(4
3 + 3ε

2 ) + ε.

Applying this average on both sides of (3.13), we find an average of 3M ′ unitary conju-
gates of the original element h with norm at most

Υ′(4
3 + 3ε

2 ) + ε + (1
3 + ε

2) + ε.

Since ε can be chosen arbitrarily small, we find that, provided 4
3Υ′ + 1

3 < 1, A has (P)
with constants

M = 3M ′ and every Υ ∈ (4
3Υ′ + 1

3 , 1). (3.14)

Finally, let us find suitable constants for the unitisation B + C1 of B. Since B has 
decomposition rank 1 and stable rank one, B+C1 has the same properties and so has (P)
with constants M ′ = 15 and arbitrary Υ′ ∈ (11/15, 1) by Theorem 3.31. Therefore, it 
also has (P) with constants M ′ = 153 and arbitrary Υ′ ∈ ((11/15)3, 1). Putting the latter 
constants into the formula (3.14), we get that A has (P) with constants M = 3 · 153 and 
Υ = 0.86. �
4. The distance between Dixmier sets

In this section, we derive results about the distance between Dixmier sets DA(a) and 
DA(b). Along the way, we obtain a description of DA(a) ∩ Z(A) for C∗-algebras with 
the Dixmier property and we point out some cases in which the distance between DA(a)
and DA(b) is attained. Here by the distance between two subsets D1, D2 of a C∗-algebra, 
we mean

d(D1, D2) := inf{‖d1 − d2‖ : d1 ∈ D1, d2 ∈ D2}.

Lemma 4.1. Let A be a unital C∗-algebra and let a, b ∈ A. The distance between the sets 
DA(a) and DA(b) is equal to the distance between the sets DA∗∗(a) and DA∗∗(b).

Proof. Let r := d(DA∗∗(a), DA∗∗(b)). It is clear that r ≤ d(DA(a), DA(b)). Let us prove 
the opposite inequality. Let ε > 0 be given. Let a′ ∈ DA∗∗(a) and b′ ∈ DA∗∗(b) be such 
that ‖a′ − b′‖ < r + ε. Approximating a′ and b′ by averages of unitary conjugates there 
exists some N and unitaries u1, . . . , uN , v1, . . . , vN ∈ U(A∗∗) such that

∥∥∥ 1
N

N∑
i=1

uiau
∗
i −

1
N

N∑
i=1

vibv
∗
i

∥∥∥ < r + ε. (4.1)

By the version of Kaplansky’s density theorem for unitaries [93, Theorem 4.11] (due to 
Glimm and Kadison, see [32, Theorem 2]), there exist commonly indexed nets of unitaries 
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(ui,λ)λ∈Λ, (vi,λ)λ∈Λ ∈ U(A) such that ui,λ → ui and vi,λ → vi in the ultrastrong∗-topol-
ogy for i = 1, . . . , N . Now consider

S := co
{ 1
N

N∑
i=1

ui,λau
∗
i,λ − 1

N

N∑
i=1

vi,λbv
∗
i,λ : λ ∈ Λ

}
.

The weak∗-closure of this convex set (in A∗∗) contains an element of norm less than 
r+ ε (namely, the element appearing in (4.1)), so by the Hahn–Banach theorem, S must 
also contain an element of norm less than r + ε. (Otherwise, the Hahn–Banach theorem 
ensures the existence of a functional λ ∈ A∗ such that Re(λ(x)) < r+ε for all ‖x‖ < r+ε

and Re(λ(s)) ≥ r+ ε for all s ∈ S; but then ‖λ‖ ≤ 1 and Re(λ(s)) ≥ r+ ε for all s in the 
weak∗-closure of S, which is a contradiction.) However, note that S ⊆ DA(a) −DA(b), 
so this shows that d(DA(a), DA(b)) ≤ r + ε. Since ε is arbitrary, we are done. �

Given a unital C∗-algebra A and a ∈ A, let WA(a) := {ρ(a) : ρ ∈ S(A)}, the algebraic 
numerical range of a. Since the state space S(A) is weak∗-compact and convex, WA(a)
is a compact convex subset of C.

