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Abstract 

In this paper, a semi-analytical solution of the pseudosteady-state (PSS) 

productivity index under non-Darcy flow condition is proposed. Based on the model, 

a new method of optimization of the fracture conductivity has been developed for 

non-Darcy flow in the fracture. Meanwhile, the effects of the Reynolds number, the 

proppant number and the fracture conductivity on the dimensionless productivity 

index have been discussed in detail.  

Results show that: (1) the classic UFD (Unified Fracture Design) curves of the 

Darcy-flow model underestimate the effect of the proppant number and are 

unsuitable for the non-Darcy-flow fracture optimization. Our discretized model 

provides a new tool to obtain the optimal fracture parameters for the case of 

non-Darcy flow condition. (2) for a given penetration ratio, the non-Darcy flow 

behavior exerts a strong influence on the productivity index with the dimensionless 

fracture conductivity CfD= 0.1 -1000 and a considerable productivity index drop can 

be observed. For the extremely low (CfD<0.1) or high (CfD>1000) dimensionless 

fracture conductivity, the effect of non-Darcy flow becomes negligible. (3) the effect 

of the non-Darcy flow on the productivity index becomes pronounced at large value 
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of proppant number, Np. For a given proppant number, the optimal fracture 

conductivity is slowly increasing as the Reynolds number increases. However, the 

magnitude of the effect on the productivity index is gradually declining. At the 

Reynolds number less than 5, the non-Darcy flow has a relatively strong impact on 

the productivity index and an apparent fall of the maximum productivity index can 

be noticed, especially for a large proppant number. Beyond the value of 5, the 

declining trend of the maximum productivity index gradually slows down as the 

Reynolds number increases.  

Kewords: productivity index; non-Darcy flow; vertically fractured well; 

optimization of the fracture parameters; rectangular reservoir 

 

 

 

Introduction 

As an efficient stimulation technique,  hydraulic fracturing has been widely 

used to increase productivity index (PI) by increasing production rate or decreasing 

pressure drawdown, especially for tight / shale oil/ gas reservoirs. 

 Mathematical models have been widely used to calculate the productivity of a 

fractured well under Darcy flow condition. Prats (1961) introduced the concept of 

equivalent wellbore radius to consider the effect of the fracture. Reymond and 

Blinder (1967) provided ways of designing fracture treatments and evaluating their 

results in a damaged formation with a mathematical model relating stimulation ratio 
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to the relative conductivity of fractures.  They showed that their model was in 

agreement with the McGuire-Sikora curves for the fracture penetration ratios less 

than one-half of the drainage radius. The effects of fracture penetration ratio on 

reciprocal effective wellbore radius have been presented for the uniform-flux and 

infinite-conductivity fracture (Gringarten and Ramey, 1974; Raghvan et al., 1978). 

Cinco-Ley and Samaniego (1981) introduced a pseudo-skin function to characterize 

the impact of a finite-conductivity fracture on the performance of a vertical well. 

Riley et al. (1991) provided a solution for the equivalent wellbore radius based on 

the assumption of elliptical finite-conductivity fractures. According to the definition 

of pseudo-skin and pseudo-skin function, dimensionless pseudo-steady state (PSS) 

productivity index can be expressed by three parameters, i.e., boundary radius, half 

length of a fracture and pseudo-skin function. In calculations, it was convenient to 

use an explicit expression to replace the pseudo-skin function (Economides et al., 

2002).  

ValkÓ and Economides (1998) introduced the concept of proppant number and 

proposed the UFD (Unified Fracture Design) method for conductivity optimization. 

For a fixed proppant number, the maximum productivity index can be achieved by 

fracture conductivity optimization in a square drainage area. Diego J.Romero et al. 

(2003) extended ValkÓ-Economides method to a stimulated well with fracture faces 

and choke skins. A.S. Demarchos et al. (2004) pushed the physical limits of 

fracturing in a wide range of reservoirs with a series of parametric studies. Meyer 

and Jacot (2005) used the pseudosteady-state resistivity model to calculate the 
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productivity of a fractured well. Daal and Economides (2006) calculated the 

pseudosteady-state productivity index of a fractured well in a rectangular drainage 

area using the Direct Boundary method. Wang and Jia (2014) established a model to 

calculate the productivity of multi-fractured horizontal well. 

For a fractured gas well, the effect of non-Darcy flow on the productivity 

cannot be ignored (Holditch and Morse, 1976; Guppy et al., 1982a, b). Vincent et al. 

(1999) presented several cases of non-Darcy flow effects on productivity. For a 

specified mass of proppant, a shorter and wider fracture can be used to compensate 

for the non-Darcy effects (Vincent et al., 1999 ; Hernandez, 2004 ; Kakar et al., 

2004). Gil et al. (2003) discussed the design and analysis of fractured-gas-well tests 

for the case of non-Darcy flow within the fracture. They used a rate-dependent skin 

to represent the additional pressure drop caused by the effect of non-Darcy flow. 

