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Cover letter for article VR-15-230
Dear Dr Alais,

thank you for the opportunity to revise this manuscript in response to the constructive comments offered by the Re-
viewers. We apologize for the unusual delay in revising this submission, but we were keen on performing the additional
experiment suggested by Reviewer #2 and, due to logistic difficulties, this was only possible following special arrangements
that took a long time to set in place. We have addressed all concerns/comments raised by the Reviewers and we belive that, as
a result of this constructive process, our manuscript has greatly improved. In our response letter to the Reviewers, comments
by the Reviewers are in boldface. All changes to the manuscript itself have been highlighted in red.

We hope that you find the revised version of the manuscript satisfactory.

Melissa Spilioti
Neil Vargesson
Peter Neri
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Response letter for article VR-15-230

1 General comments for Reviewers/Editor

Dear Dr Alais:

Thank you for the opportunity to revise this manuscript in response to the constructive comments offered by the Re-
viewers. We apologize for the unusual delay in revising this submission, but we were keen on performing the additional
experiment suggested by Reviewer #2 and, due to logistic difficulties, this was only possible following special arrangements
that took a long time to set in place. We have addressed all concerns/comments raised by the Reviewers and we belive that, as
a result of this constructive process, our manuscript has greatly improved. In this response letter, comments by the Reviewers
are in boldface. All changes to the manuscript itself have been highlighted in red.

We hope that you find the revised version of the manuscript satisfactory.

Melissa Spilioti
Neil Vargesson
Peter Neri
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2 Response to Reviewer #1

Spilioti and colleagues set out to measure intrinsic neural noise in the zebrafish to compare it to similar tests
previously done in humans. The shoaling behavior of zebrafish was tested using different contrast patterns
depicting shoaling zebrafish. The tested fish were forced to make a choice to swim with two different groups,
each representing a contrast group. In general fish preferred the higher contrast group. They demonstrated
with a small sample that zebrafish can be used to model behavioral internal noise. This may open the door
for future pharmacological experiments seeking to modify this internal noise, though larger studies are likely
required to first assess the reliability of this testing paradigm - one of the limitations of this study is that
the sample size was quite small.

We agree with the Reviewer that the sample size for this study is relatively small, however we were operating under various
constraints (see more detailed response to specific comments below). We have now added a sentence at the end of the
manuscript to emphasize this point:

Clearly, far more data than presented here will be necessary to consolidate these tools. Our study represents only a first
exploratory step in the direction of identifying whether the proposed tools may be worth pursuing in future research.

We have also performed additional experiments in response to comments by Reviewer #2 using a third cohort of 9 animals
(see highlighted text in sections 2.4 and 3.3).

Minor comments: How natural were the movements of the displayed fish? Were the image sprites animated?
Tail movement? Etc?

the fish icons were not animated, as we now specify within Methods section 2.3:

without any further element of animation (i.e. except for drifting and occasional occlusion by other elements, icons did not
undergo any modification). We have demonstrated in previous work that results obtained with actual footage of zebrafish
colonies are well-replicated using the artificial stimulus adopted here (Neri 2012).

as explained above, we verified in Neri (2012) that these artificial presentations were as effective as natural footage in driving
shoaling behaviour, and more importantly produced the same answers to specific experimental manipulations like stimulus
inversion/reverse-playback.

Please provide a statistical analysis section.

Now provided as section 2.6 at the end of Methods.

What is the justification for a 28% failure rate being tolerable? Is there precedence?

We have now expanded the relevant paragraph within Section 3.5 to read:

Across all SNR regimes, the failure rate (∼50%) is substantially higher than observed with human participants; however when
restricted to the SNR condition which we identified to be viable on the basis of the above-detailed considerations, the failure
rate is in the expected range (2 out of 7 estimates, ∼28%). More specifically, more than ∼10% of human estimates fall outside
the viable range even with relatively large trial counts, and failure rate is shown to depend on data mass (Neri 2010a). Because
of longer trial duration and behavioural disengagement (see next section), we were able to collect less trials from zebrafish than
is typical with humans, which would justify the approximate doubling of observed failures. As for the successful estimates, they
are similar to (perhaps slightly higher than) those observed in humans (Burgess & Colborne 1988; Neri 2010a; Diependaele et
al. 2012), although more data is required to determine the precise characteristics of this broad agreement.

Why only 7 fish? Fish could be housed individually during the experiment and would allow for greater
numbers to be tested? (I recognize that a second cohort of 20 fish were used to some extent, but they could
have been housed individually to allow for a more thorough analysis)

As we now explain in Methods section 2.1:
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A relevant constraint imposed by ethical guidelines was that fish could not be housed individually for extended periods of time,
restricting our ability to identify specific individuals across multiple testing sessions. This guideline is enforced in view of the
highly social nature of zebrafish, so as to ensure that they would not be exposed to potentially harming excessive isolation from
conspecifics.

We did enquire about the possibility of housing the animals individually, but this was not possible under the unregulated
protocol under which we were operating. Individual housing would have required a more extensive ethics application process,
which we chose not to engage with at this stage of the project. We therefore opted for anatomical identification of fish housed
within the same tank, which we achieved via extensive photograph records of individual animals from different viewpoints.
We were able to identify anatomical markers that allowed us to reliably distinguish different animals, however this was only
possible for a small number of fish.

We were also operating under additional constraints, for example we could not use all wild type animals in the colony
because a large fraction of them was being exploited in other studies and/or breeding. Breeding protocols also imposed
restricted hours for access to the facility. At the time at which we carried out these experiments, we were not in a position
to collect more data than was done for this study. Since then, both first and senior (last) authors have left the UK,
making it nearly prohibitive to collect more data at the present stage. We have nevertheless pushed for an arrangement
whereby we were able to perform some additional experiments with a limited (non-ided) cohort in response to a concern
raised by Reviewer 2 (please see our response to this Reviewer below), however that was really as far as we could take this
study in terms of additional data collection. For future studies, we will need to develop a new set-up with access to a new colony.

Was the vision tested in the fish before experimenting with them? This is commonly done in human testing
and could account for some of the variability seen in these fish experiments. Contrast sensitivity and acuity
measurements for zebrafish are available (see Tappeiner et l. Frontiers in Zoology 2012, 9:10 doi:10.1186/1742-
9994-9-10 and Cameron et al. J Vis Exp. 2013; (80): 50832 doi: 10.3791/50832)

It is uncommon to test visual acuity in fish before experimenting with them (most studies we are aware of in existing literature
have not carried out preliminary testing except for those that specifically set out to achieve this aim), so we did not do so.
Our data, however, provides strong indication that vision was normal in the animals we tested. We now clarify this issue
within Methods (Section 2.4):

The integrity of visual acuity was not explicitly assessed in separate experiments, however the ability of our stimuli to drive
all animals under all conditions towards the stimulus with higher mean contrast (data points in Figure 2A fall above the
horizontal solid line) is a strong indication that they all possessed neurotypical vision. There were also no visible signs of dam-
age to their eyes, nor swimming behaviour that may indicate (at least on a macroscopic level) impaired visually-guided navigation.

It is possible that inter-individual variability in performance/consistency may correlate with inter-individual differences in
acuity as suggested by the Reviewer, however we were not in a position to test this possibility. It remains an interesting
avenue for future research.
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3 Response to Reviewer #2

This study measured the internal noise of zebrafish using a double-pass paradigm enabling to measure re-
sponse consistency. The fish were presented with two digital displays containing fish animations on two
opposite sides and their preference (i.e., 2afc response) was determined by the side on which they spent
the most time. The fish spent more time on the side on which the stimuli (animated fish) were displayed
at higher contrast confirming that the fish was responding to the visual stimuli (although performance did
not reach 100% at maximal contrast). The authors argued that in one particular condition they succeed at
measuring the internal noise, which happen to fall within the humane range. I don’t think that the current
study convincingly showed that ”it is possible to obtain viable estimates of internal noise in this vertebrate
species”. Further statistical tests (and probably experiments) are required.

As detailed below in response to specific comments by the Reviewer, we have carried out all tests suggested by the Reviewer,
including additional experiments/measurements. We hope these important additions are satisfactory to the Reviewer. We
emphasize that, as we clarify in the revised submission, our study is not intended as a fully resolved investigation of the
relevant issues, but rather as a first step in this direction. Our goal is to identify stimulus parameters and protocol guidelines
that could serve as a useful starting point for developing this line of research further. For example, based on our results,
future studies would already have a rough idea of what stimulus duration to use, what kind of variability in the estimates to
expect, what kind of sample size would therefore be necessary to achieve a certain level of data resolution, what SNR regimes
are most likely to yield useful/interpretable outcomes, what hurdles may need to be overcome in designing new protocols (e.g.
disengagement with the stimulus as we document it here) and over what timescale, and so forth. In this respect, we believe
our study presents valuable material.

1) Excluding the condition in which there was no external noise (SNR=∞, which does not enable to estimate
internal noise), three different signal-to-noise ratios (SNR=4, 6 and 12) were tested and gave similar perfor-
mance levels around 70% correct response. However, only one resulted in a viable estimate of internal noise
(SNR=6). This was supported by a Wilcoxon signed-rank test with p<.02. I am not convinced that this is
actually significant considering multiple comparisons. Evaluating many different SNR, one will eventually
be significant by chance. Proper statistics must be done to show a significant effect considering multiple
comparisons.

