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self-absorbing C∗-dynamical systems, which was introduced 
and studied in previous work. In particular, this concerns 
the theory when restricted to the case where all the semi-
strongly self-absorbing actions are assumed to be unitarily 
regular, which is a mild technical condition. The central result 
in the first part is a strengthened version of the equivariant 
McDuff-type theorem, where equivariant tensorial absorption 
can be achieved with respect to so-called very strong cocycle 
conjugacy.
Secondly, we establish completely new results within the 
theory. This mainly concerns how equivariantly Z-stable 
absorption can be reduced to equivariantly UHF-stable 
absorption with respect to a given semi-strongly self-absorbing 
action. Combining these abstract results with known
uniqueness theorems due to Matui and Izumi–Matui, we 
obtain the following main result. If G is a torsion-free abelian 
group and D is one of the known strongly self-absorbing 
C∗-algebras, then strongly outer G-actions on D are unique 
up to (very strong) cocycle conjugacy. This is new even for 
Z3-actions on the Jiang–Su algebra.
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1. Introduction

This is a further continuation of my previous papers [26,25], which introduced and 
studied (semi-)strongly self-absorbing C∗-dynamical systems. The motivation for study-
ing such objects comes from the fundamental importance of strongly self-absorbing 
C∗-algebras [28] in the Elliott program. For a more detailed description of this motivation 
and some history of the classification of group actions on C∗-algebras and W∗-algebras, 
the reader is referred to the introductions of the previous papers [26,25] and the refer-
ences therein. A survey article [9] by Izumi on these topics is especially noteworthy for 
anyone interested in the classification problem for group actions on operator algebras.

The first [26] of the previous papers provided an equivariant McDuff-type theorem 
characterizing equivariant tensorial absorption of (semi-)strongly self-absorbing actions, 
generalizing classical results of Rørdam [20, Chapter 7, Section 2], Toms–Winter [28]
and Kirchberg [13]. The second paper [25] generalized some other classical results 
about strongly self-absorbing C∗-algebras to the equivariant context, such as a stronger 
uniqueness theorem for certain equivariant ∗-homomorphisms by Dadarlat–Winter [4]
and permanence properties for the class of C∗-algebras absorbing a fixed strongly self-
absorbing C∗-algebra. In [25], the more sophisticated results could only be proved for 
semi-strongly self-absorbing actions that are unitarily regular. Simply put, this is an 
equivariant analog of the C∗-algebraic property that the unitary commutator subgroup 
is in the connected component of the unit. For a semi-strongly self-absorbing G-action γ, 
unitary regularity has been shown to be equivalent to the statement that the separable, 
γ-absorbing G-C∗-dynamical systems are closed under equivariant extensions; see [28, 
Section 4] and [13, Section 4] for the corresponding classical results. At present, it is open 
whether semi-strongly self-absorbing actions are automatically unitarily regular. How-
ever, γ is unitarily regular if it is equivariantly Z-stable, which in turn is often automatic 
for discrete amenable acting groups, but not in general. In particular, the equivariant 
analog of the main result of [29] is not true in general; see [25, 5.4]. Apart from con-
sidering equivariant extensions, it is a theme throughout [25] that for unitarily regular 
and semi-strongly self-absorbing actions, statements involving certain approximations 
by sequences can be smoothed out and strengthened to approximations by continuous 
paths.

This is pursued further within the first half of this paper, where we improve the 
equivariant McDuff-type theorem from [26] in the unitarily regular case. Namely, we 
show that for a unitarily regular and semi-strongly self-absorbing action γ : G � D and 
another action α : G � A on a separable C∗-algebra, the McDuff condition implies that α
and α⊗γ are very strongly cocycle conjugate. This means that they are conjugate modulo 
a cocycle that can be approximated by a continuous path of coboundaries starting at 
the unit; see Definition 2.4(iv) and Theorem 3.2. In the case of compact acting groups, 
one moreover gets that α and α⊗ γ are in fact conjugate; see Theorem 4.3.

In the second half of the paper, some new results are obtained within the theory of 
semi-strongly self-absorbing actions. In section 5, we prove that for an action, the prop-
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erty of being semi-strongly self-absorbing can be detected by considering the restrictions 
with respect to an exhausting sequence of open subgroups of the acting group. The 
same holds for the property of tensorially absorbing a given semi-strongly self-absorbing 
action; see Theorem 5.6. This arises as a fairly straightforward consequence of the char-
acterizations of these properties as approximate ones in previous work, combined with 
reindexation arguments. In section 6, we prove that under the assumption of equivariant 
Z-stability, such properties can furthermore be detected after stabilizing with the trivial 
actions on UHF algebras of infinite type; see Theorem 6.6. In particular, this provides 
a way to reduce the classification of certain group actions on strongly self-absorbing 
C∗-algebras to the classification of their UHF-stabilizations. This is somewhat reminis-
cent of the main thrust of the methods developed by Winter in [30], which gave great 
impulse to the Elliott program, albeit the techniques developed in this paper have a 
much more narrow range of applicability in comparison.

In section 7, these abstract results are then applied in combination with some known 
classification results to obtain the following uniqueness theorem for pointwise strongly 
outer actions on strongly self-absorbing C∗-algebras. This constitutes the main result of 
the paper.

Theorem. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT. Let G be a 
countable, torsion-free abelian group. Then any two pointwise strongly outer G-actions 
on D are very strongly cocycle conjugate.

We remark that, on a conceptual level, this type of result resembles Ocneanu’s unique-
ness theorem (see [18]) for outer actions of amenable groups on the hyperfinite II1-factor. 
So in a sense, if one regards a strongly self-absorbing as a close C∗-algebra analog of the 
hyperfinite II1-factor, one might call the above an Ocneanu-type uniqueness theorem.

Results of Matui [14,15] and Izumi–Matui [11] have previously shown that the above 
is true for Zd-actions on all the known strongly self-absorbing C∗-algebras except for 
the Jiang–Su algebra Z. Sato [22] has shown such a uniqueness for Z-actions on Z, and 
Matui–Sato [16] have extended this also to Z2-actions on Z. We note that the uniqueness 
for actions of the Klein bottle group Z �−1Z is also known by further work of Matui–Sato 
[17] on UHF algebras as well as Z; this was the first classification result for actions of 
non-abelian infinite groups on stably finite C∗-algebras. Curiously, the known methods 
for showing a uniqueness result as above get increasingly difficult to implement with 
increasingly complicated acting groups, and even the uniqueness for pointwise strongly 
outer Z3-actions on Z has previously been open.

Our main result essentially follows from three main ingredients: firstly, the known 
uniqueness for Zd-actions on UHF-stable strongly self-absorbing C∗-algebras mentioned 
above, which forms the basis of our argument; secondly, the reduction theorems proved in 
sections 4 and 5 based on the abstract theory of semi-strongly self-absorbing actions; and 
thirdly a result of Matui–Sato [17, 4.11] asserting that pointwise strongly outer actions 
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like above are automatically equivariantly Z-stable. See also a more recent paper [23] of 
Sato for a much more general Z-stability result.

It seems natural to expect that the known uniqueness results for Zd-actions from [14,
15,11] could be reproved abstractly within the common framework of semi-strongly self-
absorbing actions, and without requiring the UCT assumption. It also seems plausible 
that this should in fact be possible for not necessarily abelian acting groups. For example, 
a uniqueness for actions like above seems feasible for (local) poly-Z groups, considering an 
unpublished result of Izumi–Matui [10]. Considering moreover the KK-theoretically rigid 
situation for torsion-free amenable group actions on strongly self-absorbing C∗-algebras 
showcased in [24, 4.12 and 4.17], I would go as far as to conjecture the following Ocneanu-
type uniqueness, which shall be pursued in subsequent work:

Conjecture. Let D be a strongly self-absorbing C∗-algebra. Let G be a countable, torsion-
free amenable group. Then any two pointwise strongly outer G-actions on D are very 
strongly cocycle conjugate.

