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Abstract: Tree water use (Ec) can be simulated from environmental variables. Such Ec 17 

models can be categorized as firstly the Penman-Monteith (PM) equation where canopy 18 

conductance (gc) is simulated from the Jarvis-Stewart (JS) approach, secondly the models 19 

modified from the JS approach that link Ec directly with environmental variables (MJS), 20 

avoiding the calculation of gc, and thirdly process-based models that incorporate plant 21 

physiological functions. Tree water use and canopy conductance are constrained by the 22 

root-zone soil water supply and atmospheric demand (e.g., radiation, temperature, 23 

humidity and wind speed). This study aims to determine which type of Ec models 24 

performs better at the daily and hourly scales, and which influencing factors are more 25 

critical for Ec modeling at each time scale. We also examined the transferability of 26 

parameter values across temporal scales as this is a common issue that modelers need to 27 

deal with. The results show that the MJS and a simplified process-based model (BTA) 28 

models gave generally better simulations than the PM models at the hourly scale, and the 29 

best PM model gave comparable results to the best MJS model at the daily scale. BTA 30 

failed at the daily scale on the tree under water stress likely due to its incorporation of 31 

soil water availability into an integrated parameter. Soil water content function is more 32 

important for daily Ec modeling than hourly in all models. For MJS models, soil water 33 

content function has a stronger influence than air temperature on hourly Ec modeling, 34 

while no significant difference was observed in the PM models. Parameter values were 35 

not transferrable across temporal scales; and calibrating parameters in each season rather 36 

than in the first a number of days of all seasons helped improve the total Ec simulations. 37 

Keywords: transpiration; sap flow; canopy conductance; soil moisture; stem water 38 

potential 39 



1. Introduction 40 

Vegetation covers 70% of the global land surface (Dolman et al., 2014), playing an 41 

important role in land surface hydrological and climatological processes, and 42 

coordinating land-atmosphere interactions in a wide range of spatial and temporal scales 43 

(Chen et al., 1996; Dickinson, 1987; LeMone et al., 2007). Vegetation affects water, 44 

carbon and energy transfer in the soil-plant-atmosphere system by altering surface 45 

albedo, roughness and soil macroporosity, intercepting rainfall and transpiring water from 46 

soil layers (Ivanov et al., 2008). Several studies confirmed that vegetation transpiration 47 

(Ec) contributes a large proportion of total global terrestrial evapotranspiration (ET) 48 

(Jasechko et al., 2013; Miralles et al., 2011; Schlaepfer et al., 2014; Schlesinger and 49 

Jasechko, 2014; Wang et al., 2010). Although the reported numbers vary over different 50 

ecosystems, they highlight the importance of quantifying rates of vegetation water use to 51 

understanding of land-atmosphere interactions. 52 

Transpiration at the tree and plot scales can be estimated using sap flow techniques (Ford 53 

et al., 2007; Hatton et al., 1995). Alternatively, transpiration can be estimated from 54 

potential transpiration by applying stress functions related to different environmental 55 

variables, e.g., temperature, vapor pressure deficit, solar radiation, soil water 56 

content/potential and plant water potential (Damour et al., 2010; Jarvis, 1976; Tuzet et 57 

al., 2003; Wang et al., 2014), and CO2 concentration (Ball et al., 1987). Such an approach 58 

can be applied over various spatial scales, and has long been incorporated into land 59 

surface and atmospheric models (Dai et al., 2004; Dickinson et al., 1991; Noilhan and 60 

Planton, 1989). The reduction of potential Ec is often realized by replacing the canopy 61 

conductance gc under the optimal conditions in the Penman-Monteith (PM) equation with 62 



the one considering the environmental stresses, well known as the Jarvis-Stewart (JS) 63 

approach (Jarvis, 1976; Stewart, 1988). In this study, PM equation with the embedded JS-64 

gc model was labeled as the PMJS method. 65 

Apart from studies using the Penman-Monteith equation, there have been several 66 

attempts to estimate Ec directly from environmental variables. For example, Whitley et al. 67 

(2009; 2013) applied such method for transpiration simulations at different Australian 68 

forest sites. Garcia et al. (2013) also applied a similar Ec model in a woody savannah in 69 