The p value associated with SNR=6 survives Bonferroni correction for multiple (3x) comparisons (now further clarified by
highlighted text within the last paragraph of Section 3.4), but more importantly it should be noted that the test we carried
out in Figure 2B is a very stringest test of the viability of our measurements. We now clarify this issue in the Results section 3.4:

The only SNR regime for which percent agreement exceeds the value predicted from percent correct is indicated by red symbols:
red data points in Figure 2B fall below the diagonal unity line at p<0.05 on a two-tailed paired Wilcoxon signed rank (WSR)
test when Bonferroni-corrected for the 3 multiple comparisons corresponding to the three viable SNR levels (from theory, we do
not expect measured percent agreement to be smaller than the stimulus-decoupled prediction, potentially justiying a one-tailed
test in this instance, which would strengthen our conclusion). The SNR=∞ condition, indicated by gray symbols, is particularly
interesting because it is under this condition that the scenario outlined above would seem most applicable (the two stimuli are
perfectly discriminable due to lack of noise); indeed, data points for this condition fall very close to the diagonal unity line.
It should be emphasized that the above-detailed test is stringent, because percent agreement values that do not exceed those
predicted by the above formula do not imply that animals were operating in the stimulus-decoupled manner outlined in the
previous paragraph: they are consistent with that interpretation, but they also remain consistent with the interpretation based
on the standard SDT model. By requiring them to exceed the stimulus-decoupled prediction, we are adopting a conservative
attitude to exclude for the potential scenario of on-off attentional switching behaviour (see previous paragraph), even though
that behaviour may never be applicable to the animals.

2) The percent agreement necessarily tends to increase with percent correct, so the condition that would be
the most likely to observed percent agreement above the predicted percent agreement is when the signal is
low and noise is high. Thus, the preferable test conditions would have been with low signal (e.g., µ1=µ2=50%)
and high noise (e.g., σ=20%), which were unfortunately not performed. Interestingly, the SNR 4 and 6 had
the same levels of noise (10%) and different levels of signal (30%-70% vs 20%-80%). Thus, we should expect
the method to work better in the lower signal condition (SNR=4). But the results actually showed that
the percent agreement was slightly higher than the prediction based on percent correct for SNR=6, but no
effect observed at SNR=4. This seems to suggest that the effect observed with SNR=6 may not truly reflect
a viable measure. Given that the same level of noise was used in these two conditions, there is no reason for
not pooling the data together and statistical test should be performed on the combined data sets.
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The Reviewer is correct in the above assertions, however those assertions are based on the assumption that behaviour does
conform to SDT. A primary goal of our study was to test precisely this assumption, so that our finding of behaviour conformant
with SDT is a contribution in itself. A priori, there is no reason to assume that using a very low signal should return better
results: the animal may completely disengage from the stimulus very early in the testing period when signal is too low, and
may equally do so when it is too high due to unrewarded contact from the shoal under conditions where there is no competing
stimulus and verification of the preferred stimulus is straightforward. It is just not possible to make clear predictions unless
one experimentally confirms that SDT applies at least coarsely and at least within some restricted regime. We now clarify
these important issues within two newly added paragraphs within Discussion at pages 17-18:

It may seem surprising that stimulus effectiveness did not vary monotonically with SNR: for example, why should the SNR
value of 6 work better than values that are both greater and smaller? Based on SDT considerations, we expect that large SNR
values should not be viable, but we also expect that the lower the SNR value, the greater the contribution of external noise,
and therefore the more effective the stimulus for internal noise estimation. Indeed, based on SDT considerations alone, a
stimulus that only contains noise and no signal should be ideally suited to these experiments. The above considerations are
based on the assumption that the behaviour displayed by the animal conforms to our expectations from SDT. There are many
alternative scenarios, however. Consider for example the following possibility: that zebrafish may interpret excessive contrast
heterogeneity (different icons taking on very different contrast values) as reflecting a non-cohesive shoal where shoal members
occupy distant depth planes, and excessive contrast homogeneity (all icons taking the same contrast value) as implausible
with unnatural appearance. Under this scenario, stimuli dominated by noise (low SNR) would become less attractive and
would drive less shoaling; stimuli dominated by the signal (high SNR) would also drive less shoaling, but for different rea-
sons. The end result in terms of shoaling behaviour as a function of SNR would be difficult to predict and may be non-monotonic.

We are not suggesting that zebrafish in our experiments were ‘interpreting’ stimuli as described above, rather we are merely
offering one of many example scenarios to illustrate the notion that it would be simplistic to assume that we can predict how
the animals will behave as we vary stimulus parameters, because our predictions are based on our own projected model of
how the animals ‘should’ behave. We must first determine the way in which the animals actually behave; if we then wish
to model specific aspects of the observed behaviour, this can only be done within the restricted range for which our model
provides a reasonable approximation. In our experiments, for reasons that remain partially unclear at this stage, a stimulus
SNR of ∼6 was able to engage the animals with sufficient efficacy to deliver reasonable estimates which cannot be attributed to
stimulus-decoupled behaviour (Figure 2B) and that largely conform to SDT.

To further address the above concerns raised by the Reviewer, we have carried out additional measurements (see point 4 below).

3) The distinction between additive and multiplicative internal noises is not introduced. This is important
to more precisely define what is being referred to as ”internal noise”. I think that in the present context,
additive internal noise would correspond to the contrast precision estimate of the samples, whereas mul-
tiplicative internal noise would correspond to the noise that is proportional to the combined internal and
external additive noises. The double-pass method measures multiplicative noise, not additive noise. The
authors need to be more explicit about what is being measured and discuss what intrinsic noise is or is not
measured in their paradigm.

We have now added a new paragraph at the end of section 4.3 to define and discuss this specific issue:

When discussing intrinsic noise, the terms ‘additive’ and ‘multiplicative’ are often adopted to label different types of in-
ternal variability. This terminology can be misleading, however, because the same source of behavioural variability may be
incorporated as additive or multiplicative by different models, so that model architecture becomes critical for drawing the
additive/multiplicative distinction. In the standard SDT model adopted here, noise consists of a Gaussian fluctuation added
to the decisional variable. In this sense, it is late additive (‘late’ refers to the stage at which it is added, this being the last
stage before producing a behavioural response). Its unit, however, is the standard deviation of the distribution taken by the
decisional variable as a result of external stimulus noise (this is also how d′ is defined): its intensity is therefore defined as a
multiple of external noise, potentially generating confusion. For example, if external noise is varied and the estimated value of
internal noise remains unchanged (as is typically found (Neri 2010b)), this means that the intensity of internal noise has
actually changed and it has done so in a manner that scales proportionally with external noise by the same constant value.
More importantly, because internal noise as defined and estimated here potentially encompasses multiple sources of internal
variability (see above), it is not possible to know with certainty whether its physiological origin is additive or multiplicative in
nature. Our choice of model is motivated by extensive literature justifying its general applicability to human vision (Burgess &
Colborne 1988; Neri 2010a; Neri 2013).
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4) Furthermore, quantifying multiplicative internal noise proportionally to the external (additive) noise im-
plies assuming that performance was driven by external noise, not internal additive noise. Otherwise, the
external noise would have negligible impact and it would be impossible to quantify the multiplicative inter-
nal noise relative to external noise. A simple way to test whether additive internal or external noise drives
performance is to measure performance with and without the external noise with the same signal level.
Unfortunately, the condition in which there was no noise had a different signal strength. Nonetheless, two
conditions (SNR=6 and 12) had the same signal strength but different noise levels (5 and 10%). Significantly
different performances would show that the noise noticeably affected performance. Authors need to show
that the external noise had an impact on performance since the important measure is quantified relative to
the impact of this noise.

We sincerely thank the Reviewer for making this point, and for prompting us to perform additional experiments to directly
compare noisy versus noiseless conditions that only differed in the presence/absence of noise, i.e. with matched mean-contrast
separation. It was logistically difficult to perform these additional experiments due to the senior author (PN) leaving the
University of Aberdeen and the lead author (MS) finishing her studies, which explains the unusual delay in revising this
article. We were able to come up with an arrangement whereby we could test an additional cohort of 9 wild-type animals
that we could not individually label, but for which we ran a direct comparison between configuration SNR=6 and the same
configuration without external noise (this additional cohort is now described in section 2.4). As detailed in the manuscript
(see below), the results of these additional experiments unambiguously confirmed that external noise did impact behaviour, as
now detailed in section 3.3:

The framework outlined above, whereby internal noise is expressed as a multiple of the variability generated by externally applied
noise, rests on the assumption that the external noise source is having a measurable impact on behaviour: if not, all variability
is internally generated, and it cannot be defined as a multiple of a quantity that is 0. We return to this point in relation
to the notion of stimulus-decoupled behaviour (see below). To directly gauge the validity of this assumption, we measured
preference for the higher-mean-contrast stimulus on a sample of 9 animals presented with two different stimulus configurations
having equal mean-contrast difference between the two competing stimuli, but either no external noise in one configuration, and
external noise corresponding to SNR=6 in the other configuration. More specifically, the SNR=6 configuration was identical
to the one detailed previously and pictured in Figure 1B, while the configuration without external noise contained no contrast
variability from fish to fish within a given movie (similar to Figure 1D) but a mean-contrast separation that matched the mean
separation used for the SNR=6 stimulus. If the externally applied noise source (in the form of contrast changes from fish
to fish in the stimulus) does not impact behaviour, we expect comparable preference for the higher-mean-contrast stimulus
under these two different configurations; if, on the other hand, the application of external noise did impact behaviour, we
expect reduced preference in the presence of external noise, due to the lower discriminability (SNR=6 as opposed to SNR=∞)
associated with the presence of external noise. Our results unequivocally confirmed the latter expectation: preference was in
the range (minimum/median/maximum) of 0.45/0.65/0.75 across the 9 animals tested for the SNR=6 condition, while it
measured 0.7/0.75/0.9 for the condition without external noise. The difference between the two conditions was statistically
significant at p< 0.0005 (unpaired two-tailed Wilcoxon rank sum test), clearly indicating that external noise as designed and
applied in our protocols did impact visually-guided behaviour of the test animal, and in turn supporting definition of internal
noise within the framework outlined in the previous paragraph.