Lemma 4.2. Let A be a unital C∗-algebra and let a, b ∈ A. The following are true:

(i) |τ(a) − τ(b)| ≤ d(DA(a), DA(b)) for all τ ∈ T (A).
(ii) d(WA/I(qI(a)), WA/I(qI(b))) ≤ d(DA(a), DA(b)) for all closed ideals I of A.

Proof. (i): This is clear from the fact that traces are constant on Dixmier sets.
(ii): Since

d(DA/I(qI(a)), DA/I(qI(b))) ≤ d(DA(a), DA(a))

(because qI(DA(a)) ⊆ DA/I(qI(a)) and similarly for b), it suffices to consider the case 
when I = 0. We have

inf{|ρ1(a) − ρ2(b)| : ρ1, ρ2 ∈ S(A)} ≤ sup{|ρ(a) − ρ(b)| : ρ ∈ S(A)}

≤ ‖a− b‖.

Thus, d(WA(a), WA(b)) ≤ ‖a − b‖. But if α, β ∈ Av(A, U(A)) are averaging operators 
then WA(α(a)) ⊆ WA(a) and WA(β(b)) ⊆ WA(b). So

d(WA(a),WA(b)) ≤ ‖α(a) − β(b)‖.

Passing to the infimum over all α, β ∈ Av(A, U(A)) we get that

d(WA(a),WA(b)) ≤ d(DA(a), DA(b)),

as desired. �
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Lemma 4.1 allows us to reduce the calculation of the distance between Dixmier sets 
to the case that the ambient C∗-algebra is a von Neumann algebra. To deal with the von 
Neumann algebra case we rely on the following theorem of Halpern and Strătilă–Zsidó:

Theorem 4.3 ([39, Theorem 4.12], [92, Proposition 7.3]). Let M be a properly infinite 
von Neumann algebra with centre Z and strong radical J (i.e., J is the intersection of 
all maximal ideals of M). Let a ∈ M . The following are equivalent:

(i) 0 ∈ DM (a).
(ii) There exists a Z-linear, positive, unital map φ : M → Z such that φ(J) = 0 and 

φ(a) = 0.
(iii) 0 ∈ WM/I(qI(a)) for every maximal ideal I of M .

Proof. (i)⇒(iii): If 0 ∈ DM (a) then 0 ∈ DM/I(qI(a)) for every maximal ideal I of M . 
By Lemma 4.2, 0 ∈ WM/I(qI(a)), as desired.

(iii)⇒(ii): This is [92, Proposition 7.3].
(ii)⇒(i): This follows from Halpern’s [39, Theorem 4.12]. �

The following theorem extends Theorem 1.2 ([65, Theorem 4.7]) to non-self-adjoint 
elements.

Theorem 4.4. Let A be a unital C∗-algebra and let a ∈ A. Then 0 ∈ DA(a) if and only if

(a) τ(a) = 0 for all τ ∈ T (A), and
(b) in no nonzero quotient of A can the image of Re(wa), with w ∈ C, be invertible and 

negative.

Condition (b) need only be checked on all the quotients by maximal ideals of A. 
A reformulation of (b) is

(b’) on every nonzero quotient there exists a state that vanishes on a; i.e., 0 ∈
WA/I(qI(a)) for all closed ideals I of A.

To see this, suppose that ρ(a) = 0 for some ρ ∈ S(A). For all w ∈ C, ρ(wa) = 0 and so 
ρ(Re(wa)) = 0. Hence Re(wa) is not invertible and negative. Conversely, suppose that 
0 /∈ WA(a). Then by convexity of WA(a), for a suitable w ∈ C and ε > 0, Re(ρ(wa)) ≤
−ε < 0 for all states ρ, i.e., ρ(Re(wa)) ≤ −ε < 0 for all states ρ. But this implies 
that Re(wa) is negative and invertible. This equivalence holds similarly in every nonzero 
quotient. Notice that if every nonzero quotient of A has a tracial state then (b’) follows 
from (a).
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Another reformulation of (b) is the following:

(b”) (Re(wa) + t)+ is a full element (i.e., generates A as a closed two-sided ideal) for all 
t > 0 and all w ∈ C.

