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Abstract Coda wave attenuation imaging is able to detect fluid/melt accumulation and ancient
magmatic bodies in volcanoes. Here we use recently developed space-weighting sensitivity functions
to invert for the spatial distributions of multifrequency coda wave attenuation (Q−1

c ), measured during
the largest monitored unrest at Campi Flegrei caldera (1983–1984). High-attenuation anomalies are
spatially correlated with the regions of highest structural complexities and cross faulting. They characterize
deep fluid circulation in and around the aseismic roots of the 1534 A.D. Mount Nuovo eruption and fluid
accumulation in the areas of highest hydrothermal hazard. Just offshore Pozzuoli, and at the highest
frequency (wavelengths of ∼150 m), the main cause of ground deformation and seismicity during the
unrest is an aseismic low-attenuation circular anomaly, similar in shape and nature to those produced by
ancient magmatic reservoirs and active sills at other volcanoes.

1. Introduction

Unrest episodes at volcanic calderas provide ideal geophysical, geological, and geochemical data sets to test
advanced imaging methodologies, especially those employing the stochastic signature of highly heteroge-
neous materials on seismic waves [Del Pezzo, 2008; Sato et al., 2012]. Campi Flegrei caldera (Italy; Figure 1a) has
experienced long, monitored high-seismicity and high-deformation unrest episodes, which have given deep
geophysical insight into the structural changes of its shallowest volcanic systems. In particular, the passive
seismicity recorded onshore during its 1983–1984 unrest [e.g., Aster et al., 1989] has been extensively used
to model structures between depths of 0.5 and 4 km tomographically [De Lorenzo et al., 2001; Vanorio et al.,
2005; De Siena et al., 2010, 2011].

When compared with deformation measurements, this seismicity highlights inputs of magmatic fluids into
the upper crustal systems [D’Auria et al., 2011]. The accumulation of fluids in rocks additionally increases the
pore pressure within the medium, reducing its effective normal stress and resistance to fracture [Chiodini et al.,
2010]. There is general disagreement regarding the nature (fluid, gaseous, or magmatic) of a 3–4 km deep
high-attenuation [De Siena et al., 2010], high-density [Amoruso et al., 2008], low VP

VS
[Vanorio et al., 2005] seis-

mic volume located under Pozzuoli (P, Figures 1a–1c). This is the main source of deformation during past and
recent unrests [Battaglia et al., 2006; Amoruso et al., 2008; Woo and Kilburn, 2010; Amoruso et al., 2014a, 2014b;
Di Vito et al., 2016], producing ground uplift of ∼1.8 m during the 1983–1984 unrest [Del Gaudio et al., 2010].
Nevertheless, scientists generally agree that a stable hydrothermal reservoir permeates the upper 3 km of the
caldera, feeds on meteoric and deep magmatic sources, and responds to caldera unrests [e.g., De Siena et al.,
2010; Chiodini et al., 2010; D’Auria et al., 2011; Petrillo et al., 2013]. While much geophysical information related
to hydrothermal activity is available onshore, only recently the scientific community has focused on the off-
shore structures [Capuano et al., 2013; Carlino et al., 2016]. These feed fumarole centers, are affected by coastal
shape and bathymetry [Vilardo et al., 2013; Petrillo et al., 2013], and were exploited by AGIP (a giant Italian
energy retailer) in the last century. Differences between the 2005–2014 and 1982–1984 seismic focal vol-
umes suggest changes in medium response during the last 35 years. Di Luccio et al. [2015] observe a transition
from an elastic to a plastic behavior following the 1982–1984 crisis and attribute it to fluid saturation and
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Figure 1. Seismicity, geomorphology, gravimetry, and VP
VS