5) It is mentioned a few times that the internal noise is measured in units of external noise and therefore,
cannot be quantified when the external noise was 0 as when the SNR=∞, but the values of internal noise
when the external noise was 0 are represented in Figure 3. How could that be? How was the internal noise
calculated in this condition and what does it represent? Maybe I’m missing something· · ·

The Reviewer is correct, and the SNR=∞ condition was merely included as a ‘sanity check’. We now clarify this point further
at the end of the first paragraph of section 3.4:

In other words, our goal was to verify that our analysis tools would be able to exclude this condition as viable even though the
associated empirical measurements may still be fed to the estimation algorithm and generate outputs (as discussed later in
the article, we find indeed that the resulting internal noise estimates are well within the failure range and that none of the
measured percent agreement values for this condition exceed those expected of stimulus-decoupled behaviour).

6) What was the stimulus used in the disengagement experiment? (SNR=6 I suppose). Please specify.

now specified at the beginning of the second paragraph of section 3.7.
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7) Results section. Many subsection of the results section do not describe results but methodology or general
concepts. This should be substantially revised.

We attempted to move some sections out of the Results section, however we chose to retain a lot of the original structure
because, in our experience, many readers skip the Methods section upon initially approaching the paper, only referring to it in
the event of clarifying specific details. Our intention was therefore to offer enough description of the general methodology
underlying our results in a manner that enabled a direct link between the results and the adopted methods, so that potentially
the Results section would stand on its own. We understand that this stylistic choice is not favoured by all readers, and we
apologize to this Reviewer if he/she feels that it is inadequate, but we eventually decided to retain it because completely
splitting method description and results for a study like this one, where different stimuli/conditions are used, required
prospective readers to constantly switch between Results and Methods sections while keeping track of what results go with
what stimuli/protocols, a situation we wished to avoid.

8) Section 3.2. I don’t think that the relationship between sensitivity and consistency should be described
as a result. There is necessarily a link between performance and consistency (performance of 100% implies
consistency of 100%). This is well known and should be introduced with the model in the introduction, not
presented as a result.

As we have explained in response to comment 2 above by the Reviewer, a primary goal of our study was to gauge the
applicability of SDT for visually guided behaviour in the zebrafish. For this system, the result is not well-known unless one
assumes that SDT applies within that context, which we set out to verify. It is certainly the case that, as the Reviewer points
out, perfect performance must correspond to perfect agreement, but for intermediate values there is a whole set of trends that
may be expected depending on what the animal is doing; our observation as a first step in interpreting the plot was that, at
a coarse level, the observed trend conforms with SDT predictions. We have now added a clarification in this respect that
specifically addresses the comment above:

The latter trend is expected from signal detection theory (SDT) (Burgess Colborne 1988), however this expectation does not
trivialize the empirically observed trend: one goal of this study is to establish whether visually-guided behaviour in the zebrafish
can at all be approximated by SDT in the first place. Our observation of compatible characteristics between measured behaviour
and SDT therefore provides added knowledge beyond what is available from current literature: there are no prior measurements
of response agreement in zebrafish; without measuring this quantity directly, it remains conceivable that a different trend may
have been observed (see further discussion of this issue below in relation to the interpretability of specific behavioural patterns
and their relationship to stimulus parameters)

this addition is within the last paragraph of section 3.2.
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Normale Supérieure, PSL Research University, Paris, France9

Corresponding author: Peter Neri, neri.peter@gmail.com10

Abstract: All sensory devices, whether biological or artificial, carry appreciable amounts of intrinsic11

noise. When these internally generated perturbations are sufficiently large, the behaviour of the12

system is not solely driven by the external stimulus but also by its own spontaenous variability.13

Behavioural internal noise can be quantified, provided it is expressed in relative units of the noise14

source externally applied by the stimulus. In humans performing sensory tasks at near threshold15

performance, the size of internal noise is roughly equivalent to the size of the response fluctuations16

induced by the external noise source. It is not known how the human estimate compares with17

other animals, because behavioural internal noise has never been measured in other species. We18

have adapted the methodology used with humans to the zebrafish, a small teleost that displays19

robust visually-guided behaviour. Our measurements demonstrate that, under some conditions,20

it is possible to obtain viable estimates of internal noise in this vertebrate species; the estimates21

generally fall within the human range, suggesting that the properties of internal noise may reflect22

general constraints on stimulus-response coupling that apply across animal systems with substantially23

different characteristics.24

Keywords: behavioural inconsistency — shoaling — fish cognition — signal detection theory —25

intraindividual variability26
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1 INTRODUCTION27

Biological systems do not behave deterministically: when presented with two identical instances28

of an external event, they may react differently depending on their internal state at the time of29

stimulation (Green 1964; Highcock & Carter 2014). This observation applies without exception to30

conditions where a stimulus signal is corrupted by an external noise source, and a human participant31

is asked to detect the presence of the signal: identical instances of signal and noise will result in32

different reports on the part of the human participant on about 3 out of 4 stimulus replications33

(Burgess & Colborne 1988; Neri 2010a).34

It is possible to measure this departure from deterministic behaviour and quantify the amount of35

internal perturbation, but this can only be done in a relative sense. Because behaviour is driven by36

the internal representation of the stimulus, internal noise can only be defined with relation to this37

internal representation, which lacks absolute units. In the dominant framework for the quantification38

of animal behaviour, termed signal detection theory (SDT), this issue is addressed by rescaling all39

perceptual quantities (e.g. sensitivity) as a function of the variability induced upon them by variations40

within the external stimulus (Green & Swets 1966). The same approach can be applied to internal41

noise (Burgess & Colborne 1988; Neri 2010a), thus enabling estimates of this phenomenon that are42

not only quantitative, but in principle directly comparable across different species provided sensory43

behaviour for the species in question can be adequately modelled using the principles of SDT.44

In light of the above-stated potential for comparative studies of a fundamental property of45

animal behaviour such as internal noise, it may seem surprising that this phenomenon has so far46

been quantified only in humans. To our knowledge, there have been no comparable measurements in47

other species, making it difficult to interpret the human measurements on a broader scale that takes48

into account their comparative significance. Intra-individual variability (IIV), a quantity commonly49

used to study related phenomena (MacDonald et al. 2006), lacks an established theoretical framework50

(Biro & Adriaenssens 2013); its potential for comparative judgements is therefore compromised by51

the unavailability of a common metric space across different species. The goal of our experiments52

was to rectify these limitations and allow for direct comparison of intrinsic behavioural noise between53

humans and a small vertebrate, the zebrafish, that has proven a useful animal model for genetic54

manipulations relating to a range of human pathological conditions (Norton & Bally-Cuif 2010), some55

of which (ADHD in particular) are believed to stem from abnormalities associated with internal noise56

(Gilden & Hancock 2007; Simmons et al. 2009; Perry et al. 2010; Dinstein et al. 2012; Kofler et al.57

2013).58
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2 METHODS59

2.1 Animals and test apparatus60

Except for the visual stimuli, which were specifically designed for this study (see next section), all61

other procedures were identical to those described in previous work (Neri 2012) and will only be62

summarized here. We used wild-type zebrafish bred and maintained by trained staff in a dedicated63

facility (Institute of Medical Sciences, Aberdeen, United Kingdom; see also Vargesson 2007; Thera-64

pontos & Vargesson 2010 for details relating to husbandry). Outside testing, fish were kept inside a65

10-litre storage tank (average density two fish per litre) attached to a recirculated system (Aquatic66

Habitats, Apopka, FL, U.S.A.) at 27◦C on a 14:10 h light:dark photoperiod and never exposed to67

heterospecifics. They were fed brine shrimp twice a day (at 09:30 and 16:30). During testing, one68

fish was transferred from the facility to a test tank measuring 25×13 cm and 11 cm high. The69

two furthest sides of the test tank were placed against two identical LCD monitors driven by one70

computer allowing independent control over the images displayed to the two sides. A webcam lo-71

cated above the test tank acquired images at 4 Hz and stored them on the hard drive for automated72

offline analysis. After testing, fish were returned to the breeding stock. Ethical approval for all73

the research reported in this study was obtained from the University of Aberdeen Ethical Review74

Committee. The work, which was in accordance with the Code of Ethics of the World Medical75