Mali and grassland in Spain using in-situ and satellite data. These models estimate 70 

transpiration from a maximum rate by applying a set of functions of the relevant 71 

environmental variables, based on a similar assumption with the JS-gc approach that the 72 

stress from environmental variables on plant water use is independent of each other. 73 

Essentially, these models are modified from and considered as variants of the JS 74 

approach. Compared to the PMJS method, they are much simpler to fit, require fewer 75 

measurements and specifically avoid the circularity of inverting the PM equation to 76 

calculate gc from Ec and then using the PM again to estimate Ec from gc. To differentiate 77 

this way of Ec modeling from the PMJS, we labeled this type of model as MJS in this 78 

study. 79 

In addition, there have also been gc/Ec models based on understanding of the physical 80 

processes at cellular level, i.e. exploration on plant guard cell functions and the hydro-81 

mechanical and biochemical influences in and around guard cells (Buckley and Mott, 82 

2002; Dewar, 2002; Franks et al., 1998; Gao et al., 2002). On the basis of a series of 83 

assertions, Buckley et al. (2003) developed a process-based gc model with clear 84 

physiological interpretations and later simplified it (Buckley et al., 2012) for transpiration 85 



as well as canopy conductance modelling. The simplified model (labeled as BTA model 86 

hereafter) has two to four parameters that are related to reduced processes and properties, 87 

allowing us to have a transparent understanding about how those parameters respond to 88 

environmental changes (Buckley et al., 2012).  89 

Widely used environmental variables in Ec/gc modelling can be divided into two groups 90 

as to how they affect tree water uptake, i.e. atmospheric demand and water supply. The 91 

demand group includes solar radiation, air temperature and humidity, and wind speed. 92 

Air temperature function is often neglected in gc models that use humidity as one variable 93 

(Lhomme et al., 1998; Mascart et al., 1991). Vapor pressure deficit is also favorably used 94 

for Ec/gc modeling, and is highly correlated with air temperature (Alves and Pereira, 95 

2000). Some studies included both functions of air temperature and vapor pressure deficit 96 

while others used only one (Damour et al., 2010). The supply group mainly refers to the 97 

root-zone soil moisture, determined by water content, soil hydraulic properties and root 98 

distribution. It is worth mentioning that plants respond to soil water potential rather than 99 

soil water content (Gregory and Nortcliff, 2013; Marshall et al., 1996; Mullins, 2001; 100 

Verhoef and Egea, 2014). Soil water content in most studies was measured in shallow 101 

soil layers, up to 2 m deep and usually 0.5 m (Whitley et al., 2009). It is uncertain 102 

whether such measurements can capture the entire picture of root-zone water availability 103 

(Schulze et al., 1996), especially for deep rooted trees. It is the gradient of water 104 

potentials in soil, stem and leaves that drives water transport in the soil-plant system 105 

(Vandegehuchte et al., 2014). Plant water potential is a sensitive indicator for vegetation 106 

water status (Choné et al., 2001; Nortes et al., 2005) and can be in equilibrium in the 107 

whole soil-plant system at predawn unless significant nocturnal transpiration (Palmer et 108 



al., 2010; Richter, 1997). Therefore, predawn plant water potential is a better 109 

approximate of root-zone soil water availability than the shallow layer soil water content. 110 

Previous studies have proved the feasibility of using predawn stem water potential to 111 

indicate plant water stress and simulate canopy conductance (Wang et al., 2014; Yang et 112 

al., 2013). 113 

Despite the wealth of literature in considering the supply factor for Ec and gc modeling, 114 

some studies showed success without including this factor (Bunce, 2000; Leuning, 1995; 115 

Whitley et al., 2013). Typical examples are transpiration from trees with groundwater 116 

access by deep roots (Eamus and Froend, 2006) and from trees growing in riparian sites 117 

(O'Grady et al., 2006). However, at other sites, it is difficult to determine the significance 118 

of soil water availability for Ec or gc modeling without long-term monitoring of the 119 

relevant variables. Furthermore, soil water availability has seasonal variations in 120 

correspondence with precipitation (Findell and Eltahir, 1997), which means that the 121 

necessity to include a soil water stress function may vary seasonally. Note that 122 

seasonality of soil water content is also strongly influenced by plant water uptake. 123 