. (a) Relocalized seismic patters produced by the 1983–1984

seismic unrest of Campi Flegrei. Open circles and orange circles represent onshore seismicity above and below the
caprock bottom (2.2 km) as defined by rock physics experiments [Vanorio and Kanitpanyacharoen, 2015]. Black circles
show the offshore seismicity at all depths. Geomorphology and known offshore faults are superimposed (gray lines; see
Vilardo et al. [2013]). Mount Nuovo (M), Pozzuoli (P), and Solfatara (S) volcanic centers are drawn on geomorphology.
AGIP deep wells are marked by several orange crosses. On the right we show the location of Campi Flegrei in Italy.
(b) Gravimetric deviations at Campi Flegrei between 1.8 and 2.2 km depth taken from Capuano et al. [2013]. Seismicity
at the corresponding depths is superimposed. (c) VP

VS
measurements redrawn from Vanorio et al. [2005] with seismicity

superimposed.
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Figure 2. Damping, sensitivity, and resolution. (a) L curves with chosen optimal damping parameters (red) for the linear inversions at 3 Hz and 18 Hz. (b) The
space-weighting function is represented as the percentage contribution of each node to the coda quality factor measurement for a single source (orange
circle)-receiver (orange square) pair. (c) The checkerboard test uses 2 × 2 km cells (left, input; center, output). The thick black line is drawn considering the values
and shapes of the Q−1

c anomalies in the output. It contours the areas discussed in the main text.

heating of the rocks in the hydrothermal reservoir. In particular, the 2012–2014 deeper earthquakes are
located in a low VP

VS
zone at the western boundary of the hydrothermal reservoir.

A reliable onshore and offshore seismic mapping of attenuation, absorption, and scattering gives deeper
insight into fluid/melt accumulation in volcanic and geothermal areas [Prudencio et al., 2015a; De Siena et al.,
2016]. Such a frequency-dependent mapping can be obtained via integrated measurements of peak delay
and coda quality factor (Qc), as done at Mount St. Helens volcano [De Siena et al., 2016]. Mapping Qc using
appropriate sensitivity space-weighting functions [Prudencio et al., 2013; Del Pezzo et al., 2016] provides a
direct measurement of absorption in a quasi-diffusive regime. If the actual regime is not diffusive (due to, e.g.,
resonance or surface wave contamination [De Siena et al., 2013; Mayor et al., 2016]), Qc is a nonlinear combi-
nation of anisotropy, scattering, and intrinsic attenuation and Q−1

c can only be defined broadly as coda wave
attenuation [Sato et al., 2012]. At Campi Flegrei, seismic envelopes show a diffusive behavior for epicentral
distances greater than 2 km [De Siena et al., 2013]; hence, attenuation space-weighting functions devised for
diffusive media, as those defined by Del Pezzo et al. [2016], may be used to model coda attenuation, providing
more precise lateral imaging with respect to ray-dependent techniques.

We propose a novel frequency-dependent coda attenuation mapping based on space-weighting functions
at Campi Flegrei caldera. This is integrated by averaged over time relocated seismicity recorded during the
1983–1984 volcanic unrest. The objective is to locate and model in space the sources of high fumarolic activ-
ity, ground deformation, and hydrothermal activity during the unrest [Todesco et al., 2010; Chiodini et al.,
2010; Amoruso et al., 2014a]. The increased lateral illumination with respect to standard Qc imaging may lead
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Figure 3. Coda attenuation mapping obtained using (a) vertical (Q−1
cV ) and (b) horizontal (Q−1

cH ) components of motions. A grey mask shades unresolved
anomalies. The seismicity of Figure 1a is imposed on the 18 Hz horizontal image.

to better understanding of the feeding mechanisms active at the volcano at present and historical times
[Todesco et al., 2014; Di Napoli et al., 2016; Di Vito et al., 2016], as done at other volcanoes [Prudencio et al.,
2015a, 2015b]. The study thus gives a different seismic imaging perspective on the problem of locating
deformation and unrest sources related to hydrothermal dynamics. Understanding the mechanisms and
extension of fluid migration/accumulation is crucial for exploiting the derived geothermal energy [Piochi
et al., 2014; Carlino et al., 2016], evaluating volcanic and hydrothermal hazard in the region [Selva et al., 2012;
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Bevilacqua et al., 2015], and testing the feasibility of mechanisms producing subsidence and uplift during the
last two millennia [Todesco et al., 2014; Vanorio and Kanitpanyacharoen, 2015; Di Vito et al., 2016].