Association (Declaration of Helsinki), was deemed as nonregulated by the Home Office Inspector;76

however, input was received from the Home Office Inspector and the Named Veterinary Surgeon and77

the care of all fish was under the remit of the Animals (Scientific Procedures) Act 1986. No animal78

licence was required because the behavioural procedures used here were non-invasive, in accordance79

with natural behaviour patterns, and only involved wild-type animals. A relevant constraint imposed80

by ethical guidelines was that fish could not be housed individually for extended periods of time,81

restricting our ability to identify specific individuals across multiple testing sessions. This guideline82

is enforced in view of the highly social nature of zebrafish, so as to ensure that they would not be83

exposed to potentially harming excessive isolation from conspecifics.84

2.2 Automated tracking of animal position85

We wrote software specifically tailored to the images collected during the experiments; the algorithm86

was therefore robust and efficient in the absence of any human intervention. Readers are referred87

to (Neri 2012) for details. Briefly here, the software implemented motion detection via thresholded88
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subtraction methods (McIvor 2000) and applied cluster analysis to identify the test animal. The89

location of the cluster centroid between automatically detected end-points for the tank was used as90

position marker (see red/blue dots in Figure 1E). To determine whether the test animal preferred91

one or the other side of the tank on a specific trial, we simply averaged all position values over the92

duration of that trial (see red/blue lines in Figure 1E); preference was assigned to the side of the93

tank closest to this average value. We also explored other methods for assigning preference, for94

example the % time spent on either side of the tank, but this had no appreciable impact on our95

results. Furthermore, we were not able to expose any systematic relationship between the specific96

value of mean (or median) shift displayed by the animal on individual trials and the mean contrast97

difference of the stimuli presented on those same trials. In other words, although the mean contrast98

difference systematically modulated the preference as assessed via probability of binary choice, it did99

not appear to modulate the mean shift on a given trial, or at least not within the resolution of our100

measurements.101

2.3 Visual stimuli and presentation protocol102

All stimuli were generated by adding the same small icon of a zebrafish to a grey background. Ten103

individual icons were initially placed within the image at random spatial locations and made to drift104

horizontally at a constant speed of 6.5 cm/s without any further element of animation (i.e. except105

for drifting and occasional occlusion by other elements, icons did not undergo any modification). We106

have demonstrated in previous work that results obtained with actual footage of zebrafish colonies107

are reliably replicated using the artificial stimulus adopted here (Neri 2012). Half the icons moved108

to the left and half to the right. When two icons overlapped within the image, the icon added more109

recently was painted over the other icon. All movies lasted 16 s and were generated using a cyclical110

structure: the end of the movie matched the beginning of the movie, so that the movie could be111

played smoothly for multiple repetitions without glitches. For a given movie, the contrast of each112

icon was randomly drawn from a Gaussian distribution with mean µj and standard deviation σ,113

where j is 1 for the movie with higher mean contrast and 2 for the movie with lower mean contrast114

(i.e. µ1 > µ2). Both high and low mean-contrast movies were presented during each trial on115

opposite sides of the tank; which side contained the high contrast movie was randomly determined.116

On a given test lasting ∼14 minutes, the animal was presented with 1 block of 20 trials. Each117

trial lasted 30 seconds, and trials were separated by a 10-second gap during which both monitors118

displayed blank screens. Each block was associated with a specific parameterization (µ1, µ2 and σ119

values) of the contrast distributions defining the two stimuli; each parameterization corresponds to120
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a different signal-to-noise ratio (SNR) (µ1−µ2)/σ. We tested 4 different SNR values: 4 defined by121

µ1=70%, µ2=30% and σ=10% contrast (Figure 1A); 6 defined by µ1=80%, µ2=20% and σ=10%122

contrast (Figure 1B); 12 defined by µ1=80%, µ2=20% and σ=5% contrast (Figure 1C); ∞ defined123

by µ1=100%, µ2=0% and σ=0% contrast (Figure 1D). Each block was divided into two ‘passes’:124

the 1st pass from trial #1 to trial #10, the 2nd pass from trial #11 to trial #20. The stimulus125

samples presented during the 1st pass were independently generated: on trial #1, the stimulus on the126

right side of the tank may contain 10 fish with contrast values randomly drawn from the distribution127

with higher mean µ1, while the stimulus on the left side would then contain 10 fish with contrast128

values randomly drawn from the distribution with lower mean µ2 (see icons on top row of Figure129

1E); on trial #2, the stimulus on the right may still draw from the contrast distribution with higher130

mean (see icons on second row of Figure 1E), but it would be a different random sample, and so131

would be the stimulus on the other side; on trial #3, the stimulus on the right side may now draw132

from the contrast distribution with lower mean (see icons on third row of Figure 1E), and so on.133

The 2nd pass was an exact replication of the 1st pass: the same stimulus samples were presented on134

the same side of the tank as during the 1st pass.135

2.4 Number of test animals and data mass136

We tested three different cohorts. The first cohort consisted of 7 animals (age range 1.5-2 years137

old) which we could identify individually based on specific morphological features (e.g. irregularities138

of their stripe pattern, body asymmetries); we were restricted in our ability to test a large number of139

individually identifiable animals due to a combination of ethical guidelines (see above) and breeding140

requirements within the facility. The integrity of visual acuity was not explicitly assessed in separate141

experiments, however the ability of our stimuli to drive all animals under all conditions towards the142

stimulus with higher mean contrast (data points in Figure 2A fall above the horizontal solid line)143

is a strong indication that they all possessed neurotypical vision. There were also no visible signs144

of damage to their eyes, nor swimming behaviour that may indicate (at least on a macroscopic145

level) impaired visually-guided navigation. For stimulus SNR=4, we collected 2 blocks from each146

of 5 animals and 1 block from each of the remaining 2 animals (total of 12 blocks); for SNR=6,147

we collected 5 blocks from each of 6 animals and 3 blocks from the remaining animal (total of148

33 blocks); for SNR=12, we collected 1 block from each animal (total of 7 blocks); for SNR=∞,149

we collected 2 blocks from each animal (total of 14 blocks). We allocated more data collection to150

condition SNR=6 because piloting indicated that this condition returned more robust estimates from151

individual blocks than the remaining three conditions. This preliminary indication was confirmed by152
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further analysis, as demonstrated in Figures 2-3. Notice that the estimates reported in those figures153

were obtained by first computing an estimate from each block and then averaging across blocks, not154

by first collating trials across different blocks. The second cohort consisted of 20 animals (similar age155

to the first cohort) which we could not identify individually. We collected 1 block from each animal at156

SNR=6. The results we obtained from this second cohort closely matched those obtained from the157

first cohort (compare Figure 4B with A; see also open circle in Figure 3). The third cohort consisted158

of 9 animals (similar age to the other two cohorts) which we could not identify individually. We159

collected 1 block from each animal at SNR=6, and 1 additional block for a configuration with equal160

mean-contrast separation between the two stimuli, but no external noise. These two configurations161

were specifically selected to differ only in the presence/absence of external noise, so that the impact162

of external noise could be gauged directly.163

2.5 Estimation of internal noise164

Our methodology relies on the established signal detection theory (SDT) model (Green & Swets165

1966). The SDT model is defined within the space of the ‘internal response’: the response of the166

system to the input stimulus, regardless of the front-end process that maps the stimulus onto a167

response. This process may consist of the human visual system or the zebrafish visual system; the168

details are not relevant because the SDT formulation bypasses this stage. For our 2AFC task, we169

assume that the internal response before the addition of internal noise follows a normal distribution170

for the nontarget low-mean-contrast stimulus and a normal distribution with mean d′
in
for the target171

high-mean-contrast stimulus. Each response is added to a Gaussian noise source with SD σN; only172

this noise source differs for repeated presentations of the same stimuli on the two passes, and173

represents internal noise. On each trial, the model selects the stimulus associated with the largest174

response. d′
in
and σN are not directly measurable: they are model parameters. However, different d′

in
175

and σN values correspond to different values of two directly measurable quantities: percent correct176

and percent agreement (Burgess & Colborne 1988). The % of correct responses is the % of trials177

on which the animal showed preference for the side of the tank displaying the stimulus defined by178

the higher contrast mean. Agreement is the % of paired trials associated with the same preference179

on the two passes: preference on the first trial of the 1st pass (trial #1 within the block) is matched180

against preference on the first trial of the 2nd pass (trial #11 within the block), preference on the181

second trial of the 1st pass (trial #2 within the block) is matched against preference on the second182

trial of the 2nd pass (trial #12 within the block), and so on. The % of matches is percent agreement.183

We then selected the specific values for d′
in
and σN that minimized the mean-square error between184

6



the predicted and the observed values for percent correct and percent agreement (Neri 2010a). The185

orange lines in Figure 2A define pairings of percent-correct/percent-agreement values corresponding186

to different d′
in
values (as one moves along the line) for a fixed σN value (indicated below each line).187

2.6 Statistical analysis188

With the exception of p values from correlation tests, obtained via the t-statistic, all other p values189

come from two-tailed non-parametric Wilcoxon tests (paired when involving comparisons between190

two samples, except for one test relating to the third cohort where the comparison between the191

two samples could not be paired due to the lack of individually identified data, and it was therefore192

unpaired). Bonferroni correction for multiple comparisons is adopted when applicable.193

3 RESULTS194

3.1 Stimulus parameterization195

Zebrafish exhibit a spontaneous form of visually-guided behaviour termed ‘shoaling’, whereby expo-196

sure to real or simulated images of conspecifics results in an innate tendency towards aggregation197

(Miller & Gerlai 2011). This phenomenon can be exploited to support experimental conditions that198

mirror classic two alternative forced choice (2AFC) protocols from visual psychophysics (Orger et al.199

2000; Engeszer et al. 2004; Neri 2012): the animal is presented with two different visual stimuli on200

opposite sides of the tank, each containing a manipulated movie depicting conspecifics, while its201

position is tracked to monitor its tendency to spend more time on one side of the tank as opposed202

to the other. Preference can be coded as a binary variable: 1 if the animal spends more time on203

the side of the tank associated with stimulus number 1; 2 if it spends more time on the other side.204

Under these conditions the fish is essentially performing a 2AFC task, enabling deployment of a205

large body of established techniques from visual psychophysics (Green & Swets 1966; Burgess &206

Colborne 1988; Neri 2010a).207

Our stimulus consisted of a synthetic zebrafish shoal (Saverino & Gerlai 2008; Neri 2012). We208

used the same image for all 10 members of the synthetic shoal, but varied the contrast of each209

member independently. For a given shoal sample, the 10 contrast values assigned to the different210

members were sampled from a Gaussian distribution. We manipulated stimulus discriminability by211

separately specifying mean and standard deviation of the distributions underlying the two stimulus212

classes presented to the fish. Stimulus discriminability is defined as the difference between the two213

means divided by their common standard deviation (see Methods): the signal-to-noise ratio (SNR)214
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(Green & Swets 1966). We tested 4 different stimulus parameters associated with different stimulus215