Note that a uniqueness theorem like this usually fails already for finite groups; see 
[7,8] for range results of outer cyclic group actions on O2. Since the computation of the 
equivariant KK-theory of an action via the Baum–Connes assembly map requires one to 
consider all the finite subgroups of the acting group, it is natural to expect that the above 
conjecture should fail outside the torsion-free case. Concerning non-amenable groups, 
actions are known not to be rigid. On the one hand, for a given non-amenable group G, 
an argument in a paper of Jones [12] implies that for any finite strongly self-absorbing 
C∗-algebra D, the noncommutative Bernoulli-shift on 

⊗
G D does not absorb the trivial 

G-action on D; this yields two pointwise strongly outer G-actions on D that are not 
cocycle conjugate. On the other hand, a recent paper of Gardella–Lupini [5] shows that 
rigidity fails much more spectacularly upon assuming that G has property (T).

2. Preliminaries

Notation 2.1. Unless specified otherwise, we will stick to the following notational con-
ventions in this paper:

• The symbol α is used for a continuous action α : G � A of a locally compact group G
on a C∗-algebra A. By slight abuse of notation, we will also write α : G → Aut(M(A))
for the unique strictly continuous extension.

• For an action α : G � A, Aα denotes the fixed-point algebra of A.
• If (X, d) is some metric space with elements a, b ∈ X, then we write a =ε b as a 

shortcut for d(a, b) ≤ ε.
• By a unitary path in a C∗-algebra A we shall understand a norm-continuous map 

from [0, 1] to U(Ã).
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First we recall the notion of 1-cocycles for actions on C∗-algebras and their cocycle 
perturbations. Note that we are adding a new refinement in this paper, given by so-called 
asymptotic coboundaries, very strong exterior equivalence and very strong cocycle con-
jugacy.

Definition 2.2 (see [19, 3.2] and [26, 1.3, 1.6]). Let α : G � A be an action. Consider a 
strictly continuous map w : G → U(M(A)).

(i) w is called an α-1-cocycle (or just α-cocycle), if one has wgαg(wh) = wgh for all 
g, h ∈ G. In this case, the map αw : G → Aut(A) given by αw

g = Ad(wg) ◦ αg is 
again an action, and is called a cocycle perturbation of α. Two G-actions on A are 
called exterior equivalent if one of them is a cocycle perturbation of the other.

(ii) Assume that w is an α-1-cocycle. It is called an approximate coboundary, if there 
exists a sequence of unitaries xn ∈ U(M(A)) such that xnαg(x∗

n) n→∞−→ wg in the 
strict topology for all g ∈ G and uniformly on compact subsets of G. Two G-actions 
on A are called strongly exterior equivalent, if one of them is a cocycle perturbation 
of the other via an approximate coboundary.

(iii) Assume that w is an α-1-cocycle. It is called an asymptotic coboundary, if there 
exists a strictly continuous path of unitaries x : [0, ∞) → U(M(A)) with x0 = 1
such that xtαg(x∗

t ) 
t→∞−→ wg in the strict topology for all g ∈ G and uniformly 

on compact subsets of G. Two G-actions on A are called very strongly exterior 
equivalent, if one of them is a cocycle perturbation of the other via an asymptotic 
coboundary.

Analogously, let us consider the generalization of these equivalence relations to cocycle 
actions:

Definition 2.3 (see [19, 3.1] for (i)). Let (α, u), (β, w) : G � A be two cocycle actions.

(i) The pairs (α, u) and (β, w) are called exterior equivalent, if there is a strictly 
continuous map v : G → U(M(A)) satisfying βg = Ad(vg) ◦ αg and w(s, t) =
vsαs(vt)u(s, t)v∗st for all g, s, t ∈ G.

(ii) The pairs (α, u) and (β, w) are called strongly exterior equivalent, if there is a map 
v : G → U(M(A)) as in (i) such that there is a sequence of unitaries xn ∈ U(M(A))
with xnαg(x∗

n) n→∞−→ vg in the strict topology for all g ∈ G and uniformly on compact 
subsets of G.

(iii) The pairs (α, u) and (β, w) are called very strongly exterior equivalent, if there is 
a map v : G → U(M(A)) as in (i) such that there is a strictly continuous path of 
unitaries x : [0, ∞) → U(M(A)) with x0 = 1 and xtαg(x∗

t ) 
t→∞−→ vg in the strict 

topology for all g ∈ G and uniformly on compact subsets of G.
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We recall several notions that describe how one can identify two cocycle actions on 
C∗-algebras. We note that condition (iv) below is a new definition and a natural strength-
ening of the notion of strong cocycle conjugacy originally introduced by Izumi–Matui in 
[11].

Definition 2.4. Two cocycle actions (α, u) : G � A and (β, w) : G � B are called

(i) conjugate, if there is an equivariant isomorphism ϕ : (A, α, u) → (B, β, w). In this 
case, we write (α, u) ∼= (β, w).

(ii) cocycle conjugate, if there is an isomorphism ϕ : A → B such that (ϕ ◦α◦ϕ−1, ϕ ◦u)
is exterior equivalent to (β, w). In this case, we write (α, u) 
cc (β, w).

(iii) strongly cocycle conjugate, if there is an isomorphism ϕ : A → B such that (ϕ ◦α ◦
ϕ−1, ϕ ◦u) is strongly exterior equivalent to (β, w). In this case, we write (α, u) 
scc
(β, w).

(iv) very strongly cocycle conjugate, if there is an isomorphism ϕ : A → B such that 
(ϕ ◦ α ◦ ϕ−1, ϕ ◦ u) is very strongly exterior equivalent to (β, w). In this case, we 
write (α, u) 
vscc (β, w).

If α and β are genuine actions, then we omit the 2-cocycles from this notation.

Definition 2.5 (see [13, 1.1] and [26, 1.7, 1.9, 1.10]). Let A be a C∗-algebra and (α, u) :
G � A a cocycle action of a locally compact group G.

(i) The sequence algebra of A is given as

A∞ = �∞(N, A)/
{

(xn)n | lim
n→∞

‖xn‖ = 0
}
.

There is a standard embedding of A into A∞ by sending an element to its constant 
sequence. We shall always identify A ⊂ A∞ this way, unless specified otherwise.

(ii) Suppose u = 1. Pointwise application of α on representing sequences defines a (not 
necessarily continuous) G-action α∞ on A∞. Let

A∞,α = {x ∈ A∞ | [g → α∞,g(x)] is continuous}

be the continuous part of A∞ with respect to α.
(iii) For some C∗-subalgebra B ⊂ A∞, the (corrected) relative central sequence algebra 

is defined as

F (B,A∞) = (A∞ ∩B′)/Ann(B,A∞).

(iv) Suppose that B ⊂ A∞ is an α∞-invariant C∗-subalgebra closed under multiplication 
with the unitaries {u(g, h)}g,h∈G. Then the map α∞ : G → Aut(A∞) given by 
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componentwise application of α induces a (not necessarily continuous) G-action 
α̃∞ on F (B, A∞). Let

Fα(B,A∞) = {y ∈ F (B,A∞) | [g → α̃∞,g(y)] is continuous}

be the continuous part of F (B, A∞) with respect to α.
(v) In case B = A, we write F (A, A∞) = F∞(A) and Fα(A, A∞) = F∞,α(A).

Notation 2.6 (see [25, 1.14]). Let G be a second-countable, locally compact group. Let 
A be a C∗-algebra and α : G � A an action. For ε > 0 and a compact set K ⊂ G, define 
the closed set

Aα
ε,K = {a ∈ A | ‖αg(a) − a‖ ≤ ε for all g ∈ K} ⊂ A.

If A is unital, then also consider

U(Aα
ε,K) = U(A) ∩Aα

ε,K

and

U0(Aα
ε,K) =

{
u(1) ∈ U(Aα

ε,K) | u : [0, 1] → U(Aα
ε,K) continuous, u(0) = 1

}
.

Definition 2.7 (cf. [25, 2.1]). Let G be a second-countable, locally compact group, A and 
B two C∗-algebras and α : G � A and β : G � B two actions. Let ϕ1, ϕ2 : (A, α) →
(B, β) be two equivariant ∗-homomorphisms.