They pointed out that non-Darcy flow effect may be reduced to tolerate ranges by 

design considerations. An effective permeability was introduced to account for the 

effect of non-Darcy flow (Henry D. Lopez-Hernandez et al., 2004; Y. Wei and 

Economides, 2005). Based on the definition of the effective permeability, the 

equation form of non-Darcy flow can be transformed into Darcy flow equation form. 

Thus the ValkÓ-Economides optimization curves (UFD curves) and an iterative 

process started with a Reynolds number guess have been used to obtain the 

maximum productivity index and optimal fracture conductivity.  Zeng and Zhao 

(2010) also presented a different optimal method for a vertical fractured well under 

non-Darcy flow effects. Based on the assumption of the infinite homogeneous 
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reservoir,  a constant value of 0.5 with the pressure derivatives was chosen as the 

pseudo-steady state characteristic for hydraulically fractured wells. They suggested 

that the fracture geometry optimization could involve two stages: fracture volume 

optimization and fracture length optimization. 

As can be seen from the literature review above, the fracture can be handled by 

three methods for the productivity calculation. Firstly, the finite-conductivity fracture 

can be taken as an equivalent parameter, for example, equivalent wellbore radius 

(Prats, 1961; Gringarten and Ramey, 1974; Raghvan et al., 1978; Riley et al., 1991), 

pseudo-skin function (Cinco-Ley and Samaniego, 1981; Economides et al., 2002). 

This method is relatively simple and easy to calculate. However, it is difficult to 

extend. Secondly, the fracture can be approximately replaced by multi-equally 

spaced point-source wells (Direct Boundary method) (ValkÓ and Economides, 1998; 

Diego J.Romero et al., 2003; A.S. Demarchos et al., 2004; Daal and Economides, 

2006). Without the fracture flow model, it is hard to incorporate non-Darcy flow 

effects. Thus, an effective permeability model has been introduced to transform 

non-Darcy flow model into the Darcy flow model (Henry D. Lopez-Hernandez et al., 

2004; Y. Wei and Economides, 2005). Lastly, the fracture has been divided into n 

segments and each segment can be taken as a short fracture with uniform flow rate. 

This is a general fracture model which can be used for the Darcy and non-Darcy flow. 

However, the existing methods for the productivity calculation are based on the 

assumption of infinite-acting reservior (Cinco-Ley and Samaniego, 1981; Gil et al., 

2003; Zeng and Zhao, 2010).  
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In this paper, a fracture model incorporating into the effect of non-Darcy flow 

in a rectangular drainage area has been presented. Based on the model, we discussed 

the effect of the Reynolds number, the fracture conductivity and the proppant 

number on the productivity index with 2-D and 3-D figures in detail. Then, a new 

procedure has been employed to obtain the optimal conductivity, maximum 

productivity index, fracture length and width under non-Darcy flow condition. This 

method is different from the effective permeability model (Henry D. 

Lopez-Hernandez et al., 2004; Y.Wei and Economides, 2005) and pseudosteady-state 

equivalent model (Zeng and Zhao, 2010). This paper is organized as follows : First 

of all, we present a PSS mathematical model of fluid flow in a fracture in a 

rectangular  drainage area. Secondly, the effects of the parameters on the 

productivity index are discussed in detail. Then, an application of the optimization is 

presented to illustrate the advantage of the new model. Finally, some conclusions are 

made.   

2 Mathematical models  

2.1 Model descriptions 

Fig.1 shows the conceptual model used in this paper. The following 

assumptions are made. 

(1) A vertical well is intercepted by a symmetric fracture with a half length, xf , 

in a closed rectangular drainage area. And the fracture is assumed to fully penetrate 

the reservoir. 
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(2) The reservoir is of uniform thickness h, porosity φ, and permeability k. A 

single phase flow in the reservoir is assumed to obey Darcy’s law and the viscosity 

of the fluid is μ. The total compressibility factor, ct is also uniform.  

(3) One-dimensional non-Darcy flow occurs in the fracture. The fracture 

permeability fk (x) and width fw (x) are changing along the fracture. The fracture 

storage capacity is ignored. The vertically fractured well produces at a constant rate 

q (oil well) or qgsc (gas well) in the wellbore. 

2.2 Dimensionless definitions of the variables 

For the sake of simplicity, the following dimensionless variables will be used. 

For an oil well, the dimensionless reservoir and fracture pressure are 
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For a gas well, the dimensionless reservoir and fracture pressure are 
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For the fracture flow model, the dimensionless fracture conductivity, CfD, is  
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The penetration ratio in the x direction is defined as 
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The proppant number (Daal and Economides, 2006) is  

 
2


f prop

p

res

k V
N

k V
 (5) 



 8 

From the definition of the penetration ratio and dimensionless fracture conductivity, 

we obtain 

 2
2 4
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The dimensionless flow rate of the i-th segment for the oil well and gas well are 

given as 
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For an oil well, the dimensionless productivity index in the wellbore is  
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For a gas well, the dimensionless productivity index in the wellbore is  
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Other dimensionless definitions in the reservoir model are 
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As can be seen from the dimensionless definitions above, the same 

dimensionless variables can be obtained by different combinations of the variables 

for the oil well and gas well. For simplification, we develop the mathematical 

models for the oil reservoir in Section 2 and Section 3. An example is presented to 

illustrate the application for a gas well in Section 4.  