SNR values (4, 6, 12 and ∞; see Figure 1). As detailed below, we found that only one of these216

4 conditions (SNR=6) supported behavioural regimes that allowed for adequate measurements of217

internal noise in the zebrafish.218

3.2 Relationship between sensitivity and consistency219

On each test (lasting ∼14 minutes), we presented 10 different pairs of samples for stimulus 1 and220

2. Each sample pair was presented twice on two different trials. As shown in Figure 1, when the221

animal was presented with a repeated stimulus pair, it did not always display the same preference on222

the two presentations (compare red and blue trajectories in Figure 1E). The percentage of trials on223

which preference was consistent (i.e. the same on both presentations) was not at chance (50%), but224

was not perfect either (i.e. it never reached 100%). Figure 2A plots this quantity on the x axis for225

different animals (identified by different symbols) and different stimulus SNR’s (indicated by different226

colours; see also Figure 1A-D). The y axis plots the corresponding percentage of trials on which the227

animal displayed preference for the stimulus with higher mean contrast. In keeping with established228

literature, these two quantities may also be termed consistency and sensitivity respectively (Burgess229

& Colborne 1988).230

Before proceeding to a quantitative evaluation of the data in Figure 2A, we notice a few quali-231

tative features of the manner in which data points scatter across the plot. First, all data points bar232

one fall above the horizontal black line corresponding to unbiased behaviour (0.5), demonstrating233

that zebrafish displayed preference toward the higher-contrast stimulus. Furthermore, the average234

y position of the different datasets corresponding to different SNR values (different colours) shifts235

upwards with increasing SNR (see arrows pointing towards left y axis), demonstrating that our visual236

stimuli were able to drive behaviour in a lawful manner. Third, most data points fall to the right of237

the vertical black line corresponding to chance agreement between repeated presentations, demon-238

strating that zebrafish showed a measurable degree of consistent behaviour. Finally, values on the239

two axes covary positively: larger sensitivity values are associated with larger consistency values.240

The latter trend is expected from signal detection theory (SDT) (Burgess & Colborne 1988),241

however this expectation does not trivialize the empirically observed trend: one goal of this study is242

to establish whether visually-guided behaviour in the zebrafish can at all be approximated by SDT243

in the first place. Our observation of compatible characteristics between measured behaviour and244

SDT therefore provides added knowledge beyond what is available from current literature: there are245

no prior measurements of response agreement in zebrafish; without measuring this quantity directly,246
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it remains conceivable that a different trend may have been observed (see further discussion of this247

issue below in relation to the interpretability of specific behavioural patterns and their relationship248

to stimulus parameters). The orange lines plot predicted relationships between percent correct and249

percent agreement for different degrees of intrinsic noise associated with a system that behaves250

according to a minimal SDT model. These predictions demonstrate that consistency and sensitivity251

are indeed expected to covary positively, further corroborating the notion that our dataset presents252

meaningful structure and that this structure can be modelled and understood using the established253

tools of statistical decision theory (Green & Swets 1966).254

3.3 Zebrafish as SDT operators255

The above observations suggest that, at least to a coarse extent, visually-guided behaviour in the256

zebrafish may be approximated by the general framework associated with SDT. Within the context257

of SDT, internal noise is measured in units of the perceptual fluctuations induced by the external258

noise source (Burgess & Colborne 1988; Neri 2010a). To understand this concept, imagine that each259

stimulus in Figure 1E is associated with a perceptual response of a given intensity within the sensory260

machinery of the animal (Diependaele et al. 2012). Because this response is defined in perceptual261

space, we cannot express it in absolute units: perceptual space has no units like spikes per second or262

BOLD signal intensity. This issue is easily addressed by redefining all quantities as multiples of (i.e.263

in units of) the variability associated with the perceptual response (i.e. its standard deviation). To264

provide a relevant example, the discriminability between two stimuli, i.e. the difference in perceptual265

response to those two stimuli (which underlies behavioural sensitivity) is divided by the variability of266

the two responses to obtain d’ (Green & Swets 1966).267

Response variability comes from two sources: the variability introduced by the external stimulus268

which contains noise in the form of contrast fluctuations (Figure 1A-C), and the additional variability269

introduced by the intrinsic noisiness of the animal (inconsistency; Green 1964; Burgess & Colborne270

1988; Diependaele et al. 2012). Because variability is used as unit of measurement in perceptual271

space, it does not make sense to speak of variability itself in those units; it is only the relative intensity272

of the two sources that we can meaningfully quantify and estimate: we can say, for example, that273

total variability is due to external noise for 25% of its intensity, and to internal noise for the remaning274

75%. This would mean that internal noise is 3× the external noise souce. In humans, the intensity275

of internal noise falls between 1/2 and 2, i.e. it may be as low as half the external noise source and276

as large as twice its value (Neri 2010a). The latter case is represented by the darker orange line277

in Figure 2A. In the next section, we examine how the different SNR datasets relate to this upper278
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boundary on the human range.279

The framework outlined above, whereby internal noise is expressed as a multiple of the variability280

generated by externally applied noise, rests on the assumption that the external noise source is having281

a measurable impact on behaviour: if not, all variability is internally generated, and it cannot be282

defined as a multiple of a quantity that is 0. We return to this point in relation to the notion283

of stimulus-decoupled behaviour (see below). To directly gauge the validity of this assumption,284

we measured preference for the higher-mean-contrast stimulus on a sample of 9 animals presented285

with two different stimulus configurations having equal mean-contrast difference between the two286

competing stimuli, but either no external noise in one configuration, and external noise corresponding287

to SNR=6 in the other configuration. More specifically, the SNR=6 configuration was identical to288

the one detailed previously and pictured in Figure 1B, while the configuration without external289

noise contained no contrast variability from fish to fish within a given movie (similar to Figure 1D)290

but a mean-contrast separation that matched the mean separation used for the SNR=6 stimulus.291

If the externally applied noise source (in the form of contrast changes from fish to fish in the292

stimulus) does not impact behaviour, we expect comparable preference for the higher-mean-contrast293

stimulus under these two different configurations; if, on the other hand, the application of external294

noise did impact behaviour, we expect reduced preference in the presence of external noise, due295

to the lower discriminability (SNR=6 as opposed to SNR=∞) associated with the presence of296

external noise. Our results unequivocally confirmed the latter expectation: preference was in the297

range (minimum/median/maximum) of 0.45/0.65/0.75 across the 9 animals tested for the SNR=6298

condition, while it measured 0.7/0.75/0.9 for the condition without external noise. The difference299

between the two conditions was statistically significant at p< 0.0005 (unpaired two-tailed Wilcoxon300

rank sum test), clearly indicating that external noise as designed and applied in our protocols did301

impact visually-guided behaviour of the test animal, and in turn supporting definition of internal302

noise within the framework outlined in the previous paragraph.303

3.4 Internal noise estimation is only viable within a restricted SNR range304

Of the four different SNR regimes we tested, only that associated with the red dataset in Figure 2A305

approaches the upper boundary of the human range (and sometimes falls below it). The dataset306

for the SNR value immediately below (black symbols) occasionally falls within this range, but some307

estimates (black circle and downward triangle) are associated with percent agreement measurements308

below chance (left of vertical black line) and are therefore incompatible with the SDT model (Green309

& Swets 1966). The higher SNR regimes (blue and gray symbols) return datasets that scatter in the310
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region of infinite values for internal noise (thick light-orange line in Figure 2A) and are therefore also311

not viable for the purpose of sensible estimation. This is expected for stimuli containing no contrast312

fluctuations (SNR=∞, gray dataset) because the external noise source has 0 standard deviation,313

making it impossible to express internal noise as relative to external noise. Our motivation for testing314

this SNR condition was for the resulting measurements to serve as a sanity check that our methods315

and analyses would integrate meaningfully across the board, even under limit conditions for the316

relevant parameters. In other words, our goal was to verify that our analysis tools would be able to317

exclude this condition as viable even though the associated empirical measurements may still be fed318

to the estimation algorithm and generate outputs (as discussed later in the article, we find indeed319

that the resulting internal noise estimates are well within the failure range and that none of the320

measured percent agreement values for this condition exceed those expected of stimulus-decoupled321

behaviour).322

A potentially puzzling feature of Figure 2A is that the model prediction associated with un-323

reasonably large (nearly infinite) internal noise intensity (thick light-orange line) produces percent324

agreement values exceeding chance; this may seem nonsensical, because consistency should be near325

chance when internal noise is huge. The regime we are considering lies near the limit case of infinite326

internal noise, when indeed both consistency and sensitivity should be at chance. In the vicinity327

of the limit case, it is instructive to consider the problem from a slightly different perspective (see328

below).329

Imagine the system responds correctly on x% of trials, but its behaviour bears no relationship330

to the discriminability of individual stimulus samples: the system merely responds correctly on a331

randomly chosen subset of trials. A possible scenario that would generate this type of behaviour332

is one where the animal ignores the presented stimuli on some trials, and thus responds randomly333

on those trials, but pays great attention to the stimuli presented on the remaining trials, and334

thus discriminates those with near-perfect accuracy. Under these conditions (violating the basic335

assumptions of SDT), a specific stimulus pair is no more likely to cause the same behaviour on336

its repeated presentation than is expected on an unrelated trial, which would correspond to infinite337

internal noise; percent agreement, however, will not be at chance: if p is the probability that any338

trial is associated with a correct response, the probability that both repetitions will yield the same339