To see that this is equivalent to Theorem 4.4 (b), notice first that Re(wa) ≤ −t1 in 
the quotient by the closed two-sided ideal generated by (Re(wa) + t)+, where a 
→ a

is the quotient map for this ideal. So, assuming (b), this quotient must be {0}, i.e., 
(Re(wa) + t)+ is full for all t > 0. On the other hand, if Re(wa) ≤ −t1 in the quotient 
by some ideal I, then clearly (Re(wa) + t1)+ ∈ I. So, if t > 0, and assuming (b”), we get 
that I = A.

Proof of Theorem 4.4. Since traces are constant on Dixmier sets, if 0 ∈ DA(a) then 
τ(a) = 0 for all τ ∈ T (A), i.e., (a) holds. Also, if 0 ∈ DA(a) then 0 ∈ DA(wa) for any 
w ∈ C (indeed, any central element) and this prevents Re(wa) from being invertible and 
negative. The same holds for quotients since qI(DA(a)) ⊆ DA/I(qI(a)). Thus, (b) holds 
as well.

Suppose now that a ∈ A is such that (a) and (b) hold. If A ⊆ B (where B is a 
C∗-algebra with the same unit as A) then (a) and (b) also hold in B. This is clear for 
condition (a), since traces of B restrict to traces of A. This is also clear for condition (b”), 
which is equivalent to (b). It follows that a satisfies (a) and (b) in the von Neumann 
algebra A∗∗. Let A∗∗

f ⊕ A∗∗
pi be the decomposition of A∗∗ into a finite and a properly 

infinite von Neumann algebra and let a = af + api be the corresponding decomposition 
of a. From condition (a) we get that R(af) = 0, where R denotes the centre-valued trace, 
which in turn implies that 0 ∈ DA∗∗

f
(af). On the other hand, from condition (b) we 

get that for every maximal ideal I of A∗∗
pi there exists a state on A∗∗

pi /I that vanishes 
on qI(api). By Theorem 4.3, 0 ∈ DA∗∗

pi (api). Since we may extend unitary elements in 
A∗∗

f (respectively A∗∗
pi ) by adding the unit of A∗∗

pi (respectively A∗∗
f ), we conclude that 

0 ∈ DA∗∗(a). By Lemma 4.1, 0 ∈ DA(a). �
The next result extends the discussion in Section 2 (after Theorem 2.6) concerning the 

form of the sets DA(a) ∩Z(A) in a unital C∗-algebra A which has the Dixmier property. 
Here, the element a ∈ A is not required to be self-adjoint.

Corollary 4.5. Let A be a unital C∗-algebra with the Dixmier property and let a ∈ A. Let 
Y ⊆ Max(A) be the closed set of maximal ideals M such that A has a (unique) tracial 
state τM that vanishes on M . Then DA(a) ∩Z(A) is mapped, via the Gelfand transform, 
onto the set of f ∈ C(Max(A)) such that

f(M) = τM (a) if M ∈ Y ,

f(M) ∈ WA/M (qM (a)) otherwise.
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Proof. Let z ∈ DA(a) ∩Z(A) and let f ∈ C(Max(A)) be its Gelfand transform (that is, 
f = θ(z) where θ : Z(A) → C(Max(A)) is the canonical ∗-isomorphism discussed prior 
to Corollary 2.7). Let M ∈ Max(A). Since 0 ∈ DA(a − z), we have by Lemma 4.2 (ii) 
that

0 ∈ WA/M (qM (a− z)) = WA/M (qM (a)) − f(M),

i.e., f(M) ∈ WA/M (qM (a)). Also, f(M) = τM (z) = τM (a) for all M ∈ Y . Thus, f is as 
required.