Usually parameters need to be re-calibrated when models are applied at a different site or 124 

temporal scale, however, in many land surface models parameters are prescribed for 125 

lumped vegetation functional types, for example, evergreen needle-leaf trees, deciduous 126 

broad-leaf trees, etc. (Chen and Dudhia, 2001). These parameter values remain the same 127 

for simulations at various temporal/spatial scales in practice. This can be problematic 128 

given the nonlinear relationship between transpiration and the environmental variables, 129 

and the fact that environmental variables’ values differ from one spatial-temporal scale to 130 

another. 131 



This study examined the performance of selected PMJS, MJS and BTA Ec models at 132 

daily and hourly scales. By comparing the simulation results, we focus on the following 133 

four specific questions: (1) Which type of Ec modeling approach performs better? (2) Are 134 

soil water content and air temperature functions critical for Ec simulation? (3) At which 135 

time scale and in which season do soil water function and air temperature functions pose 136 

a stronger influence on Ec modeling? (4) Are parameter values transferable across 137 

different temporal scales (daily and hourly) for the same Ec model? 138 

2. Methodology 139 

2.1. Site and measurements 140 

The study site is on the campus of Flinders University (138
º
34′28″E, 35

º
01′49″S), located 141 

in a Mediterranean climate zone. Annual mean temperature is about 17
 º
C, and annual 142 

rainfall is around 546 mm, most of which occurs in May to September (Guan et al., 143 

2013). Ground surface is covered by sparse trees with short shrubs and grass at substrate. 144 

Soil type is characterized as sandy mixed with gravel. The soil condition makes it 145 

difficult to bury soil moisture probes in deep root-zone soil layers near the tree. 146 

Therefore, as discussed in previous work (Wang et al., 2014; Yang et al., 2013) stem 147 

water potential was used as an indicator of root-zone soil water availability. We 148 

conducted measurements on four Drooping Sheoak (Allocasuarina verticillata) trees over 149 

different time periods in 2011, 2012 and 2014. The discussion in this study is based on 150 

one tree with continuous measurements in January to April and October to December in 151 

2012. Data from the other three trees covered shorter periods, and were mainly for 152 

consistency check on results of canopy conductance modelling among trees in a previous 153 

work (Wang et al., 2014), and not included in this study. 154 



Sap flow was monitored at 30-min intervals in the tree trunks at 1.3 m above ground 155 

using the compensation heat-pulse technique (Green and Clothier, 1988). Three 156 

thermocouples were embedded inside each temperature probe at the depths of 5, 15 and 157 

25 mm underneath the cambium. One temperature probe was installed 10 mm above the 158 

heater and the other 5 mm below the heater. Two sets of such probes were installed in the 159 

south and north sides of the tree. Transpiration was calculated from heat transport 160 

velocity and corrected for wounding, sapwood area, volume fraction of wood and water 161 

following Green et al. (2003). 162 

Stem water potential (ψst) was measured at 15-minute intervals using a PSY1 Stem 163 

Psychrometer (ICT International Pty Ltd., NSW, Australia), which was developed by 164 

Dixon and Tyree (1984) and became commercially available in the recent years. PSY1 165 

measures the temperature of sapwood surface and chamber air, and stem water potential 166 

is estimated from the water potential in the chamber corrected with the wood-air 167 

temperature gradient (Dixon and Tyree, 1984). Predawn stem water potential (ψpd) was 168 

taken as the average of ψst between 3:00 am and 5:00 am, when water potentials in the 169 

tree and root-zone soil have reached an equilibrium state after water redistribution in the 170 

plant-soil system. 171 

A weather station was set up at a location nearby to measure the micrometeorological 172 

variables, including air temperature, solar radiation, rainfall, wind speed, and atmospheric 173 

pressure, etc. All measurements were aggregated to hourly and daily values for model 174 

runs and comparisons. Data on rainy days were excluded in this study for model 175 