2.3 Fluid flow in the reservoir 

The dimensionless pressure drop of a point located at (xDi, yDi) caused by a 
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point source (xwDj, ywDj) in a rectangular reservoir is presented by Ozkan (1988). 
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The dimensionless pressure drop of a point (xDi, yDi) caused by a segment 

centered at (xwDj, ywDj) with half length LfDi in the x direction can be obtained by 

integrating Eq. 11 from xwDj -LfDj to xwDj +LfDj with respect to xwDj. 
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where 
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We define Fij as the influence function  

 
 ij Di DF p p

  (14) 

In fact, The fracture can be divided into 2N segments and each segment is taken 

as a symmetrical fracture located at (xwDj, ywDj) with half length LfDj in the x direction 

(Fig.2). Regarding the assumption of symmetric fracture, only half of the fracture is 

considered in the following section. According to the superposition principle, the 
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pressure solution of the point (xDi, yDi) caused by the production of the fracture (2N 

segments) can be expressed as 
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 The sensibility of the discretized segments, 2N, is tested by increasing the 

number of the segments and comparing the error of the contiguous segment number 

for different dimensionless fracture conductivity. It is found that the error is 

decreasing with the increase of discretized segments. We choose the discretized 

segments, 2N, corresponding to the value of the error less than 1% as the optimal 

segments. Thus, N=100 and 800 are used for CfD greater than 1 and less than 0.1, 

respectively. N=400 is used for the calculation while CfD is between 0.1 and 1. 

2.4 Fluid flow in the fracture 

Luo and Tang (2015) derived a general solution for the varying conductivity 

fracture under non-Darcy flow condition. In this paper, we present the derivation in 

brief. 

To account for the high velocity flow in the fracture, the following Forchheimer 

equation will be used (Guppy et al. 1982),  
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where v is flow velocity in the fracture, ρ is fluid density, and the term β is 

called the “β factor” (Guppy et al.,1982). Eq.16 can be written in the form of Darcy 

flow  
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The apparent fracture permeability in Eq. 17 is defined as 
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In order to analyze the effect of non-Darcy flow in the fracture, the Reynolds 

number was defined as  
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Thus, Eq.17 can be written in the following dimensionless form  
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Combination of the inner and outer boundary conditions results in the 

discretized form of the fracture model ( Luo and Tang, 2015) 
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2.5 Productivity index of a fractured well 

The dimensionless productivity index of the i-th segment can be defined as 
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The corresponding total dimensionless productivity index of the oil well in the 

wellbore is  
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The PSS equation (Eq.15) and the fracture equation (Eq.22) of the i-th segment 

can be further expressed as 
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According to the continuity condition, for the pressure and the flux to be 

continuous along the fracture surface, the following conditions must hold along the 

fracture segment 
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The calculation of ija  is presented by Luo and Tang (2015) in detail. 

By solving Eq.31, the dimensionless productivity index DiJ  of each segment 

can be obtained. Then the total productivity index DJ  of the vertical fracture in the 

wellbore can be calculated by Eq.25. 

3 Results  

3.1 Verification of the model 

We compare our solutions with results presented by ValkÓ and Economides 

(1998). As shown in Table 1, our results are highly consistent with the results when 

the dimensionless fracture conductivity is greater than 1. For the case of the low 

dimensionless fracture conductivity, the variance can be observed which is caused by 

the discretized segments, different calculation methods and selection of the pressure 

point for calculation. ValkÓ and Economides introduced many point sources 

(vertical wells) to approximately represent the fracture and the calculated pressure 

point is at (xwD, ywD+ ε) for the point source instead of a line source (fracture) 
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calculated at (xwD, ywD) in this paper.  

3.2 Effect of the fracture penetration ratio and Reynolds number on the productivity 

index 

Fig.3 illustrates the effect of the fracture penetration ratio (Ix) and Reynolds 

number (NRe) on the dimensionless productivity index (JD) in a square drainage area. 

It is shown that JD increases as the penetration ratio increases at the same fracture 

conductivity. For a specific penetration ratio, there is a slight rise of JD when CfD is 

below 0.1. In the range of 0.1 to 1000 for CfD, a relatively rapid increase of JD can be 

observed, especially for the high penetration ratio (Ix=0.8). The curves flatten out at 

large CfD which delineates the infinite-conductivity fracture performance. Moreover, 

the existence of non-Darcy flow (NRe>0) in the fracture will result in the reduction of 

JD compared with the Darcy flow (NRe=0, black line). A stronger effect can be found 

when the fracture conductivity, CfD, is in the range of 0.1-1000 with a large 

penetration ratio (Ix=0. 8).  