(i) We say that ϕ1 and ϕ2 are approximately G-unitarily equivalent, if for every ε > 0, 
every finite set F�A and compact set K ⊂ G, there is a unitary v ∈ U

(
B̃β

ε,K

)
such 

that ‖ϕ2(x) − vϕ1(x)v∗‖ ≤ ε for all x ∈ F . We write ϕ1 ≈u,G ϕ2.
(ii) Assume that A is separable. We say that ϕ1 and ϕ2 are strongly asymptotically 

G-unitarily equivalent, if for every ε0 > 0 and compact set K0 ⊂ G, there is a 
continuous path of unitaries w : [1, ∞) → U

(
B̃β

ε0,K0

)
satisfying w(1) = 1B ,

ϕ2(x) = lim
t→∞

w(t)ϕ1(x)w(t)∗ for all x ∈ A,

and

lim
t→∞

max
g∈K

‖βg(w(t)) − w(t)‖ = 0 for every compact set K ⊂ G.

(iii) Suppose that G is compact. Then by averaging, we may assume in (i) that v is in 
the fixed point algebra B̃β. We may also assume in (ii) that the path w takes values 
in the fixed point algebra B̃β.
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(iv) If we disregard equivariance and consider G = {1} in (i) and (ii), then we say that 
the maps ϕ1 and ϕ2 are approximately unitarily equivalent or strongly asymptoti-
cally unitarily equivalent, respectively.

Definition 2.8 (cf. [26, 3.1, 4.1]). Let D be a separable, unital C∗-algebra and G a 
second-countable, locally compact group. Let γ : G � D be an action. We say that γ is

(i) strongly self-absorbing, if the equivariant first-factor embedding

idD ⊗1D : (D, γ) → (D ⊗D, γ ⊗ γ)

is approximately G-unitarily equivalent to an isomorphism.
(ii) semi-strongly self-absorbing, if it is strongly cocycle conjugate to a strongly self-

absorbing action.

Let us recall some results from [26].

Theorem 2.9 (see [26, 4.6]). Let D be a separable, unital C∗-algebra and G a second-
countable, locally compact group. Let γ : G � D be an action. The following are 
equivalent:

(i) γ is semi-strongly self-absorbing;
(ii) γ has approximately G-inner half-flip and there exists a unital and equivariant 

∗-homomorphism from (D, γ) to (D∞,γ ∩ D′, γ∞);
(iii) γ has approximately G-inner half-flip and γ 
scc γ

⊗∞.

Theorem 2.10 (see [26, 3.7, 4.7]). Let G be a second-countable, locally compact group. Let 
A be a separable C∗-algebra and (α, u) : G � A a cocycle action. Let D be a separable, 
unital C∗-algebra and γ : G � D a semi-strongly self-absorbing action. The following 
are equivalent:

(i) (α, u) 
scc (α⊗ γ, u ⊗ 1).
(ii) (α, u) 
cc (α⊗ γ, u ⊗ 1).
(iii) There exists a unital and equivariant ∗-homomorphism from (D, γ) to (F∞,α(A),

α̃∞).

Remark. An action α satisfying condition 2.10(i) is called γ-absorbing.

We shall also recall the notion of a unitarily regular action.

Definition 2.11 (see [25, 1.17]). Let G be a second-countable, locally compact group. Let 
A be a unital C∗-algebra and α : G � A an action. We say that α is unitarily regular, if 
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for every compact set K ⊂ G and ε > 0, there exists δ > 0 such that uvu∗v∗ ∈ U0(Aα
ε,K)

for every u, v ∈ U(Aα
δ,K).

Theorem 2.12 (see [26, 2.2]). If a semi-strongly self-absorbing action γ : G � D is 
unitarily regular, then γ has strongly asymptotically G-inner half-flip. In particular, the 
half-flip can be approximately implemented by unitaries in U0

(
(D⊗D)γ⊗γ

ε,K

)
for arbitrarily 

small ε > 0 and large compact sets K ⊂ G.

3. Strengthened McDuff-type theorem

The following is a continuous generalization of a key technical Lemma from [26]. Its 
proof is fairly analogous and employs a few straightforward modifications.

Lemma 3.1 (cf. [26, 2.1]). Let G be a second-countable, locally compact group. Let (α, u) :
G � A and (β, w) : G � B be two cocycle actions on separable C∗-algebras. Let ϕ :
(A, α, u) → (B, β, w) be an injective, non-degenerate and equivariant ∗-homomorphism. 
Assume the following:

For every ε > 0, compact subset K ⊂ G and finite subsets FA�A, FB�B, there exists 
a unitary path z : [0, 1] → U(B̃) with z0 = 1 satisfying

(2.1a) ‖[zt, ϕ(a)]‖ ≤ ε for every a ∈ FA and 0 ≤ t ≤ 1.
(2.1b) dist(z∗1bz1, ϕ(A)) ≤ ε for every b ∈ FB.
(2.1c) ϕ(a)βg(zt) =ε ϕ(a)zt for every g ∈ K, a ∈ FA and 0 ≤ t ≤ 1.

Then ϕ is strongly asymptotically unitarily equivalent to an isomorphism ψ : A → B

inducing very strong cocycle conjugacy between (α, u) and (β, w).

Proof. We first comment that by the non-degeneracy of ϕ, one can replace the elements 
ϕ(a) in (2.1c), for a ∈ FA, by any element b ∈ FB .

Let {an}n∈N
⊂ A and {bn}n∈N

⊂ B be dense sequences. Since G is σ-compact, write 
G =

⋃
n∈N

Kn for an increasing union of compact subsets 1G ∈ Kn. We are going to add 
paths of unitaries to ϕ step by step:

In the first step, choose some a1,1 ∈ A and z(1) : [0, 1] → U(B̃) with z(1)
0 = 1 such 

that for all 0 ≤ t ≤ 1, we have

• z
(1)∗
1 b1z

(1)
1 =1/2 ϕ(a1,1);

• ‖[z(1)
t , ϕ(a1)]‖ ≤ 1/2;

• b1βg(z(1)
t ) =1/2 b1z

(1)
t for all g ∈ K1.

In the second step, choose a2,1, a2,2 ∈ A and z(2) : [0, 1] → U(B̃) with z(2)
0 = 1 such that 

for every 0 ≤ t ≤ 1 we have
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• z
(2)∗
1 (z(1)∗

1 bjz
(1)
1 )z(2)

1 =1/4 ϕ(a2,j) for j = 1, 2;
• ‖[z(2)

t , ϕ(aj)]‖ ≤ 1/4 for j = 1, 2;
• ‖[z(2)

t , ϕ(a1,1)]‖ ≤ 1/4;
• (bjz(1)

1 )βg(z(2)
t ) =1/4 (bjz(2)

1 )z(2)
t for all g ∈ K2 and j = 1, 2.

Now assume that for some n ∈ N, we have found z(1), . . . , z(n) : [0, 1] → U(B̃) and 
{am,j}m,j≤n ⊂ A satisfying for every 0 ≤ t ≤ 1 that

z
(n)∗
1 (z(n−1)∗

1 · · · z(1)∗
1 bjz

(1)
1 · · · z(n−1)

1 )z(n)
1 =2−n ϕ(an,j) for j ≤ n; (3.1)

‖[z(n)
t , ϕ(aj)]‖ ≤ 2−n for j ≤ n; (3.2)

‖[z(n)
t , ϕ(am,j)]‖ ≤ 2−n for m < n and j < m; (3.3)

(bjz(1)
1 · · · z(n−1)

1 )βg(z(n)
t ) =2−n (bjz(1)

1 · · · z(n−1)
1 )z(n)

t for g ∈ Kn and j ≤ n. (3.4)

Then we can again apply our assumptions to find z(n+1) : [0, 1] → U(B̃) with z(n+1)
0 = 1

and {an+1,j}j≤n+1 ⊂ A so that for every 0 ≤ t ≤ 1 we have

• z
(n+1)∗
1 (z(n)∗

1 · · · z(1)∗
1 bjz

(1)
1 · · · z(n)

1 )z(n+1)
1 =2−(n+1) ϕ(an+1,j) for j ≤ n + 1;

• ‖[z(n+1)
t , ϕ(aj)]‖ ≤ 2−(n+1) for j ≤ n + 1;

• ‖[z(n+1)
t , ϕ(am,j)]‖ ≤ 2−(n+1) for m < n + 1 and j < n + 1;

• (bjz(1)
1 · · · z(n)

1 )βg(z(n+1)
t ) =2−(n+1) (bjz(1)

1 · · · z(n)
1 )z(n+1)

t for all g ∈ Kn+1 and j ≤
n + 1.