Conversely, let f ∈ C(Max(A)) be as in the statement of the corollary. Let z ∈ Z(A)
be the central element whose Gelfand transform is f . Then

0 ∈ WA/M (qM (a)) − f(M) = WA/M (qM (a− z))

for all M ∈ Max(A). Also, τM (a − z) = 0 for all M ∈ Y , and since ∂eT (A) = {τM :
M ∈ Y } (Theorem 2.6), τ(a − z) = 0 for all τ ∈ T (A) by the Krein–Milman theorem. 
By Theorem 4.4, 0 ∈ DA(a − z), i.e., z ∈ DA(a), as desired. �

Our next goal is to extend Theorem 4.4 to a distance formula between the sets DA(a)
and DA(b) (Theorem 4.12 below). Note that one cannot reduce the calculation of this 
distance to the case that one element is 0 by looking at the distance between DA(b − a)
and 0, since d(DA(a), DA(b)) is in general not the same as d(DA(b −a), 0). For an example 
of this, let a be a non-invertible positive element of norm 1 in a simple unital infinite 
C∗-algebra A and define b := 1 +a. Then DA(a) ∩Z(A) = [0, 1] and DA(b) ∩Z(A) = [1, 2]
(as sets of scalar elements of A) (see Corollary 2.10 or [37]), so that d(DA(a), DA(b)) = 0. 
However, b − a = 1 so that d(DA(b − a), 0) = 1.

Lemma 4.6 ([24, Proposition 3.4.2 (i)]). Let (Iλ)λ be a collection of closed ideals of a 
C∗-algebra A and let I be a closed ideal of A such that 

⋂
λ Iλ ⊆ I. Then every state 

of A which vanishes on I is a weak∗-limit of convex combinations of states vanishing on 
the Iλ’s.

Recall that for topological spaces X and Y , a set-valued function φ : X →
{subsets of Y } is defined to be lower semicontinuous if for every open set U of Y , the 
set

{x ∈ X : φ(x) ∩ U �= ∅}

is open in X. Later in this section we will use the Michael selection theorem ([59, The-
orem 3.1’]).

The next lemma is implicit in a strategy mentioned in [58].

Lemma 4.7. Let A be a unital C∗-algebra and let a ∈ A. The set-valued function on 
Max(A) defined by
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M 
→ WA/M (qM (a)) for all M ∈ Max(A)

is lower semicontinuous.

Proof. Let Φa(M) := WA/M (qM (a)) for all M ∈ Max(A). Let M ∈ Max(A), w ∈ Φa(M)
and ε > 0. We must show that Φa(M ′) ∩Bε(w) is non-empty for all M ′ in a neighbourhood 
of M . Suppose, for the sake of contradiction, that there exists a net Mλ → M such that 
Φa(Mλ) ∩Bε(w) = ∅ for all λ. For each λ we can separate the sets Φa(Mλ) and Bε(w) by 
a line �λ tangent to the circle {z : |z−w| = ε}. Let cλ ∈ �λ denote the point of tangency. 
Let us pass to a subnet Mλ′ → M such that the cλ′ → c, and let � be the tangent line 
at c. Since the sets Φa(Mλ′) are uniformly bounded (they are all inside the ball B‖a‖(0)), 
there exists λ′

0 such that the sets Φa(Mλ′) for λ′ ≥ λ′
0 are all separated from the ball 

Bε/2(w) by a single line �0 parallel to � (and tangent to the circle {z : |z − w| = ε/2}). 
But, since 

⋂
λ′≥λ′

0
Mλ′ ⊆ M , we have by the previous lemma that any state of A which 

vanishes on M is a weak∗-limit of convex combinations of states vanishing on the Mλ′’s. 
In particular, w (= ρ(a) for some state ρ of A which vanishes on M) is a limit of convex 
combinations of elements in 

⋃
λ′≥λ′

0
Φa(Mλ′). This contradicts that we can separate ⋃

λ′≥λ′
0
Φa(Mλ′) from Bε/2(w) by the line �0.

Let us describe more specifically how to obtain λ′
0. The line �0 is parallel to � but 

closer to w. We may therefore choose λ′
0 such that all the points {cλ′ : λ′ ≥ λ′

0} lie on 
the same side of �0 and such that the lines �λ′ and �0 intersect outside of the ball B‖a‖(0)
for all λ′ ≥ λ′

0. Then λ′
0 is as desired. �

Given a subset S of a metric space and r > 0 we denote by Sr the set {y : d(y, S) < r}.