2. Data and Methods
2.1. Microearthquakes
We relocalize the seismicity recorded in 1983–1984 at Campi Flegrei caldera by using the NonLinLoc software
[Lomax et al., 2001] and the 3-D P and S wave velocity models of Battaglia et al. [2008], which integrate the
unrest seismicity with recordings of an active survey offshore Pozzuoli. The seismic data set comprises a total
of >200,000 P and S wave pickings, corresponding to 1361 microearthquakes (Figure 1a). The pickings have
been measured on waveforms recorded from January 1983 to December 1984 by the combined permanent
analog networks of the Osservatorio Vesuviano and Aquater Agip (20 stations [see Vanorio et al., 2005; Piochi
et al., 2014]). Additional pickings have been measured on the high-quality waveform data set recorded by
a temporary array of 15 three-component digital stations, installed by the University of Wisconsin between
January and April 1984 [Aster et al., 1989]. The microearthquakes are selected requiring a minimum of eight P
phases or six P phases and two S phases. All events have a root-mean-square error lower than 0.3 s, leading to
average spatial uncertainties of less than 0.3 km, and a single maximum in the complete nonlinear localization
probability for each event [Lomax et al., 2001]. Microseismicity depths range from 0.5 to 4.5 km.

While the 2 year long areal microseismic patterns agree with those recently obtained by Di Luccio et al. [2015],
the use of a 3-D velocity model in the grid search algorithm allows for the inclusion of the temporary sta-
tions of the University of Wisconsin. The main difference with respect to previous localizations are an increase
in the number of locations, particularly offshore, and a better contour of offshore seismic faults (Figure 1a,
black dots; geomorphology from Vilardo et al. [2013]) bounding an aseismic zone located SW of the city of
Pozzuoli just south of Mount Nuovo (Figure 1a). Open circles (seismicity above 2.2 km) connect Pozzuoli and
Solfatara, while deeper (orange) seismicity ranges between Pozzuoli and the San Vito-Astroni geothermal
field. The offshore seismic region coincides with a bathymetric low and is embedded into the southeastern
undeformed-to-subsiding portion of the Pozzuoli Bay, separated by northeastern shallower resurgent por-
tion of the caldera [Capuano et al., 2013]. The area is spatially correlated with a relevant gravimetric low at all
depths down to 2.2 km (Figure 1b reproduces Figure 4 in Capuano et al. [2013]) near the most relevant high
in VP

VS
(of the order of 2.5) between depths of 2 and 3 km (Figure 1c) [see Vanorio et al., 2005].

2.2. Inversion of 2-D Attenuation Parameters
We map coda wave attenuation via multifrequency (f ) S wave coda quality factor (Qc) measurements using
the high-quality three-component data set of seismic waveforms recorded between January and April 1984
by the University of Wisconsin temporary array. De Siena et al. [2010] extensively describe the data set of 2559
waveforms corresponding to the strongest seismic unrest. The same data set is used in De Siena et al. [2013]
to demonstrate that diffusion laws model seismic envelopes during the unrest for epicentral distances (D)
greater than 2 km—the minimum distance in the present study.