parameterization and comparison. 176 



2.2.Models briefing 177 

2.2.1. PM equation with gc simulated by the Jarvis-Stewart approach 178 

The PM method is formulated in equation (1). Canopy conductance gc is estimated from 179 

environmental variables following the Jarvis-Stewart (JS) pattern in equation (2). 180 
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In equations (1-2), ga is the aerodynamic conductance [m/s]; γ is the psychrometric 183 

constant [kPa/
o
C]; λ is the latent heat of vaporization [MJ/kg]; Ec is the tree water use 184 

calculated from sap flow measurements; Δ is the slope of saturation vapor pressure-185 

temperature curve [kPa/
o
C]; Ac is the available energy allocated to canopy [MJ/(m

2
h)]; Cp 186 

is the specific heat of air at constant pressure [MJ/(kg
o
C)]; D is the vapor pressure deficit 187 

in the air [kPa]; ρa and ρw are the density of air and water [kg/m
3
]. gmax is the maximum 188 

stomatal conductance [m/s]. LAI is the leaf area index. ψ is the stem water potential 189 

[MPa]. Predawn stem water potential (ψpd) is used for daily Ec or gc simulation. 190 

Here we denote equations (1-2) as the PMJS4 model, as it considers the effects of four 191 

environmental variables. In order to test the significance of stress functions of air 192 

temperature and soil water content, we made modifications to the PMJS4 by neglecting 193 

f(T) and f(ψ), respectively, and the relevant models are denoted as the PMJSψ and 194 

PMJST. Equations (3-6) are the selected stress functions for the four variables based on a 195 

previous study (Wang et al., 2014). 196 
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Rsm is the approximate maximum solar radiation, set as 1000 W/m
2
 for hourly and 350 201 

W/m
2
 for daily simulations according to measurements. kRs [W/m

2
], kD [k/Pa], kT [-], To 202 

[
o
C], kψ [-] and ψm [MPa] are fitting parameters.  203 

2.2.2. Modified Jarvis-Stewart approach 204 

The models described in this section are modified from and considered as variants of the 205 

JS approach; they omit the canopy conductance calculation, but estimate tree water use 206 

directly from a set of environmental stress functions. These models have simpler 207 

structures and a smaller number of parameters compared to the PMJS models. Whitley et 208 

al. (2013) estimated tree water use directly from solar radiation, vapor pressure deficit 209 

and soil water content. Based on their model, here we supplemented a temperature 210 

function, replaced the soil water content function with a stem water potential function in 211 

equation (6), and discarded the parameter kD2 in their vapor pressure deficit function 212 

which is an addend to D in the denominator of equation (8), as this parameter is 213 

redundant for shaping the response curve. The final modified model is given in equation 214 

(7) and referred to as MJS4 for the same reason as PMJS4. In equations (7-8), Emax is the 215 



maximum transpiration rate [mm/h or mm/d]. f 
^
(D) is the modified function of vapor 216 

pressure deficit. kD is a fitting parameter. Dpeak [kPa] is the value of D at which Ec is 217 

maximized. f(Rs), f(T) and f(ψ) are the same with equations (3), (5) and (6). To facilitate 218 

the model comparison, further modifications were made to MJS4 by neglecting f(T) and 219 

f(ψ), respectively, referred to as MJSψ and MJST accordingly. 220 
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2.2.3. A simplified process based model 223 

Buckley et al. (2012) simplified a previously developed process model (Buckley et al., 224 

2003) for transpiration estimates, given in equation (9), and denoted in this study as the 225 

BTA model.  226 
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k and b are integrated model parameters. Emax is the maximum transpiration rate which 228 

includes the effect of soil water availability. Ds is the leaf to air vapor pressure deficit, 229 

and can be approximated with the air vapor pressure deficit (D) when canopy is coupled 230 

aerodynamically. We use D in this study due to the lack of leaf temperature 231 

measurements. The parameter Rs0 allows night-time transpiration for sub-daily simulation 232 

which is the particular strength over other models. In this study, however, Drooping 233 