Carry on inductively. We define a norm-continuous path of unitaries x : [0, ∞) → U(B̃)
via xt = z

(1)
1 · · · z(n)

1 z
(n+1)
t−n for n ≥ 0 with n ≤ t ≤ n +1. Note that x0 = 1, and this map 

is well-defined since every path z(n) starts at the unit. Similarly we define a point-norm 
continuous path of ∗-homomorphisms ψt : A → B for t ≥ 0 via ψt = Ad(xt) ◦ ϕ.

Now let us observe a number of facts: By condition (3.2), the net (ψt(aj))t≥0 is 
Cauchy for all j ∈ N. Since the set {aj}j∈N

⊂ A is dense, this implies that the net 
(ψt)t≥0 converges to some ∗-homomorphism ψ : A → B in the point-norm topology. 
Then ψ is clearly strongly asymptotically unitarily equivalent to ϕ.

Exactly as in the proof of [26, 2.1], one deduces from (3.1) and (3.3) that ψ is surjective, 
and hence an isomorphism.

By condition (3.4), we have that the assignments t → bj · xtβg(x∗
t ) yield Cauchy nets 

for every j ∈ N and g ∈ G, with uniformity on compact subsets of G. Since {bj}j∈N
⊂ B

is dense, it follows that every path of functions of the form [g → b ·xtβg(x∗
t )] (for b ∈ B) 

converges uniformly on compact sets. Since β is point-norm continuous, it follows that 
the functions

g → βg

(
βg−1(b)∗ · xtβg(x∗

t )
)∗

= xtβg(x∗
t ) · b
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must also converge uniformly on compact sets of G as t → ∞, for every b ∈ B.
It follows that the strict limit vg = limt→∞ xtβg(x∗

t ) ∈ U(M(B)) exists for every 
g ∈ G, and that this convergence is uniform on compact subsets of G. In particular, the 
assignment g → vg ∈ U(M(B)) is strictly continuous.

Exactly as in the proof of [26, 2.1], it follows that ψ ◦ αg = Ad(vg) ◦ βg ◦ ψ and 
vgβg(vh)w(g, h)v∗gh = ψ(u(g, h)) for all g, h ∈ G. This finishes the proof. �

Here comes the main result of this section, which is an improved version of the equiv-
ariant McDuff theorem [26, 3.7, 4.7] for unitarily regular actions:

Theorem 3.2. Let G be a second-countable, locally compact group. Let γ : G � D be a uni-
tarily regular and semi-strongly self-absorbing action on a separable, unital C∗-algebra. 
Let (α, u) : G � A be a cocycle action on a separable C∗-algebra. Suppose that there 
exists a unital and equivariant ∗-homomorphism from (D, γ) to 

(
F∞,α(A), α̃∞

)
. Then 

the equivariant second-factor embedding

1D ⊗ idA : (A,α, u) → (D ⊗A, γ ⊗ α,1D ⊗ u)

is strongly asymptotically unitarily equivalent to an isomorphism that induces very strong 
cocycle conjugacy. In particular, we have (α, u) 
vscc (α⊗ γ, u ⊗ 1D).

Proof. The proof is very similar to [26], apart from a small modification.
Keeping in mind [26, 1.11], we have a natural isomorphism

F (1D ⊗A, (D ⊗A)∞) ∼= F (1D ⊗A,
(
(D ⊗A)∼

)
∞).

Denote by π :
(
(D⊗A)∼

)
∞∩(1D⊗A)′ → F (1D⊗A, (D⊗A)∞) the canonical surjection. 

Note that by assumption, we have an equivariant, unital ∗-homomorphism from (D, γ)
to 

(
F∞,α(A), α̃∞

)
. Consider the canonical inclusions

F∞(A), D ⊂ F (1D ⊗A, (D ⊗A)∞),

which define commuting C∗-subalgebras. Since these inclusions are natural, they are 
equivariant with respect to the induced actions of α, γ and γ ⊗ α. By assumption, it 
follows that we have a unital and equivariant ∗-homomorphism

ϕ : (D ⊗D, γ ⊗ γ) →
(
Fγ⊗α(1D ⊗A, (D ⊗A)∞), (γ ⊗ α)∼∞

)

satisfying ϕ(d ⊗1D) · (1D ⊗ a) = d ⊗ a and ϕ(1D ⊗ d) · (1D ⊗ a) ∈ 1D ⊗A∞ for all a ∈ A

and d ∈ D.
Now let ε > 0, FD�D, FA�A and K ⊂ G be a compact set. Without loss of generality, 

assume that FD and FA consist of contractions. Since γ is unitarily regular, we can apply 
2.12 and choose a unitary path v : [0, 1] → U(D ⊗D) with v0 = 1 and
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max
0≤t≤1

max
g∈K

‖vt − (γ ⊗ γ)g(vt)‖ ≤ ε and v∗1(d⊗ 1D)v1 =ε 1D ⊗ d

for all d ∈ FD. The unitary path

u : [0, 1] → U
(
Fγ⊗α(1D ⊗A, (D ⊗A)∞)

)
, ut = ϕ(vt)

then satisfies

u∗
1(d⊗ a)u1 = ϕ(v1(d⊗ 1D)v∗1) · (1D ⊗ a) =ε ϕ(1D ⊗ d) · (1D ⊗ a) ∈ 1D ⊗A∞

for all a ∈ A with ‖a‖ ≤ 1 and d ∈ FD, and moreover

‖ut − (γ ⊗ α)∼∞,g(ut)‖ ≤ ‖vt − (γ ⊗ γ)g(vt)‖ ≤ ε (3.5)

for all g ∈ K and 0 ≤ t ≤ 1.
Applying the unitary lifting theorem [2, 5.1], we can find paths of unitaries z(n) :

[0, 1] → U
(
(D ⊗A)∼

)
with z(n)

0 = 1 and such that

z = [(z(n))] : [0, 1] →
(
(D ⊗A)∼

)
∞ ∩ (1D ⊗A)′

satisfies ut = π(zt) for all 0 ≤ t ≤ 1. Note that each ut is a continuous element with 
respect to (γ ⊗ α)∼∞, so it follows that

[g → (1D ⊗ a) · (γ ⊗ α)∞,g(zt)]

is a norm-continuous map on G for every a ∈ A. Using [26, 2.2], we thus see that also

g →
(
(1D ⊗ a) · (γ ⊗ α)g(z(n)

t )
)
n∈N

∈ �∞(N,D ⊗A)

is continuous. In particular, we obtain a uniformly continuous map

[0, 1] ×K → �∞(N,D ⊗A), (t, g) →
(
(1D ⊗ a) · (γ ⊗ α)g(z(n)

t )
)
n∈N

.

From (3.5) it thus follows that

lim sup
n→∞

max
g∈K

max
0≤t≤1

∥∥(1D ⊗ a) ·
(
(γ ⊗ α)g(z(n)

t ) − z
(n)
t

)∥∥ ≤ ε (3.6)

for all a ∈ A with ‖a‖ ≤ 1.
Moreover, as z is a lift for u by choice, we have

dist(z∗1(d⊗ a)z1,1D ⊗A∞) ≤ ε

for all a ∈ A with ‖a‖ ≤ 1 and d ∈ FD.
It follows that there exists some n with
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• max
0≤t≤1

‖[z(n)
t , 1D ⊗ a]‖ ≤ ε for all a ∈ FA;

• dist(z(n)∗
1 (d ⊗ a)z(n)

1 , 1D ⊗A) ≤ 2ε for all d ∈ FD and a ∈ FA;
• max

g∈K
max
0≤t≤1

‖(1D ⊗ a) ·
(
z
(n)
t − (γ ⊗ α)g(z(n)

t )
)
‖ ≤ 2ε.