response (whether correct or incorrect) is p2 + (1 − p)2. In order for a percent agreement value340

to reflect true behavioural consistency, rather than potentially being the byproduct of a higher-341

than-chance percent correct value, it is therefore necessary that it exceeds the value returned by342

this expression. The corresponding viable region is indicated by green shading in Figure 2B, where343

the outcome of the above-detailed expression (computed by simply replacing p with the measured344
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percent correct values) is plotted on the y axis versus the empirically measured percent agreement345

values (replotted from the x axis in Figure 2A).346

The only SNR regime for which percent agreement exceeds the value predicted from percent347

correct is indicated by red symbols: red data points in Figure 2B fall below the diagonal unity line348

at p=0.016 on a two-tailed paired Wilcoxon signed rank (WSR) test; when Bonferroni-corrected for349

the 3 multiple comparisons corresponding to the three viable SNR levels, this remains significant at350

p<0.05 (from theory, we do not expect measured percent agreement to be smaller than the stimulus-351

decoupled prediction, potentially justiying a one-tailed test in this instance, which would strengthen352

our conclusion). The SNR=∞ condition, indicated by gray symbols, is particularly interesting353

because it is under this condition that the scenario outlined above would seem most applicable (the354

two stimuli are perfectly discriminable due to lack of noise); indeed, data points for this condition355

fall very close to the diagonal unity line. It should be emphasized that the above-detailed test356

is stringent, because percent agreement values that do not exceed those predicted by the above357

formula do not imply that animals were operating in the stimulus-decoupled manner outlined in the358

previous paragraph: they are consistent with that interpretation, but they also remain consistent with359

the interpretation based on the standard SDT model. By requiring them to exceed the stimulus-360

decoupled prediction, we are adopting a conservative attitude to exclude for the potential scenario361

of on-off attentional switching behaviour (see previous paragraph), even though that behaviour may362

never be applicable to the animals.363

3.5 Explicit estimates of internal noise364

As we have explained with relation to Figure 2A, different parameterizations of the SDT model are365

associated with different predictions for the relationship between percent agreement and percent366

correct values (Burgess & Colborne 1988; a representative sample of four different predictions is367

indicated by orange traces). Based on the experimentally observed values, we can derive estimates368

for the best-fitting parameters within the underlying SDT model (Neri 2010a; Diependaele et al.369

2012; see Methods). This model is defined by two parameters: stimulus discriminability and internal370

noise (both in units of external noise standard deviation). They are plotted in Figure 3 on x and y371

axes respectively.372

In approaching this dataset, it seems useful to rely on related measurements in human participants373

for general guidance. Previous work with large-scale datasets has demonstrated that ∼90% of374

internal noise estimates fall between 1/5 and 5 (margins indicated by orange horizontal dashed lines375

in Figure 3); estimates outside this range are most reasonably regarded as failures of the adopted376
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methodology and should be excluded from further consideration (Neri 2010a). The representative377

range for human sensory processing is between 0.6 and 2, indicated by green shading in Figure 3.378

In line with the results detailed earlier, only the SNR regime associated with the red dataset379

returned a majority of estimates within the acceptable range; interestingly, the estimates that did380

fall within this region also clustered within the representative human range (green shading in Figure381

3). Across the entire dataset, internal noise estimates were distributed bimodally (see histogram382

to the right) with two populations on opposite sides of the upper boundary for the viable region383

(value of 5 on y axis, indicated by top orange horizontal dashed line). We interpret this bimodality384

as reflecting well-segregated successes/failures of our methodology: our protocols either succeed385

(estimates < 5) or fail (estimates > 5).386

Across all SNR regimes, the failure rate (∼50%) is substantially higher than observed with387

human participants; however when restricted to the SNR condition which we identified to be viable388

on the basis of the above-detailed considerations, the failure rate is in the expected range (2 out389

of 7 estimates, ∼28%). More specifically, more than ∼10% of human estimates fall outside the390

viable range even with relatively large trial counts, and failure rate is shown to depend on data mass391

(Neri 2010a). Because of longer trial duration and behavioural disengagement (see next section),392

we were able to collect less trials from zebrafish than is typical with humans, which would justify393

the approximate doubling of observed failures. As for the successful estimates, they are similar to394

(perhaps slightly higher than) those observed in humans (Burgess & Colborne 1988; Neri 2010a;395

Diependaele et al. 2012), although more data is required to determine the precise characteristics of396

this broad agreement.397

3.6 Animals disengage with the stimulus over time398

We noticed a consistent trend whereby preference on the part of the test animal was more effectively399

driven by our stimulus at the beginning of each experiment and gradually decreased over time. Figure400

4A plots the percentage of trials on which the animal shoals towards the high-contrast stimulus401

separately for each of four different epochs within each block: the first 5 trials of the 20 trials that402

contributed to a given block, the second 5 trials (6-10), and so on. Because we could identify specific403

individuals, we were in a position to combine data from different experimental sessions and plot the404

results separately for different animals. All 7 fish present a negative (or near 0) trend of performance405

with trial progression (a two-tailed Wilcoxon test for the 7 correlation values being different from 0406

returns p<0.02; all linear fits in Figure 4A present a negative slope). For some individuals (upper407

triangles in Figure 4A) the animal was well above chance (∼0.8) at the beginning of the test, and408
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reached chance performance by the end of the block.409

We wished to confirm this trend in a larger cohort of different individuals. We therefore tested an410

additional 20 fish, none from the previous population, for one block each (see Methods). Because411

we were not in a position to identify specific individuals within this cohort, we could not collate412

data across sessions and we therefore collected only one block (20 trials) per individual. Due to413

the more limited amount of data available for each individual, it was not possible to perform the414

analysis separately for each individual; we therefore plot the aggregate result (across individuals) in415

Figure 4B. The advantage with respect to the plot in Figure 4A is that, because we are averaging416

across individuals and there was a larger number of them, we can resolve the trend with 1-trial417

resolution. The negative trend for performance as a function of block progression is again clear418

(correlation coefficient of -0.57 significant at p<0.01). We also confirmed that the average internal419

noise estimate from this cohort (open circle in Figure 3) fell within the range spanned by individual420

estimates from the first cohort (red symbols in Figure 3).421

3.7 Disengagement from decreased exploration has little impact on noise422

estimates423

There are at least two scenarios under which test animals may display behaviour that is increasingly424

decoupled from the stimulus as reflected in Figure 4A-B. Under one scenario, they may swtich from425

stimulus-driven behaviour to free exploratory behaviour; the associated overall behavioural activity426

(e.g. distance travelled per unit time) may increase under these conditions, as the animals would be427

less and less ‘locked’ into maintaining their location within close range of the high-contrast stimulus.428

Within the context of the SDT model, this scenario would correspond to increased internal noise:429

behaviour becomes more ‘erratic’. Under a different (in a sense opposite) scenario, test animals may430

reduce their overall activity altogether; this would also result in reduced behavioural drive towards431

the high-contrast stimulus, but it would not necessarily involve noisier behaviour.432

Figure 4C plots activity (as a fraction of overall mean) across block duration (for SNR=6, the433

condition for which we have the largest dataset). There is a clear negative trend (correlation coef-434

ficient of -0.9, p< 10−7) consistent with the second scenario outlined above: test animals display435

progressively reduced exploration of the tank (whether stimulus-driven or otherwise). This phe-436

nomenon is measurable at the level of individual experiments (distribution of correlation coefficients437

from separate test blocks (inset to Figure 4C) is clearly shifted towards negative values, p< 10−5).438

To understand the potential impact (or lack thereof) of this nonstationary behaviour (and the as-439

sociated change in binary choice exposed by Figure 4A-B) on our estimates of internal noise, we440

14



attempted to compute separate estimates for different time epochs of each block. This is only441

possible to a limited extent: in order to compute percent agreement for a given trial n, we need442

to pool data from trial 10+n when the same stimulus was double passed. This means that the443

resulting estimate refers to a time window spanning half the block. Nevertheless, we can repeat444

this procedure for n=1, n=2, and so on. By doing this, we are effectively sliding the time window445

towards later sections of the block, providing at least an approximate view of how our estimates446

may be affected by the type of nonstationary behaviour documented in Figure 4A-C.447

Figure 4D demonstrates that there was little impact of nonstationary exploration on the resulting448

estimates of internal noise: all except one estimate fall within the plausible range (indicated by orange449

horizontal dashed lines), and there was no obvious trend with time (correlation coefficient (-0.25)450

is not significant at p=0.5). This result indicates that the internal noise estimates generated by451

our protocols are to some extend decoupled from other aspects of the animal’s behaviour, in the452

sense that they remain stable despite strong systematic changes in macroscopic features of how the453

animal navigates the tank. This outcome is consistent with the established finding that internal454

noise estimates do not correlate with sensitivity (d′), even for large datasets that support detection455

of small correlations (Neri (2010a, 2015)).456

4 DISCUSSION457

4.1 Relationship to previous studies of intra-individual variability458

The measurements reported in this study represent an attempt to quantify behavioural internal459

noise in a non-human species within a unified theoretical framework. Internal noise is arguably the460

most prominent feature of animal behaviour that generalizes across sensory domains and cognitive461

operations (Green 1964; Dinstein et al. 2015). The applicability and relevance of the notion of462

behavioural inconsistency to animal cognition has been extensively appreciated in the literature and463

has been studied on multiple occasions in the form of intra-individual variability (IIV; MacDonald464

et al. 2006), however measurements of IIV have never been referred back to a normative theoretical465

framework that would allow quantification using the same units across different species, stimuli466

and task specifications. For this reason, even if IIV has been quantified for some vertebrate and467

invertebrate species in relation to specific tasks (Highcock & Carter 2014; Jandt et al. 2014), it has468

proven difficult to study the significance of those measurements across species.469