Sheoak tree night-time sap flow is negligible (based on the 15-min stem water potential 234 



data), and because the Jarvis-Stewart approach is incapable of capturing the nocturnal 235 

transpiration, we prescribed Rs0 as zero for inter-comparison among models. The BTA 236 

model uses only solar radiation and vapor pressure deficit in the formulation, and has 237 

even fewer parameters than PMJS and MJS models. 238 

It should be noted that the original gc model in Buckley et al. (2003) includes more 239 

variables, such as leaf-specific hydraulic conductance, soil water potential, epidermal 240 

osmotic pressure, turgor pressures of epidermal and guard cells, and ‘guard cell 241 

advantage’ which incorporates the effects of light, CO2 and hormonal signals from roots 242 

(ABA). In their later work (Buckley et al., 2012) some of the variables were lumped 243 

together as invariant parameters and tested to be well performed for sap flux simulations 244 

on a number of trees. Those parameters have clear physical meanings that are related to 245 

plant physiology under biochemical and hydro-mechanical influences. Although in a 246 

simple form, the simplified models should be differentiated from empirically developed 247 

ones. 248 

Buckley et al. (2012) also provided a simplified conductance model as follows:  249 
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     (10) 250 

where Em,, k and b are integrated model parameters. In this study, canopy conductance 251 

was also estimated from equation (10) and used in the PM approach for transpiration 252 

estimate to compare with other models. Hereinafter, PMB denotes PM equation with the 253 

gc simulated from equation (10) for Ec calculation. 254 



2.3.Parameter optimization and model comparison 255 

For daily simulations, the data were divided into two groups (one contains data in the 256 

order of 1, 3, 5 … and the other 2, 4, 6… respectively). The first group was used to train 257 

the model, and the second group was used to test the model. For hourly simulations, we 258 

used 60-day hourly data to train the model and used another 60-day data to test the 259 

model. Furthermore, we grouped the data in spring (September, October and November), 260 

summer (December, January and February) and autumn (March, April and May), and 261 

then trained the model using the first 20 days of data in each season, and tested the model 262 

using another independent 20 days of data. Note the data mentioned above and elsewhere 263 

in this study do not include the data on rainy days. 264 

Parameters were obtained using the DiffeRential Evolution Adaptive Metropolis 265 

(DREAM) model (Vrugt et al., 2009), which runs multiple different chains 266 

simultaneously for global exploration and automatically tunes the scale and orientation of 267 

the proposal distribution in randomized subspaces during the search. DREAM was 268 

performed for each model by 20,000 iterations. We evaluated the model performance 269 

using the slope (k) and coefficient of determination (R
2
) of linear regression between the 270 

measured and simulated Ec with a zero intercept, and the root mean square error (RMSE). 271 

3. Results and discussion 272 

3.1.Environmental conditions and tree water use 273 

Part of the measurements is demonstrated in Figure 1 at hourly intervals. Data in rainy 274 

days are not shown. The transpiration and canopy conductance reached maximum values 275 

(3.0 mm/d and 0.015 m/s respectively) in early spring (October), when the rainy season 276 



just ended, so there was sufficient water storage in the soil for trees to transpire. In the 277 

meantime, solar radiation was increasing, resulting in an optimal condition for 278 

transpiration and tree growth. In Figure 1, temperature has similar dynamics as vapor 279 

pressure deficit, which reflects a high interdependency between these two variables. 280 

Larger transpiration rates occur at higher (close to zero) stem water potential which 281 

reflects the effects of root-zone soil water supply on transpiration. In December when the 282 

site became hotter and drier, stem water potential decreased. Stem water potential data 283 

indicate that Drooping Sheoak recovered xylem water storage in night-time and had 284 

reached an equilibrium state before predawn. The average difference between the 285 

maximum and minimum stem water potential was around 1.0 MPa for clear days in dry 286 

season. 287 

 288 

Figure 1 Demonstration of partial hourly environmental variables and tree water use (Ec) 289 
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in each season. Horizontal axis labels are the measurement dates in 2012. Red is for 290 

summer days, green is for autumn days and blue is for spring days 291 

3.2.Model comparison 292 

3.2.1. Hourly Ec modeling 293 

We first evaluated the models at hourly scale by comparing the simulated and measured 294 