Lemma 4.8. Let f, g be lower semicontinuous set-valued functions on a topological set X
taking values in the subsets of a metric space Y . Let r > sup{d(f(x), g(x)) : x ∈ X}. 
Then the set-valued functions x 
→ f(x) ∩ (g(x))r and x 
→ f(x) ∩ (g(x))r are lower 
semicontinuous.

Proof. Let us show that h(x) := f(x) ∩ (g(x))r is lower semicontinuous. Let x ∈ X, 
z ∈ h(x) and ε > 0. We must show that there exists a neighbourhood U of x such that 
h(y) ∩ Bε(z) �= ∅ for all y ∈ U . Let w ∈ g(x) be such that r′ := d(z, w) < r. Let δ :=
min((r − r′)/2, ε). By the lower semicontinuity of f and g we can find a neighbourhood 
U of x such that f(y) ∩Bδ(z) and g(y) ∩Bδ(w) are nonempty for all y ∈ U . Let y ∈ U , 
so that there exist z′ ∈ f(y) ∩ Bδ(z) and w′ ∈ g(y) ∩ Bδ(w). Then, using the triangle 
inequality, d(z′, w′) < r, so that z′ ∈ h(y). Also by the choice of δ, z′ ∈ Bε(z), so 
h(y) ∩Bε(z) is nonempty, as required.

Let us show that x 
→ h(x) is also lower semicontinuous. Let V ⊆ Y be an open set. 
Suppose that h(x) ∩ V �= ∅ for some x ∈ X. Then h(x) ∩ V �= ∅, and by the lower 
semicontinuity of h we find a neighbourhood U of x such that h(y) ∩ V �= ∅ for all 
y ∈ U . Then, h(y) ∩ V �= ∅ for all y ∈ U , as required. �
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Lemma 4.9. Let r > 0. Let f be a lower semicontinuous set-valued function on a topo-
logical space X taking values in the convex subsets of C and such that f(x) ∩Br(0) �= ∅
for all x. Then

h(x) := f(x) ∩Br(0)

is lower semicontinuous.

Proof. Let x ∈ X and z ∈ h(x). Let ε > 0 and, without loss of generality, assume ε < r. 
We must show that h(y) ∩Bε(z) is nonempty for all y in a neighbourhood of x. Suppose 
first that |z| < r. Let δ := min(ε, r−|z|). Then Bδ(z) ⊆ Br(0), by the triangle inequality. 
Since f is lower semicontinuous, f(y) ∩Bδ(z) �= ∅ for all y in a neighbourhood of x, and 
so h(y) ∩Bε(z) �= ∅ for all such y.

Assume now that |z| = r. Let δ := ε2/2r, as shown in the diagram, so that the circle of 
centre z and radius δ is tangent to the segment [A, B]. Since f is lower semicontinuous, 
f(y) ∩Bδ(z) �= ∅ for all y in a neighbourhood U of x. Let y ∈ U . Say z1 ∈ f(y) ∩Bδ(z). 
Recall also that, by assumption, there exists z2 ∈ f(y) such that |z2| ≤ r. Since the 
segment [z1, z2] is contained in f(y), it suffices to show that [z1, z2] intersects Bε(z) ∩
Br(0).

If the points z1 and z2 are on the same side of the line AB then z2 ∈ Bε(z). If the 
points z1 and z2 are on different sides of this line AB (as in the figure) then the segment 
[z1, z2] intersects the segment [A, B]. (Note for this that the tangents at A and B to the 
circle centred at 0 are also tangential to the circle centred at z with radius δ.) �

Let A be a unital C∗-algebra A with the Dixmier property. Let Y ⊆ Max(A) be the 
set of maximal ideals M such that A has a (unique) tracial state τM that vanishes on M . 
Recall that Y is closed and M 
→ τM (a) is continuous on Y for all a ∈ A (Theorem 2.6). 
Let a ∈ A. Define a set-valued function Fa on Max(A) as follows:
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Fa(M) :=
{
{τM (a)} if M ∈ Y,

WA/M (qM (a)) otherwise.