3.3 Dimensionless productivity index JD at Np less than 0.1 

The effects of the Reynolds number, the fracture conductivity and the proppant 

number on the productivity index are presented in Fig.4 through Fig.12 for the case 

of low proppant number (Np<0.1). Some 2-D and 3-D figures are used to elaborate 

the effects. 

Fig.4 shows the dimensionless productivity index as a function of 
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dimensionless fracture conductivity with the proppant number as a parameter for 

Np<0.1 under the Darcy flow condition. This figure was first drawn by ValkÓ and 

Economides (1998), who pointed out that for a given value of Np, the maximum 

productivity index is achieved at a well-defined value of the dimensionless fracture 

conductivity located at the peak of the individual curve. At proppant numbers less 

than 0.1, the dimensionless fracture conductivity corresponding to the maximum JD 

will always occur at CfD=1.6. 

For non-Darcy flow in the fracture, the Reynolds number exerts great influence 

on the dimensionless productivity index. As shown in Fig.5, the optimal 

conductivities will not stay constant at CfD=1.6 but fluctuate around CfD=3.06 for the 

case of NRe=10. 

Fig.6 further reveals the effect of the Reynolds number on the productivity 

index at a proppant number of 0.01. With the increase of the Reynolds number, the 

optimal conductivity becomes larger and a steady fall in the productivity index can 

be noticed. The optimal conductivity is at CfD=1.6 corresponding to the Darcy flow 

while it is 4.296 at the Reynolds number equal to 20. Meanwhile, the maximum 

productivity index reduces from 0.304 at NRe=0 to 0.263 at NRe=20.  

In addition, some 3-D color figures and their top views are presented to 

illustrate the effects of both the fracture conductivity and the Reynolds number on 

the productivity index for a given proppant number in Fig.7 through Fig.12. For an 

extremely low proppant number, such as Np=0.0003, the Reynolds number has a 

relatively weak impact on the productivity index. The peak of the JD curve (Fig.7) 
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drops steadily with the increase of the Reynolds number. The optimal fracture 

conductivity changes from 1.6 at NRe=0 to 3.2 at NRe =20 (Fig.8). On the contrary, 

for a relatively large proppant number, such as Np=0.03, a considerable fall of the 

peak of the JD curve (Fig.11) can be noticed at a low Reynolds number. The scope of 

the optimal fracture conductivity is between 1.6 and 4.47 (Fig.12). 

In general, the effect of non-Darcy flow on the productivity index becomes 

more and more significant with the increase of the proppant number. However, the 

magnitude of the effect is gradually declining as the Reynolds number increases for a 

given proppant number (Fig.7, Fig.9 and Fig.11). Comparing with Fig.8, Fig.10 and 

Fig.12, an approximate linear relationship on a semi-log plot between the Reynolds 

number and the optimal fracture conductivity corresponding to the maximum 

productivity index can be observed when the Reynolds number is greater than 5. 

Moreover, the relatively stronger impact on the productivity index occurs at 

Reynolds number less than 5 (Fig.7 through Fig.12). 

3.4 Dimensionless productivity index JD at Np greater than 0.1 

Fig.13 and Fig.14 present the JD curves with the Darcy and non-Darcy flow 

effect at Np greater than 0.1, respectively. The maximum productivity index 

increases with increase in the proppant number. The effect of the non- Darcy flow 

will not change the trend of the curves, but decrease the range of the optimal 

conductivity CfD from 1.96-100 at NRe=0 to 4.7-100 at NRe =10. Comparing Fig.6 

with Fig.15, the same phenomena can be found that the presence of non-Darcy flow 
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reduces the productivity index and enlarges the optimal fracture conductivity. 

However, the effect of the non- Darcy flow at a large proppant number is more 

obvious than that at a low proppant number. Compared to the Darcy flow in the 

fracture, the maximum productivity index JD at NRe =20 drops by 13.5% when Np= 

0.01 (Fig.6) and by 42.89% when Np= 3 (Fig.15), respectively. In addition, for the 

infinite-conductivity fracture (CfD>300), the curves with different Reynolds number 

overlay each other, implying a negligible non-Darcy effect for an extremely large 

fracture conductivity (Fig.6 and Fig.15). 

The 3-D color figures and their top views are presented in Fig.16 through 

Fig.21 at Np=0.3, 3, and 30, respectively. For comparison, we use the same scales 

with CfD=0.1-1000, NRe=0-20 and JD=0.2-2 to illustrate the curves of the 

productivity index. As seen, the maximum productivity index drops dramatically 

when NRe <5 for a large proppant number, such as Np=3 (Fig.18) and Np=30 (Fig.20). 

Beyond the value of 5 for the Reynolds number, the declination of the maximum 

productivity index gradually slows down (Fig.16, Fig.18 and Fig.20) and an 

approximate linear relationship on the semi-log plot between the maximum 

productivity and the fracture conductivity can also be observed just like the cases 

with the low proppant number (Np<0.1) (Fig.8, Fig.10, Fig.12, Fig.17, Fig.19 and 

Fig.21). 