The distinction between IIV and internal noise is made clearer by considering the fundamental470

methodological differences that set these two approaches apart. In typical studies of IIV, the animal471
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is placed within what are assumed to be identical environmental conditions, and its behavioural472

variability with respect to a specific trait is measured. As noted by previous authors (Highcock &473

Carter 2014), the assumption of an identically stable environment is in itself problematic, particularly474

for studies carried out in the wild: if the environment is actually changing substantially (Jandt et al.475

2014), it may drive behavioural variability to a measurable extent. It then becomes impossible to476

disentangle the impact of external from internal factors onto the trait of interest. Studies of IIV477

not only eschew the deliberate introduction of external variability, but also do not take into account478

whatever variability may be intrinsic to the experimental setting (Highcock & Carter 2014; Jandt479

et al. 2014). The approach adopted in this study relies on precisely opposite premises: noise is480

deliberately injected into the environmental stimulus and its characteristics are finely controlled on481

a trial-by-trial basis to enable quantitative definition of the residual internally-driven behavioural482

variability. Indeed, in the absence of external modulation (the condition SNR=∞ corresponding483

to gray data in Figure 2) this approach is undefined and becomes inapplicable, the opposite of IIV484

measurements.485

The approach adopted here relies on a double-pass methodology (Burgess & Colborne 1988)486

that is potentially applicable across a very wide range of sensory domains, task specificiations (Neri487

2010a), and even species as we demonstrate here. The underlying structure and principles of the488

methodology remain identical, and can be referred back to the same general theoretical construct for489

capturing animal sensory discrimination (Diependaele et al. 2012): signal detection theory (Green &490

Swets 1966). Within this framework, internal noise is estimated in units of the external perturbation491

introduced by the stimulus at the level of its perceptual representation; the latter concept is applicable492

to zebrafish just as it is applicable to humans, or any other animal for that matter, provided it can493

be shown that it returns sensible and interpretable results in both cases. We have demonstrated494

that it is possible to identify protocols that will deliver sensible results, however our investigation495

has also highlighted a number of difficulties associated with this programme for future investigation496

(see below).497

4.2 Methodological challenges498

The first challenge we encountered in driving preference using our stimuli is that not all choices of499

stimulus specification led to useful/interpretable results. With relation to our experimental setup,500

preference is driven by the differences we introduce between the two stimuli presented on opposite501

sides of the tank. These differences are controlled by two properties: the difference between the502

means of the two contrast distributions associated with the two stimuli, and the common standard503
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deviation of those two distributions (Figure 1A-D). Stimulus discriminability or signal-to-noise ratio504

(SNR) is defined by the ratio of these two properties. The smallest value we tested in this study505

was 4 (this is not in general a small value by psychophysical standards); the two stimuli associated506

with this SNR level are discriminable upon cursory inspection by a human (see Figure 1A), but they507

often generated uninterpretable estimates of percent agreement (i.e. below chance, see black circle508

and lower triangle in Figure 2A). Our most reliable and useful results were delivered by a slightly509

higher SNR value of 6 (red data points in Figure 2). Larger values (e.g. 12) did not generate robust510

results (see blue data points in Figure 2); this is expected because, in the limit of SNR=∞ (gray511

data points in Figure 2), our methodology is not defined and internal noise estimates cannot be512

obtained. Intuitively, the reason for this failure is that, at very high stimulus SNR’s, the externally513

applied noise perturbation becomes irrelevant and does not contribute to the animal’s drive. Because514

internal noise is defined and estimated in units of external noise drive, the double-pass approach515

becomes inapplicable and is bound to fail. Interestingly, this is the typical regime of operation for516

studies relying on IIV (MacDonald et al. 2006; Highcock & Carter 2014).517

It may seem surprising that stimulus effectiveness did not vary monotonically with SNR: for518

example, why should the SNR value of 6 work better than values that are both greater and smaller?519

Based on SDT considerations, we expect that large SNR values should not be viable, but we also520

expect that the lower the SNR value, the greater the contribution of external noise, and therefore521

the more effective the stimulus for internal noise estimation. Indeed, based on SDT considerations522

alone, a stimulus that only contains noise and no signal should be ideally suited to these experiments.523

The above considerations are based on the assumption that the behaviour displayed by the animal524

conforms to our expectations from SDT. There are many alternative scenarios, however. Consider525

for example the following possibility: that zebrafish may interpret excessive contrast heterogeneity526

(different icons taking on very different contrast values) as reflecting a non-cohesive shoal where527

shoal members occupy distant depth planes, and excessive contrast homogeneity (all icons taking528

the same contrast value) as implausible with unnatural appearance. Under this scenario, stimuli529

dominated by noise (low SNR) would become less attractive and would drive less shoaling; stimuli530

dominated by the signal (high SNR) would also drive less shoaling, but for different reasons. The531

end result in terms of shoaling behaviour as a function of SNR would be difficult to predict and may532

be non-monotonic.533

We are not suggesting that zebrafish in our experiments were ‘interpreting’ stimuli as described534

above, rather we are merely offering one of many example scenarios to illustrate the notion that it535

would be simplistic to assume that we can predict how the animals will behave as we vary stimulus536

parameters, because our predictions are based on our own projected model of how the animals537
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‘should’ behave. We must first determine the way in which the animals actually behave; if we then538

wish to model specific aspects of the observed behaviour, this can only be done within the restricted539

range for which our model provides a reasonable approximation. In our experiments, for reasons that540

remain partially unclear at this stage, a stimulus SNR of ∼6 was able to engage the animals with541

sufficient efficacy to deliver reasonable estimates which cannot be attributed to stimulus-decoupled542

behaviour (Figure 2B) and that largely conform to SDT.543

Even after suitable stimulus specifications have been identified that are effective in driving prefer-544

ence on the part of the test animal, there is an additional challenge associated with the deteriorating545

quality of such drive over time. As we have demonstrated by analyzing the progression of preference546

within our 14-minute blocks of 20 trials, behavioural drive steadily declines during testing (Figure547

4B) and can reach chance performance within ∼10 minutes depending on the specific animal being548

tested (Figure 4A). This is not overly concerning for standard protocols where only one binary choice549

is measured in response to a single presentation of two competing stimuli (Engeszer et al. 2004; Neri550

2012): 10-15 minutes are sufficient to obtain one estimate of preference using methods analogous to551

those used here. Application of the double-pass methodology, however, requires multiple estimates552

from several distinct trials during which different noise samples are delivered to the animal (Burgess553

& Colborne 1988; Neri 2010a). For human estimates, each block typically consists of 100 trials,554

each trial lasting less than 1 second. With zebrafish, estimation of preference via visually-guided555

spontaneous shoaling requires a longer time window, allowing us to administer only 20 trials per556

block. This is an important limitation of the present approach, because the SDT model underlying557

internal noise estimation does not incorporate the kind of non-stationary behaviour exhibited by558

zebrafish for spontaneous preference. It is possible that this limitation may be overcome by mea-559

suring preference under conditions of re-enforced choice behaviour, where animals would be actively560

rewarded for selecting the high-contrast stimulus via food delivery. Test animals may maintain more561

stable drive under those conditions, further enabling double-pass measurements.562

Despite the drawback discussed above, the methodology proposed in this study retains a level563

of feasibility not afforded by other techniques. An alternative method commonly adopted in human564

psychophysics is the equivalent noise paradigm (Burgess et al. 1981; Legge et al. 1987). This565

method, however, relies on threshold measurements, each of which requires characterization of a566

full psychometric curve; in addition, several threshold estimates are necessary to recover the full567

threshold-versus-contrast function that is then used for the purpose of obtaining a single internal568

noise estimate. The number of trials involved is simply prohibitive for application to the zebrafish.569

Furthermore, the equivalent noise paradigm offers less flexibility with respect to stimulus design,570

which may explain why it has been used almost exclusively in visual experiments (Lu & Dosher571
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2008). The double-pass method is versatile, and has been succesfully applied not only to visual but572

also auditory phenomena (Joosten & Neri 2012). Furthermore, as explained earlier, internal noise as573

defined and measured in this study represents a potentially powerful tool for comparative analysis.574

4.3 What is being measured by our protocol?575

Behavioural measurements of intrinsic noise necessarily accumulate different sources of variability:576

distal transduction noise, more proximal neural noise, noise associated with the discrimination mech-577

anism in the brain, fluctuations in motivation and attention, motor noise, and possibly others (Faisal578

et al. 2008; Dinstein et al. 2015). The relative weights of these different components may vary579

between tasks, as well as between experiments in the same task. It is also reasonable to expect that580

they would vary between species, not least because some components may only be present in some581

species and not others. Isolating the different components is a complex goal for any experimental582

paradigm/protocol. Because our measurements represent a first step in the direction of tackling this583

complex problem, it would be unrealistically ambitious to expect that the above issue would be fully584

resolved by this first exploratory step. Nevertheless, we believe specific features of our dataset pro-585

vide at least an indication that our estimates are not confounded by certain changes in behavioural586

activity, and are therefore robust with respect to those changes (see below). Furthermore, although587

the quantitative measurements returned by our protocols may present interpretational difficulties588

with relation to their absolute values, they nevertheless enable conclusions based on relative changes589

associated with specific treatments/manipulations.590

We observed clear signatures of nonstationary behaviour unfolding over the duration of each591

experiment (∼15 minutes). With relation to binary choice, these effects are most clearly visible as a592

decrease in the percentage of high-contrast choices over time (Figure 4A-B). Based on more detailed593

analysis of the animal’s exploratory behaviour (Figure 4C), we propose that this result is a byproduct594

of a systematic trend towards reduced exploration. More specifically, we observed a 20-30% reduction595

in behavioural activity over the course of the 20-trial block. It is unclear why the animal progressively596

reduces its engagement in this manner, but we note that it is not necessarily the case that such597

nonstationary behaviour should impact our estimates of internal noise as defined within the context of598

the SDT model outlined earlier. For example, disengagement may reflect poorer separation between599

the internal representations of the two stimuli, i.e. a decrease in internally represented SNR. The600

associated decrease in percentage of correct responses (Figure 4A-B) would be accompanied by601

changes in percent agreement that may allow recovery of the internal noise component in the face602

of the SNR changes. Our results indicate that this scenario may be applicable to our protocol and603
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dataset: internal noise estimates were stable across the duration of each block (Figure 4D), despite604

the nonstationary behaviour we documented over a similar time window (Figure 4C). Although605

this result does not allow us to pinpoint every component of behavioural variability that may have606

contributed (or not) to our estimates, it does provide evidence that those estimates did not include607

one clearly measurable source of behavioural nonstationarity. Future experiments will be necessary608

to dissect the contribution of different sources in greater detail. Our findings offer a starting point609

for those investigations, together with specified protocols for maximizing successful estimation.610