The values of Fa are compact convex subsets of C. Since M 
→ WA/M (qM (a)) is 
lower semicontinuous by Lemma 4.7, Y is closed, Fa|Y is continuous, and τM (a) ∈
WA/M (qM (a)) for M ∈ Y , the set-valued function Fa is lower semicontinuous.

The following proposition is trivial in the case of the singleton Dixmier property.

Proposition 4.10. Let A be a unital C∗-algebra with the Dixmier property, and let a, b ∈ A. 
Set

r := sup
M∈Max(A)

d(Fa(M), Fb(M)).

Then the distance between DA(a) and DA(b) is equal to r. If either a and b are both 
self-adjoint, or b = 0 then this distance is attained by elements in DA(a) ∩ Z(A) and 
DA(b) ∩ Z(A).

Proof. The inequality r ≤ d(DA(a), DA(b)) follows at once from Lemma 4.2.
Let ε > 0. By Lemma 4.8, the set-valued function

F (M) := Fa(M) ∩ (Fb(M))r+ε for M ∈ Max(A)

is lower semicontinuous. Since its values are closed convex sets, by Michael’s selection 
theorem there exists a continuous function f : Max(A) → C such that f(M) ∈ F (M)
for all M . Let za ∈ Z(A) be the central element whose Gelfand transform is f . Since 
f(M) ∈ F (M) ⊆ Fa(M) for all M we have that za ∈ DA(a) by Corollary 4.5. Let us 
define

G(M) := {f(M)}r+2ε ∩ Fb(M) for M ∈ Max(A).

Then again this is a lower semicontinuous function taking closed convex set values. 
So there exists a continuous g : Max(A) → C such that g(M) ∈ G(M) for all M . Let 
zb ∈ Z(A) be the central element whose Gelfand transform is g. As with za, we have that 
zb ∈ DA(b). Also, since |f(M) −g(M)| ≤ r+2ε for all M we have that ‖za−zb‖ ≤ r+2ε. 
This ends the proof that r = d(DA(a), DA(b)).

Suppose now that b = 0, and let us show that the distance from DA(a) to 0 is attained. 
Since r = sup{d(0, Fa(M)) : M ∈ Max(A)}, the set Fa(M) ∩ Br(0) is nonempty for 
all M . Thus, by Lemma 4.9, the set-valued function M 
→ Fa(M) ∩ Br(0) is lower 
semicontinuous. Since it takes values on the closed convex subsets of C, there exists, by 
Michael’s selection theorem, a continuous function f : Max(A) → C such that f(M) ∈
Fa(M) ∩ Br(0) for all M . Let za be the central element whose Gelfand transform is f . 
Then za ∈ DA(a) and ‖za‖ ≤ r, as desired.
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Finally, suppose that a and b are self-adjoint. Then

WA/M (qM (a)) = [fa(M), ha(M)],

WA/M (qM (b)) = [fb(M), hb(M)]

for all M ∈ Max(A). Here fa(M) := min(sp(qM (a))), ha(M) := max(sp(qM (a))) and 
similarly for fb(M) and hb(M). As in the proof of Theorem 2.6, fa, fb : Max(A) → R
are upper semicontinuous functions and ha, hb : Max(A) → R are lower semicontinuous. 
For each M ∈ Max(A) define

G(M) =
{
{τM (a)} if M ∈ Y,

[fa(M), ha(M)] ∩ [fb(M) − r, hb(M) + r] otherwise.

Observe that G(M) is a nonempty closed interval for all M . Moreover, the assignment 
M 
→ G(M) is a lower semicontinuous set-valued function. Hence, it has a continuous 
selection g(M) ∈ G(M), g ∈ C(Max(A)). (Alternatively, we can derive the existence 
of g from the Katětov–Tong theorem as in the proof of Theorem 2.6.) Let za denote 
the central element whose Gelfand transform is g. Then za ∈ DA(a). Now consider the 
assignment

M 
→ [g(M) − r, g(M) + r] ∩ Fb(M).