3.5 Comparison of our method with the equivalent model 

The curves of the productivity index can be used to determinate the optimal 
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fracture length and width for a given proppant number (ValkÓ and Economides, 

1998; Economides et al., 2002; Diego J.Romero et al., 2003; Daal and Economides, 

2006). The UFD (Unified Fracture Design) method has been widely used for the 

fracture design under the Darcy flow condition (Economides et al., 2002). For 

non-Darcy flow in the fracture, an approximately equivalent model which introduces 

the concept of the effective permeability to transform non-Darcy flow into Darcy 

flow was developed to obtain the optimal fracture length and width by using the 

Darcy-flow curves of the productivity index (Henry D. Lopez-Hernandez et al., 2004; 

Y. Wei and Economides, 2005). In this section, we discuss the adaptability of the 

equivalent model to deal with non-Darcy flow in the fracture. 

The parameters of a circular drainage area presented by Henry D. 

Lopez-Hernandez et al. (2004) were used to calculate the productivity index (Table 

2). Although our model is based on the assumption of the rectangular drainage area, 

it can also be used to calculate the performance of the circular drainage area when 

e e ex y r   (Ozkan, 1988; Economides et al., 2002).  

We calculate the proppant number. 

Reservoir volume (Vres) 

 
2 2 7 3= 745 39=6.8 10    res eV r h ft  (34) 

The volume of proppant injected (Vi-2w) 

 
-2 3

-2

0.016( ) 0.016 (60,000)
= =610

(1- ) (1-0.40) 2.62






p w

i w

p P

M
V ft

SG
  (35) 

Volume of proppant reaching the pay (Vp-2w) is estimated from the ratio of pay 

to the fracture height: 
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 3

-2 -2

39
= =610 =171

139
p w i w

f

h
V V ft

h
  (36) 

The real proppant number (Np) is obtained from 

 
2

7

2 2 134248 171
3.383

0.2 6.8 10

 
  



f p w

p

g res

k V
N

k V
  (37) 

In the case of non-Darcy flow condition,  Henry D. Lopez-Hernandez et al. 

(2004) introduced the concept of the effective permeability to calculate the proppant 

number. We name it as an equivalent proppant number in this paper.  

For a Reynolds number guess, such as NRe=9.82, the effective permeability 

 
Re

134248
12407

1 1 9.82

f

f eff

k
k md

N
   

 
   (38) 

And the equivalent proppant number 

 
2

7

2 2 12407 171
0.31

0.2 6.8 10

  
  



f eff p w

p

g res

k V
N

k V
  (39) 

The Darcy-flow curve of the productivity index at NRe=0 and Np=0.31 which 

represents the non-Darcy-flow curve at NRe=9.82 and Np=3.383 was used to obtain 

the maximum productivity index (Henry D. Lopez-Hernandez et al., 2004). 

In order to reveal the difference between the two methods, the equivalent 

proppant number under different Reynolds number is calculated (Table 3). 

Fig.22 illustrates the comparison of our model (red lines) with Henry D. 

Lopez-Hernandez et al. method (black lines). The dots and the blue lines denote the 

maximum productivity index on each curve. It is shown that a huge difference can be 

observed and the difference becomes larger as the Reynolds number increases (blue 

lines). The errors of the optimal fracture conductivity of the two methods are 
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between 49.14% and 80.43%, while it is from 15.75% to 29.66% of the errors of the 

maximum productivity index when NRe=2 to 20 (Table 3). 

As discussed, the equivalent model (Henry D. Lopez-Hernandez et al., 2004; Y. 

Wei and Economides, 2005) which underestimates the effect of the proppant number 

will lead to a large error for calculation of the maximum productivity index and 

optimal fracture conductivity. Thus, it is not suitable for fracture optimization under 

non-Darcy flow condition. 

4 Application 

Based on the non-Darcy-flow model developed in this study, a method to 

determine the optimal fracture parameters is proposed. As stated by Henry D. 

Lopez-Hernandez et al. (2004), an iterative process starts with a Reynolds number 

guess. A new Reynolds number is calculated at the end of the process. The iteration 

stops when error in step 6 is 0.1% or less. For comparison, the parameters presented 

by Henry D. Lopez-Hernandez et al. (2004) are used (Table 2). 

 (1) Calculate optimal dimensionless fracture conductivity (CfDopt) and optimal 

dimensionless productivity index (JDopt) 

By setting an initial guess of the Reynolds number as 16.5, the curve of the 

productivity index with Np=3.383 and NRe=16.5 is presented in Fig.23. As can be 

seen, the maximum productivity index is 0.7655 corresponding to the dimensionless 

fracture conductivity 9.942, i.e, CfDopt = 9.942 and JDopt = 0.7655. 