So we have met the conditions of (2.1a), (2.1b) and (2.1c) for the equivariant embedding 
1D ⊗ idA : (A, α, u) → (D ⊗A, γ ⊗ α, 1D ⊗ u). The claim follows. �
4. Optimal McDuff-type theorem for compact groups

In this section, we turn to the case of compact group actions. Our main observation 
here is that, upon a close inspection of the proofs of 3.1 and 3.2, one can further improve 
the absorption to conjugacy for compact group actions.

Remark 4.1. Let G be a compact group and γ : G � D a strongly self-absorbing action. 
It was observed in [26, 4.10] that an action α : G � A on a separable, unital C∗-algebra 
is γ-absorbing if and only if α is conjugate to α ⊗ γ. This relies on the more general 
observation that on unital C∗-algebras, two compact group actions are conjugate if and 
only if they are strongly cocycle conjugate. This, in turn, relied on an observation [7, 
2.4] of Izumi stating that cocycles close to the unit are coboundaries. It is not known 
whether this can be generalized to the non-unital case.

For unitarily regular actions γ, however, it turns out that we can always obtain conju-
gacy between α and α⊗ γ upon a closer inspection of the proofs in the previous section. 
The crucial part about unitary regularity here is that, within the proof of the equiv-
ariant McDuff theorem, one needs some kind of gadget to lift a G-invariant unitary to 
a G-invariant unitary under a certain quotient map; it also gives us the strong asymp-
totic G-unitary equivalence in the statement of 4.3. It would be natural to expect that 
conjugacy can be arranged without assuming unitary regularity, however this would for 
example presuppose a new way of proving the non-equivariant, non-unital McDuff the-
orem not relying on unitary regularity, which to the best of my knowledge (and despite 
some effort) does not yet exist.

Lemma 4.2. Let G be a second-countable, compact group. Let α : G � A and β : G �
B be two actions on separable C∗-algebras. Let ϕ : (A, α) → (B, β) be an injective, 
non-degenerate and equivariant ∗-homomorphism. Suppose that for every ε > 0 and 
every pair of finite subsets FA�A, FB�B, there exists a unitary path z : [0, 1] → U(B̃β)
with z0 = 1 satisfying

‖[zt, ϕ(a)]‖ ≤ ε for every a ∈ FA and 0 ≤ t ≤ 1,

and

dist(z∗1bz1, ϕ(A)) ≤ ε for every b ∈ FB .
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Then ϕ is strongly asymptotically G-unitarily equivalent to an isomorphism. In particu-
lar, α and β are conjugate.

Proof. Proving this is completely identical to the classical one-sided intertwining result 
[20, 2.3.5]. Proceed as in the proof of 3.1; since the paths z(n) take values in the fixed 
point algebra, one may simply omit everything related to the cocycles. �
Theorem 4.3. Let G be a second-countable, compact group. Let γ : G � D be a uni-
tarily regular and strongly self-absorbing action on a separable, unital C∗-algebra. Let 
α : G � A be an action on a separable C∗-algebra. Suppose that there exists a unital 
and equivariant ∗-homomorphism from (D, γ) to 

(
F∞,α(A), α̃∞

)
. Then the equivariant 

second-factor embedding

1D ⊗ idA : (A,α) → (D ⊗A, γ ⊗ α)

is strongly asymptotically G-unitarily equivalent to an isomorphism. In particular, α is 
conjugate to α⊗ γ.

Proof. Proceed exactly as in the proof of 3.2 until choosing the ∗-homomorphism ϕ. We 
make the additional observation that by [25, 3.7], the canonical projection

π :
(
(D ⊗A)∼

)
∞ ∩ (1D ⊗A)′ → F (1D ⊗A, (D ⊗A)∞)

restricts to an equivariant, surjective ∗-homomorphism on the continuous parts

π :
(
(D ⊗A)∼

)
∞,γ⊗α

∩ (1D ⊗A)′ → Fγ⊗α(1D ⊗A, (D ⊗A)∞).

As G is compact, this implies that π also becomes surjective after restricting it to the 
fixed-point algebras (see [1, 3.9])

π :
(
(D ⊗A)γ⊗α,∼)

∞ ∩ (1D ⊗A)′ → F (1D ⊗A, (D ⊗A)∞)(γ⊗α)∼ . (4.1)

Now let ε > 0, FD�D and FA�A be given. As γ is strongly self-absorbing and unitarily 
regular, it has strongly asymptotically G-inner half-flip. As G is additionally compact, we 
can find a path of unitaries v : [0, 1] → U

(
(D⊗D)γ⊗γ

)
with v0 = 1 and v1(d ⊗1D)v∗1 =ε

1D ⊗ d for all d ∈ FD. Then ut = ϕ(vt) yields a unitary path u : [0, 1] → U
(
F (1D ⊗

A, (D ⊗ A)∞)(γ⊗α)∼) such that u∗
1(d ⊗ a)u1 has distance at most ε from 1D ⊗ A∞ for 

all d ∈ FD and all a ∈ A with ‖a‖ ≤ 1.
Then this path lifts under the above restriction (4.1) of π by the unitary lifting theorem 

[2, 5.1]. That is, there exists a sequence of unitary paths z(n) : [0, 1] → U
(
(D⊗A)γ⊗α,∼)
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representing u. But then for sufficiently large n, we necessarily have

max
0≤t≤1

‖[z(n)
t ,1D ⊗ a]‖ ≤ ε

and

dist(z(n)∗
1 (d⊗ a)z(n)

1 ,1D ⊗A) ≤ 2ε

for all d ∈ FD and a ∈ FA.
As ε, FD, FA were arbitrary, the assertion follows from 4.2. �

5. Reduction to subgroups

In this section, we will study certain behavior of group actions in the case where the 
acting group arises as a union of open subgroups.

Notation 5.1. Let G be a topological group with a distinguished subgroup H ⊂ G. Let A
be a C∗-algebra and (α, u) : G � A a cocycle action. Then we write (α, u)|H : H � A for 
the cocycle H-action on A that arises by restriction. Let B be another C∗-algebra with 
a cocycle action (β, w) : G � B, and let ϕ : (A, α, u) → (B, β, w) be a non-degenerate, 
equivariant ∗-homomorphism. Then we write ϕ|H : (A, α, u)|H → (B, β, w)|H for the 
equivariant ∗-homomorphism between the restricted dynamical systems. (This is equal 
to ϕ as a map, but is viewed as an arrow in a different category.) For genuine actions, 
we will omit the 2-cocycles in this notation.

Lemma 5.2. Let G be a second-countable, locally compact group, A and B two C∗-algebras 
and α : G � A and β : G � B two actions. Let ϕ1, ϕ2 : (A, α) → (B, β) be two 
equivariant ∗-homomorphisms. Let {Gn}n∈N

be an increasing family of open subgroups 
of G such that G =

⋃
n∈N

Gn. Suppose that

ϕ1|Gn
≈u,Gn

ϕ2|Gn
for all n ∈ N.

Then ϕ1 ≈u,G ϕ2.

Proof. Let ε > 0, F�A a finite subset and K ⊂ G a compact subset. Since the increasing 
subgroups Gn are open, it follows by compactness that there exists some N ∈ N with 
K ⊂ GN . As ϕ1|GN

≈u,GN
ϕ2|GN

by assumption, we find some

v ∈ U
(
B̃

β|GN

ε,K

)
= U

(
B̃β

ε,K

)

with ‖ϕ2(x) − vϕ1(x)v∗‖ ≤ ε for all x ∈ F . This finishes the proof. �
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Corollary 5.3. Let G be a second-countable, locally compact group. Let D be a separable, 
unital C∗-algebra and γ : G � D an action. Let {Gn}n∈N

be an increasing family of open 
subgroups of G such that G =

⋃
n∈N

Gn. Then γ has approximately G-inner half-flip if 
and only if γ|Gn

has approximately G-inner half-flip for every n ∈ N.