We use the 2-D attenuation space-weighting functions defined by Del Pezzo et al. [2016] for each source of
coordinate [xs, ys] and receiver [xr , yr] pair (Figure 2b), in order to map the effective sensitivity of the Qc param-
eters in space (x, y) and build the rows of the inversion matrix. The weighting functions are computed via
a Monte Carlo numerical simulation of the Energy Transport Equation in a diffusive highly heterogeneous
medium. Both absorption and scattering attenuation mechanisms result in similar space-weighting functions.
Space-weighted attenuation functions are thus applied as an approximated analytical sensitivity function for
source-receiver 2-D Qc mapping (see Del Pezzo et al. [2016] for details about the construction of the weighting
functions):
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The spatial apertures of the weighting functions (𝛿x and 𝛿y) are set to 0.2 due to the fitting between ana-
lytical and computational functions, observed by Del Pezzo et al. [2016]. We use these functions to set the
contribution of the nodes of a 2-D, 0.5 km spaced map comprising the entire Campi Flegrei caldera (the area
in Figures 1–3) to each source-receiver Qc measurement for the lapse times modeled by the functions. Each
measurement is thus taken by modeling the first 20 s of the S wave smoothed envelope [Del Pezzo et al.,
2016] after filtering in four frequency bands, centered at 3 Hz, 6 Hz, 12 Hz, and 18 Hz, and with bandwith one
third of the central frequency. The weighting functions provide the rows of the inversion matrix at the nodes
after normalization for the total weight relative to the source-receiver pair: the main assumption is that total
coda attenuation (summing to 1) is caused by the medium comprising the inversion grid. The data vector
for each source-receiver pair is the total inverse Qc measurement: we obtain four data vectors after filter-
ing in the above-mentioned frequency bands. The model parameters are the inverse Qc at each node and
are obtained at each frequency by a first-order Tikhonov inversion [e.g., De Siena et al., 2010]. In Figure 2a,
we show the L curves corresponding to the inversions at 3 Hz and 18 Hz, with the chosen optimal damping
parameters (red).

2.3. Synthetic Tests
In Figure 2b, a sample 2-D coda attenuation normalized weighting function is computed for a source-receiver
pair. The space-weighted functions increase lateral illumination with respect to ray-dependent measure-
ments. The contribution of all nodes of the grid to the single-station Q−1

c measurement is plotted by using a
color scale, with the values in the color bar showing the coefficients of the corresponding row of the inver-
sion matrix. The effective resolution of our images is estimated via a checkerboard test with cell dimension
4 times the node spacing (2 km, Figure 2c). The procedure is identical to that described by De Siena et al.
[2010] for a 3-D body wave total attenuation inversion. The black rectangle contours the resolved area. The
resolved anomalies retain most of their attenuation potential, with major damping across the caldera border.
In Figures 3a and 3b we shade the areas of poor or no resolution with a grey mask.

Any discrepancy with respect to the diffusive model (multiple scattering), particularly the anisotropy of
scattering affecting early coda waves, will result in biases within the computed space-weighting functions
and corresponding images [Mayor et al., 2016]. These differences will produce different effects on maps
obtained using horizontal and vertical components. Therefore, we compare coda attenuation maps obtained
using vertical (Figure 3a, Q−1

cV ) and horizontal (Figure 3b, Q−1
cH , obtained by averaging the West-East (WE) and

South-North (SN) Qc values at each node) components of motions. The two images are basically identical at
the investigated resolution, and only horizontal images will be further discussed (Figure 3b). The test is indica-
tive of the fact that equipartition is fulfilled and our assumptions are valid at the lapse times considered [Calvet
and Margerin, 2013].