 (2) Calculate optimal fracture dimensions 

Optimal fracture length (xf) 
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1
1

2
2

1 134248 85.5
385.113

9.942 0.2 39


   

          

f p w

f

fDopt g

k V
x

C k h
 (40) 

The optimal propped width (wf) 

  

1
1

2
2

1 9.942 0.2 85.5
0.00570

134248 39


    

         

fDopt g p w

f

f

C k V
w

k h
 (41) 

 (3) Calculate gas production (qgsc) 

 

2 2

2 2

( - )
=

1,424

0.2 39 (5254 -1400 )
=8171.27

1424 0.0205 0.9
0.765

4 680
5

4

resg w

gsc Dopt

g res

k h p p
q J

zT

 
 

  

/Mscf day  (42) 

 (4) Calculate gas velocity within the fracture 

Gas formation volume factor (Bg) 

 
0.934 680

=0.0282 =0.0282 =0.0129
1400

res
g

w

zT
B

p


  

rcf

scf
 (43) 

Gas velocity (v) 

 
500 500 0.0129 8171.27

= = =66628.773
139 0.00570

 



g gsc

f f

B q
v

h w
 /ft day  (44) 

 (5) Calculate the Reynolds number 

Molecular weight of the mixture (Mg) 

 = =29 0.644=18.68 g air gM M SG   (45) 

Density of the gas (ρg) 

 =
w g

g

res

p M

zRT
   (46) 

 =10.732R  
3psia ft

lb mole R



 
 (47) 

z-factor is calculated at wellbore flowing conditions. 
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Therefore, 

 
1400 18.68

= =3.7953
0.934 10.732 680




 
g

 3/lbm ft  (48) 

Beta factor (β) 
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3.47 10
= = 41462
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k
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Reynolds number (NRe) 

 

16

Re

16

=1.83 10

41462 134248 3.7953 66628.773
=1.83 10 =16.512
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f g

g

k v
N

 
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  
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  (50) 

 (6) Error of Reynolds number 

 
Re Re

Re

16.5 16.512
= 100= 100=0.073%

16.5

 
 

new old

old

N N
Error

N
  (51) 

By comparing with Henry D. Lopez-Hernandez et al. results, it is shown that a 

greater productivity index can be achieved with a longer and narrower fracture 

(Table 4).  

5 Conclusions 

This paper focuses on the PSS productivity index in a rectangular reservoir. 

According to the results and observations, some conclusions can be drawn as 

follows: 

(1) Unlike the existing model, a line source has been used to describe the 

fracture instead of the point source. The characteristic of the fluid flow of the line 

source is more close to the fluid flow in the fracture than the point source. Based on 

the line-source model, a semi-analytical solution of the PSS productivity index under 
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non-Darcy flow condition is proposed. 

(2) It is difficult to consider the effect of non-Darcy flow in the fracture for the 

existing point-source model. Thus, an equivalent model for non-Darcy flow (Henry 

D. Lopez-Hernandez et al., 2004; Y. Wei and Economides, 2005) has been used to 

approximately calculate the productivity index. It is shown that the equivalent model 

underestimates the effect of the proppant number and leads to large errors in 

calculation of the maximum productivity index. This equivalent model is unsuitable 

for the optimization for the fracture conductivity under non-Darcy flow condition. A 

new and accurate method is presented for the fracture optimization accounting for 

the effect of non-Darcy flow in the fracture. 

(3) For a given penetration ratio, the presence of non-Darcy flow in the fracture 

makes productivity index drop compared with the Darcy flow. For a large 

penetration ratio, a stronger effect can be found in the range of the fracture 

conductivity CfD =0.1-1000. The effect of non-Darcy flow can be ignored for 

extremely large fracture conductivity (CfD>1000). 

(4) In general, the presence of non-Darcy flow reduces the productivity index 

and increases the optimal fracture conductivity for a given proppant number. 

Moreover, the effect of non-Darcy flow on the productivity index becomes more 

significant with the increase of the proppant number. However, the magnitude of the 

effect gradually declines as the Reynolds number increases for a given proppant 

number.  

(5) When the Reynolds number is less than 5, it has a strong impact on the 
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productivity index and an apparent fall in maximum productivity index can be 

noticed, especially for the large proppant number. Beyond the value of 5, the 

declining trend of the maximum productivity index gradually slows down. An 

approximately linear relationship on the semi-log plot between the Reynolds number 

and the optimal fracture conductivity can be observed when the Reynolds number is 

greater than 5. 
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Nomenclature 