Ec for 60 days in Figure 2. All these models were able to present diurnal variation of Ec, 295 

however, PMJST, PMB, MJST and BTA overestimated Ec in summer and autumn days 296 

when it was hot and dry. These models are lack of explicit constraint from soil water 297 

function in their model construction, although the parameter Emax in the BTA model 298 

includes the effects of soil water availability, when integrated as a lumped parameter 299 

instead of the variables themselves the representation of soil water availability effects 300 

seems weakened. In the meantime, PMJS4 and PMJSѱ underestimated Ec in summer. In 301 

spring days Ec was more underestimated by the MJS and BTA models than the PM 302 

models. The day-to-day difference of Ec given by MJST and BTA were relatively small 303 

(Figure 2c-dError! Reference source not found.), which indicates that these two 304 

models may fail to account for the effects of day-to-day variations of soil water 305 

availability. 306 



 307 

 308 

Figure 2 (a-b) Comparison of Ec simulated by PM models against observations at hourly 309 

scale; (c-d) comparison of Ec simulated by MJS and BTA models against observations at 310 

hourly scale. Obs is measured Ec. 311 

The scatter plot of simulated and measured Ec, and the linear regression k (slope), R
2
 and 312 

RMSE between them are given in Figure 3 and Figure 4, respectively. The MJS and BTA 313 

models give generally better fitting than the PM models, reflected by higher k, R
2
 and 314 

lower RMSE. The PMJS4 and MJS4 outperformed other models in their own 315 

corresponding group, and MJS4 gives better fittings than PMJS4 (Figure 4). Note that the 316 

PMB gave a slightly higher fitting slope than the PMJS4, but both R
2
 and RMSE are 317 
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lower from the PMB. In other words, models containing all four environmental variables 318 

perform better than those with reduced variables. Therefore, at hourly scale,  f(T) and f(ѱ) 319 

are both significant for transpiration modeling and should not be neglected in the Ec 320 

models. 321 

Comparison among models with reduced environmental variables shows that the k, R
2
 322 

and RMSE all imply a better fitting by MJSѱ than MJST. This indicates that the effect of 323 

soil water function was stronger than that of temperature function in the MJS models. On 324 

the contrary, no significant difference is observed between the PMJST and PMJSѱ 325 

models. 326 

 327 
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  Figure 3 Comparison between hourly Ec from sap flow measurements and Ec simulated 329 

by PM, MJS, and BTA models. Dashed lines are 1:1 lines 330 

 331 

 332 

Figure 4 Statistical results of linear regression between measured hourly Ec and 333 

simulations by the PM, MJS and BTA models. k is regression slope, R
2
 is coefficient of 334 

determination, and RMSE is root mean square error, in mm/h. 335 

3.2.2. Hourly Ec modeling in individual seasons 336 

Ec was simulated separately for spring, summer and autumn to examine the effects of f(ψ) 337 

and f(T) with distinct temperature and soil water condition differences. Results from the 338 

PM methods are given in Figure 5 and Figure 6. Statistical results of comparison between 339 

simulated and measured transpiration are shown in Table 1. Figure 5 shows a good fitting 340 

between the simulated and measured Ec in all seasons, although overestimation around 341 

midday for a few days in each season is observed. The best agreement between the 342 

simulated and measured Ec appears in spring by PMJS4 (Figure 6). Comparing the k, R
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and RMSE given by PMJS4 and PMJST implies that inclusion of a f(ѱ) resulted in great 344 

improvement on Ec simulation in summer, but had little influence in spring and autumn. 345 

Similarly, comparison between PMJS4 and PMJSψ indicates that inclusion of a f(T) 346 

improved model performance in summer, but deteriorated model performance in spring 347 

and autumn. The negative impacts of a temperature function on tree water use modeling, 348 

which is not very strong in this study, have also been reported elsewhere (Sommer et al., 349 

2002; Whitley et al., 2013; Wright et al., 1995). We also found in a previous work (Wang 350 

et al., 2014) that the temperature function, not used together with a humidity function but 351 

with a vapor pressure deficit function, caused a problem for physical interpretation of the 352 

environmental stress functions. This calls for attention to parameterizing site-specific Ec 353 

models from environmental variables. Model PMB reproduced diurnal variations of Ec 354 

with greater overestimation than other models especially in some autumn days (Figure 355 