Remark 5.4. Let G be a second-countable, locally compact group. Let A be a separable 
C∗-algebra and α : G � A an action. By the results in [25, Section 3], we have a natural 
identification

F∞,α(A) = (A∞,α ∩A′)/Ann(A,A∞,α).

Moreover, the ideal Ann(A, A∞,α) is a G-σ-ideal in A∞,α ∩ A′, which implies that the 
quotient map from A∞,α ∩A′ to F∞,α(A) is strongly locally semi-split; see [25, 3.5, 3.6]. 
Denote by �∞α (N, A) ⊂ �∞(N, A) the C∗-algebra containing those bounded sequences 
(xn)n for which the map [g → (αg(xn))n] is norm-continuous. By a result of Brown [3, 
2.1], we have

A∞,α = �∞α (N, A)/c0(N, A).

The following is nothing more than a fairly routine reindexation argument.

Lemma 5.5. Let G be a second-countable, locally compact group. Let A be a separable 
C∗-algebra with a cocycle action (α, u) : G � A. Let D be a separable, unital C∗-algebra 
and γ : G � D an action. Let {Gn}n∈N

be an increasing family of open subgroups of 
G such that G =

⋃
n∈N

Gn. Suppose that for every n ∈ N, there exists a unital and 
equivariant ∗-homomorphism from (D, γ|Gn

) to 
(
F∞,α|Gn

(A), α̃∞|Gn

)
. Then there exists 

a unital and equivariant ∗-homomorphism from (D, γ) to 
(
F∞,α(A), α̃∞

)
.

Proof. First let us observe that it suffices to consider only the case of genuine actions. 
Consider the Hilbert space H = �2(N)⊗̄L2(G) and let δ : G � K(H) be the unitarily im-
plemented action that is induced by the left-regular representation of G on L2(G). By [26, 
1.10] and [1, 1.5], the dynamical system on the central sequence algebra (F∞,α(A), α̃∞)
does invariant under cocycle conjugacy or stabilization with the compacts. Thus we may 
without loss of generality replace (α, u) by (α ⊗ δ, u ⊗ 1) and show the claim in this 
case. By the Packer–Raeburn stabilization trick from [19, 3.4], the 2-cocycle u ⊗ 1 is a 
coboundary, and so we may assume that α is a genuine action.

Let εn > 0 be a decreasing null sequence, and let FA
n �A be increasing finite subsets 

with dense union. Let G′ ⊂ G be a countable, dense subgroup. Let D ⊂ D be a countable, 
dense, γ|G′-invariant Q[i]–∗-subalgebra. Let FD

n �D be increasing finite subsets with D =⋃
n∈N

Fn, and let Kn ⊂ G be an increasing sequence of compact sets with G =
⋃

n∈N
Kn.

Fix some n ∈ N. Then, as the subgroups Gk ⊂ G are open, there exists some N ∈ N

with Kn ⊂ GN . Using 5.4, we find a commutative diagram
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�∞α|GN
(N, A)

(
A∞,α|GN

∩A′, α∞|GN

)

(D, γ|GN
)

κ=(κl)l

ψ

ψ0 (
F∞,α|GN

(A), α̃∞|GN

)

where ψ0 is a GN -equivariant ∗-homomorphism, ψ is a GN -equivariant c.p.c. order zero 
map and κ is a (not necessarily equivariant) linear map.

As κ is a lift for both ψ and ψ0, we observe the following properties for all x, y ∈ D, 
a ∈ A and compact sets K ⊂ GN :

• lim sup
l→∞

‖κl(x)‖ ≤ ‖x‖;
• lim

l→∞
‖[κl(x), a]‖ = 0;

• lim
l→∞

‖κl(1)a − a‖ = 0;
• lim

l→∞
‖κl(xy)κl(1) − κl(x)κl(y)‖ = 0;

• lim
l→∞

max
g∈K

‖(αg ◦ κl)(x) − (κl ◦ γg)(x)‖ = 0.

In particular, we find l(n) ∈ N such that the following are satisfied for all x, y ∈ FD
n and 

a ∈ FA
n :

• ‖κl(n)(x)‖ ≤ ‖x‖ + εn;
• ‖[κl(n)(x), a]‖ ≤ εn;
• ‖κl(n)(1)a − a‖ ≤ εn;
• ‖κl(n)(xy)κl(n)(1) − κl(n)(x)κl(n)(y)‖ ≤ εn;
• max

g∈Kn

‖(αg ◦ κl(n))(x) − (κl(n) ◦ γg)(x)‖ ≤ εn.

By these properties, the Q[i]–∗-linear map ϕ = [(κl(n))n] : D → A∞,α is well-defined, 
contractive and satisfies

• [ϕ(x), a] = 0 for all x ∈ D and a ∈ A;
• ϕ(1)a = a for all a ∈ A;
• ϕ(xy)ϕ(1) = ϕ(x)ϕ(y) for all x, y ∈ D;
• αg ◦ ϕ = ϕ ◦ γg for all g ∈ G′.

Thus this map extends continuously to an equivariant c.p.c. order zero map ϕ : (D, γ) →
(A∞,α ∩A′, α∞) with ϕ(1)a = a for all a ∈ A. Then ϕ0 = ϕ + Ann(A, A∞,α) yields the 
desired equivariant and unital ∗-homomorphism from (D, γ) to 

(
F∞,α(A), α̃∞

)
. �
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Theorem 5.6. Let G be a second-countable, locally compact group. Let A be a separable 
C∗-algebra with a cocycle action (α, u) : G � A. Let D be a separable, unital C∗-algebra 
and γ : G � D an action. Let {Gn}n∈N

be an increasing family of open subgroups of G
such that G =

⋃
n∈N

Gn.

(i) The action γ is semi-strongly self-absorbing if and only if for every n ∈ N, the 
restriction γ|Gn

is semi-strongly self-absorbing.
(ii) Suppose that γ is semi-strongly self-absorbing. Then (α, u) 
cc (α ⊗ γ, u ⊗ 1D) if 

and only if for every n ∈ N, one has (α, u)|Gn

cc (α⊗ γ, u ⊗ 1D)|Gn

.
(iii) Suppose that γ is semi-strongly self-absorbing, and that β : G � D is another 

action. Then β 
scc γ if and only if for every n ∈ N, one has β|Gn

scc γ|Gn

.

Proof. The implication “⇒” is clear in every statement, so let us show the “⇐” impli-
cation everywhere.

(i): Suppose that γ|Gn
is semi-strongly self-absorbing for every n ∈ N. Then for every 

n ∈ N, we see by 2.9 that the action γ|Gn
has approximately Gn-inner half-flip and there 

exists a unital and equivariant ∗-homomorphism from (D, γ|Gn
) to (D∞,γ|Gn

∩D′, γ∞|Gn
). 

By 5.3, it follows that γ has approximately G-inner half-flip. By 5.5, it follows that there 
exists a unital and equivariant ∗-homomorphism from (D, γ) to (D∞,γ ∩ D′, γ∞). Thus 
γ is semi-strongly self-absorbing by 2.9.

(ii): Suppose that (α, u)|Gn

cc (α ⊗ γ, u ⊗ 1)|Gn

for every n ∈ N. By the equiv-
ariant McDuff Theorem 2.10, this means that for every n ∈ N, there exists a unital 
and equivariant ∗-homomorphism from (D, γ|Gn

) to 
(
F∞,α|Gn

(A), α̃∞|Gn

)
. By 5.5, there 

exists a unital and equivariant ∗-homomorphism from (D, γ) to 
(
F∞,α(A), α̃∞

)
. Thus 

(α, u) 
cc (α⊗ γ, u ⊗ 1) by the equivariant McDuff theorem.
(iii): Suppose that β|Gn


scc γ|Gn
for every n ∈ N. Then in particular, for every 

n ∈ N, the action β|Gn
is semi-strongly self-absorbing, and the actions β|Gn

and γ|Gn

absorb each other. Thus the claim follows upon combining (i) and (ii). �
6. Reducing Z-stable absorption to UHF-stable absorption

Remark 6.1. Recall that for two mutually coprime supernatural numbers p and q, one 
writes

Zp,q =
{
f ∈ C

(
[0, 1],Mp ⊗Mq

)
| f(0) ∈ Mp ⊗ 1, f(1) ∈ 1 ⊗Mq

}
.