B Volume factor, RB/STB 

CfD dimensionless fracture conductivity 

h net pay, ft 

hf fracture height, ft 

Ix penetration ratio 

JD dimensionless productivity index 

k resrevoirreservoir permeability, md 

kf fracture permeability, md 

kf-eff  effective permeability of non-Darcy flow in the fracture, md 

Lf half length of a discretization segment 

Mair molecular weight of air, lb/lb mole 

Mg molecular weight of gas mixture, lb/lb mole 

Mp-2w injected proppant mass, lbm 

NRe Reynolds number 

NRe new Reynolds number calculated at the end of actual iteration 

NRe old Reynolds number calculated in the previous iteration 

Np  proppant number 

p pressure, psi 

p  average pressure, psi 

pi initial formation pressure, psi 

pf fracture pressure, psi 
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pwf wellbore pressure, psi 

q  total oil rate in wellbore, STB /day 

fq~  flow rate of per unit fracture length from formation, i.e., flow rate 

strength, STB /d/ft 

qfDi dimensionless flow rate of the i-th segment 

qgsc  gas rate production at standard conditions, Mscf/day 

cDq   dimensionless cross-sectional flow rate within the fracture 

R  universal constant of gas law, psia.ft
3
/(lb. mole. R ) 

re drainage radius, ft 

rw wellbore radius, ft 

SGp proppant specific gravity 

SGg  gas specific gravity 

T  temperature,  R  

v  gas velocity, ft/day
 

V 
 

volume, ft
3
 

Vp-2w  volume of proppant in the net pay, ft
3
 

Vp-1w 
 

volume of proppant in the net pay in one wing, ft
3 

Vi-2w  total volume of proppant to be injected, ft
3
 

wf width of the fracture, ft 

x coordinate in the x direction, ft 

xw dimensionless wellbore coordinate in the x direction 

xe reservoir length, ft 
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xf fracture half length, ft 

y coordinate in the y direction, ft 

ye reservoir width, ft 

yw dimensionless wellbore coordinate in the y direction 

z  gas compressibility factor 

β non-Darcy flow factor, ft
-1

 

φ  porosity, fraction 

φp  proppant porosity, fraction 

µ fluid viscosity, cp 

ρ fluid density, lbm/cu ft 

ξD  dimensionless coordinate in the ξ direction 

Di   dimensionless discretized step of the i-th segment in the ξ direction 

Special Subscripts: 

D Dimensionless 

f fracture property 

g  gas well 

i initial or segment i 

opt  Optimal 

res Reservoir 

w wellbore property 

gsc standard conditions 

v vertical well (point source) 
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Fig.1 Schematic of a vertical fracture in a rectangular reservoir 
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Fig.2 Fracture divided into 2N equal segments 

 

Fig.3 Fracture performance as a function of dimensionless fracture conductivity, penetration ratio 

and the Reynolds number (square drainage area) 
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Fig.4 Fracture performance at selected proppant number (NRe=0, Np<0.1) (square drainage area) 

 

 

 

 

Fig.5 Fracture performance at selected proppant number (NRe=10, Np<0.1, square drainage area) 
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Fig.6 The effect of NRe on the productivity index (Np=0.01) (square drainage area) 

 

Fig.7 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=0.0003 (square drainage area) 
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Fig.8 The 2-D color map of the productivity index, fracture conductivity and the Reynolds number 

at Np=0.0003 (square drainage area) 

 

Fig.9 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=0.003 (square drainage area) 
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Fig.10 The 2-D color map of the productivity index, fracture conductivity and the Reynolds 

number at Np=0.003 (square drainage area) 

 

Fig.11 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=0.03 (square drainage area) 
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Fig.12 The 2-D color map of the productivity index, fracture conductivity and the Reynolds 

number at Np=0.03 (square drainage area) 

 

Fig.13 Fracture performance at selected proppant number (NRe=0, Np>0.1) (square drainage area) 

 



 38 

 

Fig.14 Fracture performance at selected proppant number (NRe=10, Np>0.1) (square drainage 

area) 

 

 

 

Fig.15 The effect of NRe on the productivity index (Np=3) (square drainage area) 
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Fig.16 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=0.3 (square drainage area) 

 

Fig.17 The 2-D color map of the productivity index, fracture conductivity and the Reynolds 

number at Np=0.3 (square drainage area) 
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Fig.18 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=3 (square drainage area) 

 

Fig.19 The 2-D color map of the productivity index, fracture conductivity and the Reynolds 

number at Np=3 (square drainage area) 
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Fig.20 The 3-D color map and its top view of the productivity index, fracture conductivity and the 

Reynolds number at Np=30 (square drainage area) 

 

Fig.21 The 2-D color map of the productivity index, fracture conductivity and the Reynolds 

number at Np=30 (square drainage area) 
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Fig.22 Comparisons of the productivity index with Lopez et al. method  

 

 

Fig.23 The optimization of the fracture conductivity with Np=3.383 and NRe=16.5 (square 

drainage area) 
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Table 1 Comparison between ValkÓ-Economides result and our work (xeD/yeD=1) 

 

CfD 

Ix=0.1 Ix=0.3 Ix=0.6 Ix=1.0 

ValkÓ-Ec

onomides 

(1998) 

This 

paper 
Error 

ValkÓ-Ec

onomides 

(1998) 

This 

paper 
Error 

ValkÓ-Ec

onomides 

(1998) 

This 

paper 
Error 

ValkÓ-Ec

onomides 

(1998) 