5c). This may be due to the model structure which expresses the effects of soil water 356 

stress through a lumped parameter Em in equation (10), rather than a dynamic soil water 357 

availability function, although the parameter Em in Buckley et al. (2012) includes the 358 

effect of soil water potential. The treatment of the relevant specific variables as a fixed 359 

parameter (Em) seems not holding in our study, which is not certain whether it is related 360 

to species. 361 

 362 



 363 

Figure 5 Hourly Ec simulated from the PM approach compared to sap flow measurements in (a) 364 

spring; (b) summer and (c) autumn 365 

  366 

 367 

Figure 6 Scatter plots of hourly Ec simulated from the PM models compared to sap flow 368 

measurements in (a) spring; (b) summer and (c) autumn. Dashed lines are 1:1 lines 369 
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Table 1 Statistical results of comparison between simulated and measured hourly transpiration by 370 
the PM approach in Figure 5 and Figure 6. k is linear regression slope, R

2
 is the coefficient of 371 

determination, RMSE is root mean square error, in mm/h. 372 

Models 
Spring Summer Autumn 

k R
2 RMSE k R

2 RMSE k R
2 RMSE 

PMJS4 0.98 0.89 0.0442 0.96 0.68 0.0367 0.87 0.59 0.0500 

PMJST 1.06 0.93 0.0402 0.88 0.63 0.0384 0.88 0.63 0.0474 

PMJSѱ 0.80 0.79 0.0620 0.92 0.65 0.0380 0.89 0.73 0.0422 

PMB 0.93 0.67 0.0377 1.08 0.75 0.0361 0.89 0.65 0.0484 

 373 

Figure 7 and Figure 8 give the results from the MJS and BTA models, which gave overall 374 

better simulations than the PM models. The statistical results of comparison between 375 

simulated and measured hourly transpiration are given in Table 2. The best fitting 376 

between simulated and measured Ec was also in spring. The models including all four 377 

environmental variables did not show obvious superiority over the models without f(T) or 378 

f(ѱ). However, we observe that soil water function had a stronger influence on tree water 379 

use modeling in autumn than spring and summer (Figure 8c). Simulated Ec in Figure 7 380 

underestimated the maximum sap flow measurements around midday for some days. 381 

Using data of other days to train and test the models did not eliminate the phenomenon. 382 

We checked the solar radiation data on those days, and found that the underestimation 383 

occurred on cloudy middays, when solar radiation did not reach the maximum value as 384 

on clear middays. This implies that the models are limited by solar radiation functions on 385 

cloudy days. BTA Ec model (equation 9) gave very similar simulations with the three 386 

MJS models, especially in spring, which is encouraging because it requires the minimum 387 

number of input variables and parameters compared to its counterparts. In autumn BTA 388 

Ec model gave the worst simulations compared to other models and in other seasons. 389 



 390 

 391 

Figure 7 Tree water use simulated from the MJS, MJST, MJSψ and BTA models in comparison 392 

with sap flow measurements at an hourly scale for (a) spring, (b) summer and (c) autumn 393 

  394 

 395 

Figure 8 Scatter plots of hourly Ec simulated from the MJS and BTA models compared to 396 

sap flow measurements in (a) spring; (b) summer and (c) autumn. Dashed lines are 1:1 397 

lines 398 
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Table 2 Statistical results of comparison between simulated and measured hourly transpiration by 399 
the MJS and BTA models in Figure 7 and Figure 8. k is linear regression slope, R