It has been shown in [21, Section 3] that, if p and q are of infinite type, then there exists 
a trace-collapsing unital ∗-monomorphism ϕ : Zp,q → Zp,q such that the stationary 
inductive limit lim

−→
{Zp,q, ϕ} is isomorphic to the Jiang–Su algebra Z.

For proving the main result of this section, we need to recall some previous results 
from [25].
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Proposition 6.2 (see [25, 2.6]). Let G be a second-countable, locally compact group. 
Let A be a unital C∗-algebra and α : G � A an action. Let D be a separable, unital 
C∗-algebra and γ : G � D a semi-strongly self-absorbing action. Assume α 
cc α ⊗ γ. 
Let ϕ1, ϕ2 : (D, γ) → (A, α) be two unital and equivariant ∗-homomorphisms. Then there 
exist sequences of unitaries un, vn ∈ U(A) satisfying

max
g∈K

(
‖un − αg(un)‖ + ‖vn − αg(vn)‖

)
n→∞−→ 0

for every compact set K ⊂ G and

Ad(unvnu
∗
nv

∗
n) ◦ ϕ1

n→∞−→ ϕ2

in point-norm.

Proposition 6.3 (see [25, 1.19]). Let G be a second-countable, locally compact group. Let 
A be a unital C∗-algebra and α : G � A an action. Assume α 
cc α ⊗ idZ . Then α is 
unitarily regular. Moreover, for every separable, α∞-invariant C∗-subalgebra B ⊂ A∞,α, 
the fixed-point algebra of the relative commutant (A∞,α ∩B′)α∞ is K1-injective.

Theorem 6.4 (see [25, 4.9]). Let G be a second-countable, locally compact group. Let 
γ : G � D be a semi-strongly self-absorbing action. If γ is unitarily regular, then the 
class of all separable, γ-absorbing G-C∗-dynamical systems is closed under equivariant 
extensions.

Recall the following technical property of semi-strongly self-absorbing actions, which 
arises as a consequence from a basic homotopy Lemma proved in [25]. See also [6, Sec-
tion 4], where compelling Model theoretic evidence is given for the fact that dynamical 
systems induced on relative commutants like below are virtually indistinguishable from 
the surrounding system.

Lemma 6.5 (see [25, 2.14]). Let G be a second-countable, locally compact group. Let D be 
a separable, unital C∗-algebra and γ : G � D a semi-strongly self-absorbing action. Let 
A be a unital C∗-algebra and α : G � A an action with α 
scc α ⊗ γ. Let ψ : (D, γ) →
(A∞,α, α∞) be a unital and equivariant ∗-homomorphism. Then

U0

((
A∞,α ∩ ψ(D)′

)α∞
)

= U0
(
(A∞,α)α∞

)
∩ ψ(D)′.

In other words, a unitary in the fixed-point algebra 
(
A∞,α ∩ ψ(D)′

)α∞ is homotopic to 
1 precisely when it is homotopic to 1 inside the larger fixed-point algebra (A∞,α)α∞ .

The following is the main result of this section:
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Theorem 6.6. Let G be a second-countable, locally compact group. Let D be a separable, 
unital C∗-algebra and γ : G � D an action. Let A be a separable C∗-algebra and (α, u) :
G � A a cocycle action. Let p and q be two mutually coprime supernatural numbers of 
infinite type.

(i) The action γ ⊗ idZ is semi-strongly self-absorbing if and only if γ ⊗ idU is semi-
strongly self-absorbing for U ∈ {Mp,Mq}.

(ii) Suppose that γ is semi-strongly self-absorbing. Then one has (α⊗ idZ , u ⊗ 1Z) 
cc

(α ⊗ γ ⊗ idZ , u ⊗ 1D ⊗ 1Z) if and only if one has (α ⊗ idU, u ⊗ 1U) 
cc (α ⊗ γ ⊗
idU, u ⊗ 1D ⊗ 1U) for U ∈ {Mp,Mq}.

Proof. The implication “⇒” is clear in every statement because of U ∼= U ⊗Z, so let us 
show the “⇐” implication everywhere. We shall start with (ii) and use it to prove (i).

(ii): We may assume without loss of generality that (α, u) 
cc (α ⊗ idZ , u ⊗ 1)
and γ 
cc γ ⊗ idZ . Note that by 6.3 and 6.4, this implies that separable, γ-absorbing 
G-C∗-dynamical systems are closed under equivariant extensions.

Consider the Hilbert space H = �2(N)⊗̄L2(G) and let δ : G � K(H) be the unitarily 
implemented action that is induced by the left-regular representation of G on L2(G). By 
the Packer–Raeburn stabilization trick from [19, 3.4], the 2-cocycle u ⊗ 1 with respect 
to α ⊗ δ is a coboundary, and thus (α ⊗ δ, u ⊗ 1) is exterior equivalent to a genuine 
action. By [1, 4.30], the property of γ-absorption is invariant under equivariant Morita 
equivalence. In particular, we may replace (α, u) by a genuine action on A ⊗ K(H), or 
alternatively just assume that u = 1.

Denote I = C0(0, 1) ⊗Mp ⊗Mq and Q = Mp ⊕Mq. From the canonical extension of 
C∗-algebras

0 I Zp,q Q 0,

we get the equivariant extension

0 (A⊗ I, α⊗ idI) (A⊗ Zp,q, α⊗ idZp,q
) (A⊗Q,α⊗ idQ) 0.

Since α⊗ idU 
cc α⊗γ⊗ idU for U ∈ {Mp,Mq} by assumption, it is clear that α⊗ idI 
cc

α ⊗ γ ⊗ idI and α ⊗ idQ 
cc α ⊗ γ ⊗ idQ. Hence also α ⊗ idZp,q

cc α ⊗ γ ⊗ idZp,q

by 
virtue of this extension. As the Jiang–Su algebra Z arises as a stationary inductive limit 
of Zp,q (see 6.1), we have

(A⊗Z, α⊗ idZ) ∼= lim
−→

(A⊗ Zp,q, α⊗ idZp,q
).

Since γ-absorption passes to equivariant inductive limits by [25, 1.10], this shows our 
claim.
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(i): Set U1 = Mp, U2 = Mq and W = U1 ⊗U2. Suppose that γ ⊗ idUi
is semi-strongly 

self-absorbing for i = 1, 2. We will need to go through two steps in order to prove that 
γ ⊗ idZ is semi-strongly self-absorbing.

Step 1: The first and most difficult step is to show that γ ⊗ idZ has approximately 
G-inner flip. For a unital C∗-algebra C, denote by σC ∈ Aut(C ⊗ C) the flip auto-
morphism. Set B = D ⊗ D, β = γ ⊗ γ and consider the β-equivariant automorphism 
σ = σD ∈ Aut(B, β) given by the flip. Then β ⊗ idUi

is semi-strongly self-absorbing for 
i = 1, 2. Hence by 6.2, we can find

ui, vi ∈ U
(
(B ⊗ Ui)(β⊗id)∞

∞,β⊗id

)
, i = 1, 2

with Ad(uiviu
∗
i v

∗
i )(b ⊗ ci) = σ(b) ⊗ ci for b ∈ B and ci ∈ Ui. We may naturally view 

B ⊗ Ui ⊂ B ⊗W for i = 1, 2, and thus define

z = (u1v1u
∗
1v

∗
1)∗(u2v2u

∗
2v

∗
2) ∈ U

((
(B ⊗W)∞,β⊗id ∩ (B ⊗W)′

)(β⊗id)∞
)
.

By 6.3, it follows that the unitary z is homotopic to the unit inside (B⊗W)(β⊗id)∞
∞,β⊗id . By 

the basic homotopy Lemma 6.5, we thus get that z is homotopic to the unit by some 
unitary path (note the slight abuse of notation)

z : [0, 1] → U
((

(B ⊗W)∞,β⊗id ∩ (B ⊗W)′
)(β⊗id)∞

)

with z(0) = 1 and z(1) = z. Let us consider the unitary path

w : [0, 1] → U
(
(B ⊗W)(β⊗id)∞

∞,β⊗id

)
, w(t) = (u1v1u

∗
1v

∗
1)z(t).