This 

paper 
Error 

    %     %     %     % 

0.01 0.1428  
0.12

97  

11.6

815  
0.1727  

0.15

31  

11.3

550  
0.2026  

0.17

17  

15.2

658  
0.2193  

0.18

82  

14.1

476  

0.1 0.1927  
0.18

78  

2.03

39  
0.2469  

0.23

65  

4.21

21  
0.2977  

0.28

20  

5.28

72  
0.3544  

0.32

66  

7.83

82  

1 0.2986  
0.29

99  

0.50

58  
0.4436  

0.44

39  

0.06

31  
0.6197  

0.61

69  

0.44

22  
0.8096  

0.79

44  

1.88

24  

10 0.3861  
0.39

64  

0.55

17  
0.6829  

0.68

80  

0.75

27  
1.1499  

1.15

70  

0.62

09  
1.6042  

1.60

33  

0.06

05  

100 0.4162  
0.41

66  

0.22

82  
0.7489  

0.75

02  

0.16

56  
1.3232  

1.33

05  

0.55

70  
1.8785  

1.87

26  

0.31

51  

100

0 
0.4171  

0.41

88  

0.46

51  
0.7546  

0.75

74  

0.37

37  
1.3415  

1.35

19  

0.77

45  
1.9127  

1.90

61  

0.34

51  

Ave

rage 
    

2.57

77  
    

2.82

04  
    

3.82

46  
    

4.09

81  

 

Table 2 Basic parameters for calculation of the productivity index (Henry D. Lopez-Hernandez et al., 2004) 

Basic model parameters values Basic model parameters values 

Drainage radius, re, ft 745 Viscosity of gas, μ, mPa.s 0.0205 

Fracture height, hf, ft 139 Gas compressibility factor, z 0.944 

Reservoir thickness, h, ft 39 Injected proppant mass, Mp-2w, lbm 60000 

Reservoir permeability, k, md 0.2 Proppant specific gravity, SGp 2.62 

Fracture permeability, kf, md 134248 Gas specific gravity, SGg 0.644 

Reservoir porosity, φ, % 10 Molecular weight of air, Mair , lb/lb mole 29 

Fracture porosity, φp, % 40 Coefficient of Beta factor, a 3.7E11 

Reservoir temperature, Tres, °R 680 Coefficient of Beta factor, b 1.35 

Reservoir pressure, pres, psi 5254 Coefficient of Beta factor, c 0 

Bottom pressure, pwf, psi 1400   
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Table 3 Comparisons of the optimal fracture conductivity and maximum productivity index with 

Henry D. Lopez-Hernandez et al. method 

This paper Henry D. Lopez-Hernandez et al. (2004) Error,% 

NRe Np CfDopt JDopt  Equivalent NRe Equivalent Np CfDopt JDopt CfDopt JDopt 

0 3.38 4.44 1.279 0 3.38 4.44 1.279 0 0 

2 3.38 5.25 1.086 0 1.128 2.67 0.915 49.14  15.75  

4 3.38 5.96 0.987 0 0.676 2.31 0.775 61.24  21.48  

6 3.38 6.47 0.927 0 0.483 2.16 0.701 66.62  24.38  

8 3.38 7.09 0.88 0 0.376 2.08 0.65 70.66  26.14  

10 3.38 7.65 0.843 0 0.308 2.04 0.616 73.33  26.93  

12 3.38 8.24 0.815 0 0.26 1.99 0.587 75.85  27.98  

14 3.38 8.63 0.79 0 0.226 1.98 0.565 77.06  28.48  

16 3.38 9.03 0.771 0 0.199 1.95 0.547 78.41  29.05  

18 3.38 9.41 0.753 0 0.178 1.94 0.531 79.38  29.48  

20 3.38 9.86 0.735 0 0.161 1.93 0.517 80.43  29.66  

 

 

Table 4 Basic parameters and the results for the fracture optimization 

 

 

 

 

 

Appendix A: Unit Conversion Factors 

SI Metric Conversion Factors 

bbl×0.1589874 m
3
 

cP×0.001 Pa s 

ft×0.3048 m 

Parameters kg kf kf-eff Np NRe CfDopt JDopt xf wf 

Units md md md     ft ft 

This paper 0.2 134248 - 3.383 16.5 9.942 0.7655 385.113 0.0057 

Henry D. 

Lopez-Hernandez 

et al. (2004) 

0.2 134248 12407 0.31 9.82 1.75 0.63 278 0.00786 
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ft
2×0.0929 m

2
 

psi×6.894757 kPa 

 

Highlights: 

(1) Propose a semi-analytical solution of the pseudosteady-state (PSS) 

productivity index under the non-Darcy flow condition in a rectangular reservoir  

(2) Reveal the effect of the Reynolds number, the proppant number and the 

fracture conductivity on the dimensionless productivity index  

(3) Discuss the adaptability of the Darcy-flow UFD (Unified Fracture Design) 

curves under the non-Darcy flow condition 

(4) Develop a new model for optimization of the fracture parameters  

 

 