3. Results and Discussions
3.1. High-Attenuation Anomalies: Correlation With Geomorphological Heterogeneity,
Hydrogeothermal Resources, and Hazards
Qc mapping at both regional [Mayor et al., 2016] and local volcanic [De Siena et al., 2016] scales shows that
higher-frequency maps (12–18 Hz) are more sensitive to deeper Earth layers than low frequencies (3–6 Hz).
Geological features such as extensional basins, crustal high-density bodies, and debris flows can be recon-
structed by low-frequency mapping, mainly as a consequence of surface wave contamination. An extreme
case is Mount St. Helens volcano, where the highly heterogeneous tens of meters thick pyroclastic flow lay-
ers produced by the 1980 eruption, reconstructed by means of GIS and InSAR, is modeled using 3 Hz Qc and
peak delay mapping [De Siena et al., 2016]. In the following discussion, we will therefore assume that depth
increases with frequency, as originally postulated by Aki and Chouet [1975]. At Campi Flegrei, low-frequency
high-attenuation anomalies characterize surface fractured areas, specifically those presenting cross faulting,
independently of seismic and deformation activity [Vilardo et al., 2013; Piochi et al., 2014]. At 3 Hz (Figure 3b)
high attenuation in fact marks extensive cross faulting (1) in the onshore seismic zone between Pozzuoli and
Solfatara (P and S, Figures 1–3) and (2) the aseismic regions north of Mount Nuovo (M). The Pozzuoli-Solfatara
anomaly coincides with the area of highest seismic clustering (Figure 1a), high shallow VP

VS
, high body wave

attenuation, and a 3–4 km deep high-gravity anomaly [Vanorio et al., 2005; Amoruso et al., 2008; De Siena
et al., 2010]. Moreover, it borders the offshore region of maximum deformation [e.g., Amoruso et al., 2014a].
On the contrary, the area north of Mount Nuovo is aseismic and characterized by average VP

VS
and gravimetric

anomalies (Figures 1a–1c).
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Increasing frequency to 6 Hz (Figure 3b), the Pozzuoli-Solfatara anomaly expands east toward Astroni and
Agnano, while the Mount Nuovo anomaly extends offshore. The extension offshore Mount Nuovo (1) coin-
cides with the area of maximum seismic scattering attenuation [De Siena et al., 2011], (2) is spatially correlated
with the only high VP

VS
anomaly at 2.2 km depth (Figure 1c), and (3) is seismically active (Figure 1a). In our inter-

pretation, it is thus the attenuation signature of hydrothermal fluids migrating through fractures and faults
[Piochi et al., 2014] and today mixed with meteoric waters [Petrillo et al., 2013] offshore Mount Nuovo. The same
volumes are today visible as the densely fractured, fluid-saturated buried rim of the caldera down to 1 km
depth [Serlenga et al., 2016]. Seismicity shows how fluids migrate from the caldera center, entering the Campi
Flegrei upper hydrothermal systems in 1984 [Battaglia et al., 2006; Petrillo et al., 2013]. Increasing frequency,
the anomaly follows the strike of the seismic offshore caldera-bounding faults and is stronger in the center
of the low-gravity subsiding part of the caldera (see Figure 3b, 12 Hz and 18 Hz [Capuano et al., 2013]). The
upward fluid migration is thus restricted to structurally controlled pathways [D’Auria et al., 2011] and stops at
vents active during the last 5000 years east of Pozzuoli [Vilardo et al., 2013].

High-attenuation anomalies at 6–18 Hz (Figure 3b) are the seismic signature of the processes leading to accu-
mulation of geothermal fluids, extracted by onshore AGIP wells (Figure 1a, orange x) [see Vanorio et al., 2005;
Piochi et al., 2014]. The 2 year long circular shallow seismicity south of Mount Nuovo corresponds to high VP

VS
(Figure 1b) and is feasibly the seismic signature of the pressure drop within the hydrothermal system, follow-
ing the changes in permeability caused by injection of either magma [Amoruso et al., 2008] or fluids [D’Auria
et al., 2011] under Pozzuoli. These structurally controlled seismic paths are direct evidence of changes in per-
meability induced by fluid migrations [Battaglia et al., 2006], a mechanism inducing subsidence in the years
following the unrest [Del Gaudio et al., 2010], and particularly effective in the offshore SW portion of the caldera
in recent and historical unrests [Todesco et al., 2014].