We see that

w(0) = u1v1u
∗
1v

∗
1 ∈ U

(
(B ⊗ U1)(β⊗id)∞

∞,β⊗id

)

and

w(1) = u2v2u
∗
2v

∗
2 ∈ U

(
(B ⊗ U2)(β⊗id)∞

∞,β⊗id

)
.

Moreover, we have

w(t)(b⊗ c1 ⊗ c2)w(t)∗ = σ(b) ⊗ c1 ⊗ c2 for all b ∈ B, ci ∈ Ui.

Thus we can view w as a unitary

w ∈ U
(
(B ⊗ Zp,q)(β⊗id)∞

∞,β⊗id

) 6.1
⊂ U

(
(B ⊗Z)(β⊗id)∞

∞,β⊗id

)

with the property w(b ⊗ 1)w∗ = σ(b) ⊗ 1 for all b ∈ B. Note that the image of
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(Z, idZ) → (B ⊗Z)(β⊗id)∞
∞,β⊗id , x → w(1⊗ x)w∗

commutes with B ⊗ 1. Using the uniqueness result 6.2 and a reindexation trick, this 
map is G-unitarily equivalent to the canonical map x → 1 ⊗ x, where we view it as a 
map with codomain being the relative commutant of B ⊗ 1. By perturbing w with the 
resulting unitary in (B ⊗ Z)(β⊗id)∞

∞,β⊗id ∩ (B ⊗ 1)′, if necessary, we may thus assume that 
w(b ⊗ x)w∗ = σ(b) ⊗ x for all b ∈ B and x ∈ Z.

To summarize, all of this shows that

σD ⊗ idZ ≈u,G idB ⊗ idZ = idD⊗D ⊗ idZ .

Combining this with the fact that Z ∼= Z ⊗Z has approximately inner flip, we see that

σD⊗Z = σ−1
23 ◦ (idD⊗D ⊗σZ) ◦ (σD ⊗ idZ⊗Z) ◦ σ23 ≈u,G idD⊗Z⊗D⊗Z ,

where σ23 denotes the isomorphism from D⊗Z ⊗D⊗D to D⊗D⊗Z ⊗Z flipping the 
second and third tensors.

Step 2: Let us now show the claim. From the previous step, we know that γ⊗ idZ has 
approximately G-inner flip. Thus the infinite tensor power action

(γ ⊗ idZ)⊗∞ : G � (D ⊗Z)⊗∞

is strongly self-absorbing by [26, 3.3]. As Ui
∼= Ui ⊗ Z for i = 1, 2, our assumptions 

imply

γ ⊗ idUi

scc (γ ⊗ idUi

)⊗∞

∼= (γ ⊗ idUi
)⊗∞ ⊗ (γ ⊗ idZ)⊗∞


scc γ ⊗ idUi
⊗(γ ⊗ idZ)⊗∞

for i = 1, 2. By part (ii) applied to γ in place of α and (γ ⊗ idZ)⊗∞ in place of γ, it 
follows that

γ ⊗ idZ 
scc γ ⊗ idZ ⊗(γ ⊗ idZ)⊗∞ ∼= (γ ⊗ idZ)⊗∞.

Using 2.9 this shows that γ ⊗ idZ is semi-strongly self-absorbing. �
7. Application to actions on strongly self-absorbing C∗-algebras

In this section, we shall obtain our main application of the results from the previous 
sections. First, we need to recall some results from the literature.

Remark 7.1. An automorphism α ∈ Aut(A) on a unital C∗-algebra A is called strongly 
outer, if it is outer and if for every α-invariant tracial state τ ∈ T (A), the induced 
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automorphism of α on the weak closure πτ (A)′′ is outer. (Unlike in other sources from 
the literature, we shall not assume T (A) �= ∅ for this definition. If T (A) = ∅, then strongly 
outer just means outer by convention.) If G is a discrete group, then a cocycle action 
(α, u) : G � A is called pointwise strongly outer, if αg is a strongly outer automorphism 
for every g ∈ G \ {1G}.

The following is a combination of results proved in [14,15,11] due to Matui and Izumi–
Matui.

Theorem 7.2. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT that is 
not isomorphic to the Jiang–Su algebra. Let d ≥ 1 be a number. Then any two pointwise 
strongly outer Zd-actions on D are strongly cocycle conjugate. Moreover, any such action 
is semi-strongly self-absorbing.

Proof. Note that by [27, 6.7], D must be isomorphic to either a UHF algebra of infinite 
type, one of the Cuntz algebras O2 or O∞, or tensor products between these. By applying 
either one of the classification results [15, 5.4] of Matui, [14, 5.2] of Matui or [11, 6.18, 
6.20] of Izumi–Matui, it follows that any two pointwise strongly outer Zd-actions on D
are strongly cocycle conjugate. It also follows from [26, 5.9, 5.12] that such actions are 
automatically semi-strongly self-absorbing. �

Here comes the main result of the paper:

Theorem 7.3. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT. Let G be 
a countable, torsion-free abelian group. Then any two pointwise strongly outer G-actions 
on D are very strongly cocycle conjugate. Moreover, any such action is semi-strongly 
self-absorbing.

Proof. Let γ1, γ2 : G � D be two pointwise strongly outer actions. We may write G =⋃
n∈N

Gn for an increasing sequence of finitely generated subgroups. As G is torsion-free 
and abelian, this implies in particular that for every n, the group Gn is isomorphic to 
Zdn for some dn ∈ N. Let p and q be two mutually coprime supernatural numbers of 
infinite type. Set U1 = Mp and U2 = Mq.

Then D ⊗ Uj is a strongly self-absorbing C∗-algebras satisfying the UCT that is not 
isomorphic to the Jiang–Su algebra for j = 1, 2. Thus 7.2 applies and we see that for 
every n, the Gn-action (γi ⊗ idUj

)|Gn
is a semi-strongly self-absorbing action for i = 1, 2

and j = 1, 2, with

(γ1 ⊗ idUj
)|Gn


scc (γ2 ⊗ idUj
)|Gn


scc (γ1 ⊗ γ2 ⊗ idUj
)|Gn

, j = 1, 2.

Thus we can apply 6.6 to deduce that for every n, the Gn-action (γi ⊗ idZ)|Gn
is semi-

strongly self-absorbing for i = 1, 2, with
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(γ1 ⊗ idZ)|Gn

scc (γ2 ⊗ idZ)|Gn


scc (γ1 ⊗ γ2 ⊗ idZ)|Gn
.

As n was arbitrary, it follows from 5.6 that the actions γ1 ⊗ idZ and γ2 ⊗ idZ are 
semi-strongly self-absorbing and are strongly cocycle conjugate. Now one has γ1 
scc
γ1 ⊗ idZ and γ2 
scc γ2 ⊗ idZ due to a result [17, 4.11] of Matui–Sato. So γ1 and γ2 are 
equivariantly Z-stable and in particular unitarily regular by 6.3. Since they absorb each 
other tensorially, it follows from 3.2 that in fact γ1 
vscc γ1 ⊗ γ2 
vscc γ2. This finishes 
the proof. �
Remark 7.4. The strategy of the proof of 7.3 in order to obtain uniqueness results for 
actions on the Jiang–Su algebra, making crucial use of 6.6, should have more applications 
in the future because it relies on a general principle not depending on the acting group. 
Note that the results from Section 6 in particular allow one to bypass having to solve some 
hard problems related to the vanishing of general cocycles, which has been considered by 
Matui–Sato in [16,17] to show uniqueness for Z2-actions on Z, and to show uniqueness for 
actions of the Klein bottle group Z �−1 Z on Z. What is however seemingly inaccessible 
with our approach at the moment is to determine under what conditions a cocycle 
action on a strongly self-absorbing C∗-algebra is cocycle conjugate to a genuine action; 
this could also be successfully tackled in Matui–Sato’s approach [16,17].
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