Although as detailed above we cannot fully dissect the different sources that may have contributed611

to the aggregate internal noise estimates returned by our behavioural protocols, those estimates can612

be exploited to support conclusions about the impact of specific manipulations, such as drug delivery613

or targeted brain lesions. It is conceivable, for example, that specific drugs may reduce or enhance614

behavioural consistency (Epstein et al. 2011). Internal noise as assessed by our protocols may be615

sensitive to the effects of such agents, possibly under conditions where other behavioural metrics616

may not expose those effects. As we have demonstrated in Figure 4, internal noise estimates can617

be to a large extent decoupled from other markers of behaviour (see also Neri (2010a)), therefore618

potentially providing additional and complementary tools for more detailed and richer accounts of619

how targeted manipulations may impact behaviour. This approach would rely not on the absolute620

value of those estimates, but on the differential effect observed under manipulation; the latter effect621

would retain a significance of its own, at least as an early indicator of relevant manipulations, despite622

the potential difficulties associated with a full interpretation of the absolute estimated values.623

When discussing intrinsic noise, the terms ‘additive’ and ‘multiplicative’ are often adopted to624

label different types of internal variability. This terminology can be misleading, however, because625

the same source of behavioural variability may be incorporated as additive or multiplicative by626

different models, so that model architecture becomes critical for drawing the additive/multiplicative627

distinction. In the standard SDT model adopted here, noise consists of a Gaussian fluctuation added628

to the decisional variable. In this sense, it is late additive (‘late’ refers to the stage at which it is629

added, this being the last stage before producing a behavioural response). Its unit, however, is the630

standard deviation of the distribution taken by the decisional variable as a result of external stimulus631

noise (this is also how d′ is defined): its intensity is therefore defined as a multiple of external noise,632

potentially generating confusion. For example, if external noise is varied and the estimated value of633

internal noise remains unchanged (as is typically found (Neri 2010b)), this means that the intensity634

of internal noise has actually changed and it has done so in a manner that scales proportionally635

with external noise by the same constant value. More importantly, because internal noise as defined636

and estimated here potentially encompasses multiple sources of internal variability (see above), it is637
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not possible to know with certainty whether its physiological origin is additive or multiplicative in638

nature. Our choice of model is motivated by extensive literature justifying its general applicability639

to human vision (Burgess & Colborne 1988; Neri 2010a, 2013).640

4.4 Comparison with human estimates641

Based on their bimodal distribution (histogram to the right of Figure 3), internal noise estimates642

from zebrafish appear to fall into one of two categories: those outside the plausible range (>5),643

and those within a range comparable to existing estimates from humans. This result indicates that644

the zebrafish may serve as a non-human model of behavioural internal noise in humans, potentially645

enabling a novel approach to this fundamental aspect of sensory processing. As mentioned above,646

internal noise may be under the control of available pharmacological agents and/or genetic factors,647

a possibility that could be feasibly explored in the zebrafish and subsequently transferred to human648

experiments (Norton & Bally-Cuif 2010). Because the trait of interest is ultimately behavioural,649

and because such traits may be relevant to specific pathological conditions in humans (Gilden &650

Hancock 2007; Perry et al. 2010; Kofler et al. 2013; Dinstein et al. 2015), a programme of this651

kind must rely on a behavioural metric supported by established interpretational frameworks and652

immediate generalizability across species. We propose that the class of measurements reported in653

this study, together with the associated experimental protocols and analytical tools, should serve as654

a viable candidate for future efforts in those directions. Clearly, far more data than presented here655

will be necessary to consolidate these tools. Our study represents only a first exploratory step in the656

direction of identifying whether the proposed tools may be worth pursuing in future research.657
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Figure 1: Double-pass procedure for measuring behavioural inconsistency. Test animals were
presented with two movies of synthetic conspecifics on opposite sides of the tank, depicted by
left and right images in A-D. We varied both mean and standard deviation (SD) of the contrast
distributions (defined by black/red functions below images) assigning contrast to each synthetic
fish. The mean contrast of the non-target stimulus (left in A-D, see red distribution) was always
smaller than the target stimulus (right, see black distribution). We tested 4 stimulus configurations
with increasing target/non-target discriminability (smallest in A, largest in D) controlled by larger
mean difference and/or smaller standard deviation (compare distributions below stimulus images
progressing from A to D). Each block consisted of 2 passes of 10 trials per pass (E), for a total of 20
trials per block. The two passes were identical: the stimulus pair presented on the first trial of the
first pass (trial number 1) was identical to the stimulus pair presented on the first trial of the second
pass (trial number 11), and so on. Stimulus pairs are depicted by left/right images in E. The position
of the test animal along the length of the tank (horizontal axis) is indicated by small dots (one dot
every 1/4 second) for first and second pass separately (red and blue respectively); the corresponding
mean position is indicated by long vertical segments during stimulus presentation, and by short
vertical segments during pauses between trials (blank screens). Middle of the tank is indicated by
vertical dashed line: fish position to the left (right) of this line indicates preference for the stimulus
indicated by the left (right) icon. Close inspection of fish position across trials demonstrates that
preference was similar but not identical on the two passes, with some trials (number 1, 3-5, 8-10)
presenting same preference and others (number 2, 6-7) presenting opposite preference.
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Figure 2: Zebrafish behaviour conforms to signal detection theory (SDT). The relationship between
percent correct (% of trials on which the animal shows preference for the stimulus with higher mean
contrast, plotted on the y axis in A) and percent agreement (% of trials on which the animal
shows same preference for two identical presentations of the same stimulus pair) conforms to the
predictions of SDT (indicated by orange lines, see Methods) for an internal-to-external noise ratio
of ∼2 (darker orange). Percent correct demonstrates lawful dependence on stimulus discriminability
or signal-to-noise ratio (SNR): the four SNR values delivered by the four stimuli in Figure 1A-D
(colour-coded here by black, red, blue and gray) correspond to increasing average percent correct
values (indicated by arrows pointing towards y axis in A). A certain degree of above-chance percent
agreement is expected from above-chance percent correct without necessarily assuming trial-by-trial
stimulus-response coupling; the y axis in B plots this expected level of percent agreement, versus
the measured values (x axis, same as in A). Only the SNR=6 condition (red) is associated with
empirical estimates that exceed those predicted by percent correct values alone (red data points
fall below diagonal unity line within region indicated by green shading). Error bars show ±1 SEM.
Different symbols refer to different (individually identified) animals.
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Figure 3: Direct comparison between zebrafish and human estimates of internal noise. SDT maps
percent correct and percent agreement estimates (from Figure 2A) onto corresponding internal noise
and sensitivity estimates (Burgess & Colborne 1988), plotted on y and x axes respectively (open
circle shows average estimates across animals from the second cohort, for which individuals could
not be identified separately; remaining symbols are plotted to the conventions of Figure 2). Internal
noise is defined in units of external noise SD (σN , see Methods), sensitivity in d′ units. Internal
noise estimates are bimodally distributed (histogram to the right), with roughly 1/2 falling within
the viable range (0-5, indicated by orange horizontal dashed lines) and the remaining half being
implausibly large (>5). The transition point between the two groups (∼5) is consistent with earlier
work in humans (Neri 2010a), which has also identified the region defined by green shading as being
representative of human internal noise. Zebrafish estimates for the SNR=6 condition (red) mostly
fall within this region.
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Figure 4: Shoaling preference towards high-contrast synthetic stimuli wanes during testing, but has
little impact on internal noise estimates. Percent correct (y axis) is plotted in A for 4 different epochs
of each test (block of 20 trials, see Figure 1E), separately for each animal (different symbol/colour).
We added a small horizontal offset to data from different animals relating to the same epoch so
as to avoid clutter in the plot. Lines show linear fits. B plots percent correct on each of 20 trials
within a block; each value is the average across 20 animals. C plots activity (on y axis) defined as
the distance travelled by the animal per unit time, as a fraction of its average value over the entire
block (value of 1 means equal to average). D plots internal noise estimates from a sliding temporal
window (different double-passed trial pairs, see main text) across each block; orange lines and green
shaded area correspond to those in Figure 3. C-D show data from condition SNR=6 (labelled red
in Figures 2-3) averaged across animals. Inset to C shows distribution of correlation coefficients for
the trend shown in the main panel when computed separately for each animal/test. Solid line in
B-C shows linear fit, dashed lines ±95% confidence intervals around fit.

28