Deep seismic patterns (Figure 1a, orange dots) show a progressive shift from Pozzuoli (where the injection
of magma and/or fluid is modeled by different authors [Amoruso et al., 2008; D’Auria et al., 2011] to north of
Solfatara (San Vito-Agnano). They cross the region of main geomorphological heterogeneity (Figure 1a) and
highest degassing [Chiodini et al., 2010]. At all frequencies up to 12 Hz, Pozzuoli-Solfatara is stably the region
of highest attenuation. The Agnano-San Vito area coincides with the region of highest probability for future
vent openings [Selva et al., 2012; Bevilacqua et al., 2015]. The 18 Hz high-attenuation anomaly offshore Mount
Nuovo is instead spatially correlated with the second most likely region of vent opening [Selva et al., 2012].
Once integrated by density and VP

VS
measurements, the nature and depths of these two reservoirs appear

different, although still clearly connected with the availability of deep geothermal resources (Figure 1a). Atten-
uation mapping thus clearly highlights the hazardous potential of both areas, which, from our analysis, could
take the form of future hydrothermal explosions.

3.2. Low-Attenuation Anomalies: Mapping the Source of Campi Flegrei Unrest
The main low-attenuation anomaly at 18 Hz is aseismic and encompasses the center of the area of maximum
uplift, even considering its maximum uncertainties [Amoruso et al., 2014a, 2014b] (Figure 3b, 18 Hz, yellow
elliptic area). A similar high-frequency, low-attenuation anomaly marks the location of the deep magma
conduits feeding Mount St. Helens volcano [De Siena et al., 2016]. Seismic attenuation tomography using
coda-normalized direct energies at Tenerife Island reveals that low-attenuation anomalies are related to the
position of potential ancient magma reservoirs [Prudencio et al., 2015b]. As shown by Di Vito et al. [2016] using
the historical, archeological, and geological record of Campi Flegrei caldera, progressive magma accumula-
tion has been acting under the caldera center in a 4.6± 0.9 km deep source. This pattern is consistent with the
deformation source shown in Figure 3b (18 Hz) [Amoruso et al., 2014a]. The authors also demonstrate transfer
to a 3.8 ± 0.6 km deep magmatic source ∼4 km NW of the caldera center, below Mount Nuovo, compatible
with our previous discussion. In our interpretation, this repeated emplacement of magma through intrusions
below the caldera center is the cause of the 18 Hz coda attenuation image and seismic patterns (Figure 3b,
18 Hz). Our resolution does not allow to reconstruct eventual active sills thinner than 500 m in the 0 to 4.5 km
depth range, which could better fit deformation, remote sensing, and gravimetry results [Amoruso et al.,
2008, 2014a].

4. Conclusions

In volcanic media, coda wave attenuation mapping and microearthquake locations better constrain fluid
and gas accumulation with respect to deterministic traveltime tomography, using much smaller data sets.
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At Campi Flegrei, the approach highlights the importance of the boundary between resurgent and sub-
siding portions of the caldera, as well as structural paths in enhancing fluid migration and accumulation.
The study marks the two main high-attenuation zones where geothermal resources accumulate. The first
is a fluid-bearing reservoir in the SW submerged portion of the caldera, connected with the subsidence
mechanisms acting near Mount Nuovo and following the 1983–1984 unrest. The second fluid-bearing reser-
voir feeds local fumarole fields in the resurgent NE onshore portion of the caldera. While the potential in
exploration settings using active seismicity is self-evident, the spatial correlation with the two areas of high-
est probability for vent opening highlights the potential of the technique in routine hazard assessment of
volcanic areas.

The most important anomaly in our results is a low-attenuation circular area, enclosing the area of maximum
deformation during unrest. This aseismic region has the same characteristics of active and extinct magmatic
chambers/sills at other volcanoes and is contoured by most of the 1–4.5 km deep seismicity during the unrest.
It is thus interpreted as either extinct magmatic materials, acting as caprock for a deeper source of unrest, or an
active magmatic source. Additional interdisciplinary constraints and improved 3-D interdisciplinary imaging
are necessary to better define the shape and nature of the structure.
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