It is again lower semicontinuous and takes values in the closed intervals of R. Hence, 
it has a continuous selection giving rise to a central element zb ∈ DA(b) such that 
‖za − zb‖ ≤ r. �
Example 4.11. For general elements a and b in a C∗-algebra with the Dixmier property, 
the distance from DA(a) to DA(b) need not be attained. Let A = C([−1, 1], O2). Then 
[−1, 1] is homeomorphic to Max(A) via the assignment

s → Ms := C0([−1, 1]\{s}, O2) for s ∈ [−1, 1].

Since A is weakly central and has no tracial states, it has the Dixmier property by 
Theorem 2.6 (this can also be seen from the fact that A is ∗-isomorphic to the tensor 
product of O2 with an abelian C∗-algebra).

Fix a non-invertible positive element h ∈ O2 of norm 1 and define a continuous 
function G : [−1, 1] × [0, 1] → C, by

G(s, t) :=
{

(1 + si)t if s ∈ [−1, 0],
si + (1 − si)t if s ∈ [0, 1].

Now define the set-valued function
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F (s) := {G(s, t) : t ∈ [0, 1]}, for s ∈ [−1, 1].

Observe that the values of F are closed intervals in C (for s ∈ [−1, 0] the set F (s) is an 
interval swinging like a door with the hinges at 0, while for s ∈ [0, 1] the interval F (s)
also swings but with the hinges at 1.)

Now define a, b ∈ A by a(s) := G(s, h) (functional calculus), and b(s) := h for all 
s ∈ [−1, 1]. One can see then that Fa(Ms) = F (s) and Fb(Ms) = [0, 1] for all s. It follows 
by the previous proposition that the distance between DA(a) and DA(b) is 0. However, 
DA(a) and DA(b) have no elements it common. For if they did, then DA(a) ∩DA(b) ∩Z(A)
would be nonempty. By Corollary 4.5, elements of DA(a) ∩DA(b) ∩Z(A) correspond to 
continuous selections of s 
→ Fa(Ms) ∩ Fb(Ms). However, there are no such continuous 
selections, because

Fa(Ms) ∩ Fb(Ms) =

⎧⎪⎪⎨
⎪⎪⎩
{0} for s ∈ [−1, 0),
[0, 1] for s = 0,
{1} for s ∈ (0, 1].

We now extend the distance formula from Proposition 4.10 to arbitrary C∗-algebras. 
The following result gives a formula for the distance between the Dixmier sets of two 
elements of an arbitrary unital C∗-algebra. A similar result is [65, Theorem 4.3], which 
gives a formula for the distance between one self-adjoint element and the Dixmier set of 
another; these results say the same thing in the case that both elements are self-adjoint 
and one is central.

Theorem 4.12. Let A be a unital C∗-algebra and let a, b ∈ A. Then the following numbers 
are equal:

(i) The distance between DA(a) and DA(b).
(ii) The minimum number r ≥ 0 satisfying

(a) |τ(a − b)| ≤ r for all τ ∈ T (A), and
(b) d(WA/M (qM (a)), WA/M (qM (b)) ≤ r for all M ∈ Max(A).

Proof. The inequality r ≤ d(DA(a), DA(b)) has already been proven in Lemma 4.2.
We check that (ii)(a) and (ii)(b) with A∗∗ in place of A still hold (without changing r). 

For (ii)(a), this follows since every tracial state on A∗∗ restricts to a tracial state on A. 
Similarly, for any ideal I of A∗∗, since A/(I ∩A) ⊆ A∗∗/I,

WA/I∩A(qI∩A(a)) = WA∗∗/I(qI(a)).

From this we see that (ii)(b) holds for A∗∗. But A∗∗, being a von Neumann algebra, has 
the Dixmier property. Hence r ≥ d(DA∗∗(a), DA∗∗(b)) by Proposition 4.10. The theorem 
now follows from Lemma 4.1. �
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