2
 is the 400 

coefficient of determination, RMSE is root mean square error, in mm/h. 401 

Models 
Spring Summer Autumn 

k R
2 RMSE k R

2 RMSE k R
2 RMSE 

MJS4 0.93 0.96 0.0250 0.92 0.83 0.0245 0.89 0.81 0.0316 

MJST 0.94 0.96 0.0244 0.91 0.83 0.0244 0.86 0.74 0.0369 

MJSѱ 0.94 0.96 0.0247 0.91 0.83 0.0246 0.89 0.81 0.0321 

BTA 0.93 0.96 0.0258 0.92 0.67 0.0239 0.83 0.67 0.0389 

 402 

The study site is under optimal conditions (i.e. trees transpire at a rate close to the 403 

potential rate) for tree water uptake in spring, because most of the annual rainfall occurs 404 

in the previous season at this site (Guan et al., 2013), resulting in sufficient water storage 405 

in the root zone for trees to transpire, and the solar radiation input also increases in this 406 

season (Figure 1). The relationships between transpiration and the four environmental 407 

variables (Figure 9) show that the spring data form the upper envelopes of all the data 408 

points. The stress functions in equations (3-6) were empirically developed by fitting the 409 

data located on the upper envelops, where it is assumed that transpiration is at a 410 

maximum rate (Macfarlane et al., 2004; Whitley et al., 2013). This partly explains why 411 

simulations best fitted sap flow measurements in spring using either the PM, MJS or 412 

BTA models. 413 

 414 



 415 

Figure 9 Relationship between tree water use and four environmental variables at the 416 

hourly scale using the same data in Figure 1 417 

Figure 5-8 suggest that all PM, MJS and BTA models gave reasonable estimates of 418 

hourly tree water use in the three seasons, with regression slopes close to 1 and R
2
 greater 419 

than 0.65. The MJS and BTA models are better than the PM indicated by higher R
2
 and 420 

lower RMSE. In fact, the PM method contains more parameters and approximations 421 

throughout the simulations. First, gc was calculated from sap flow data using the inversed 422 

Penman-Monteith equation; second, parameters in equations (2-6) and (10) were 423 

optimized using the calibration dataset, after which gc was simulated with the validation 424 

dataset, and last, Ec was calculated using the Penman-Monteith equation and the 425 

simulated gc. More approximations (e.g., aerodynamic resistance, net radiation over 426 

canopy, etc.) involved in the whole process resulted in the relatively poor degree of 427 

matching between simulations and observations. In contrast, models that calculate Ec 428 

directly from environmental variables have fewer parameters and avoid these 429 

approximations, leading to better simulations than the PM models. 430 

3.2.3. Implications for water balance studies 431 

In order to evaluate the applicability of the models for estimations of site water balance, 432 
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we summed the hourly transpiration from Figure 2a-d, and from Figure 5 and Figure 7 to 433 

daily values, and then compared the total Ec amounts to sap flow measurements in these 434 

60 days (107.5 mm). Results are given in Figure 10. Most models slightly underestimated 435 

total Ec, except that PMJST overestimated Ec by 4.0% (sum of three seasons from Figure 436 

5), PMB by 8.8% and 6.4% (summed from Figure 2a-b and Figure 5 respectively). 437 

Therefore, most models are considered acceptable for transpiration quantification in 438 

short-term (e.g. seasonal) water balance study; exceptions are PMJS4, PMJSѱ and PMB 439 

in Figure 2a-b, with 9.7% and 26.4% underestimation, and 8.8% overestimation, 440 

respectively. Interestingly, the total Ec given by PM models in Figure 2a-b are 441 

considerably different from the totals in Figure 5 simulated separately in three seasons, 442 

which indicates that the parameters in the PM models are highly dependent on the data 443 

used to obtain the parameter values. On the contrary, the MJS and BTA models are more 444 

reliable regardless of using 60-day or 20-day data for parameters calibration. 445 

 446 

 447 

Figure 10 Comparison between total Ec summed from each hourly simulation and sap flow 448 

measurements. The numbers below the bars are the over/underestimated percentage by the 449 
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relevant models. 450 

3.2.4. Daily Ec modeling 451 

Simulated daily transpiration from the PM, MJS and BTA models in comparison to sap 452 

flow measurements is given in Figure 11 and Table 3. Models that contained four 453 

environmental variables gave the best daily Ec simulations. Models that contained a f(ψ) 454 

generated better simulations than those without a f(ψ). Soil water stress function had a 455 

stronger influence on transpiration modeling at the daily scale than the hourly scale, 456 

implied by comparing fitting results in Figure 3, Figure 6, Figure 8 and Figure 11. This is 457 

probably because stem water potential showed larger changes at a daily scale than an 458 

hourly scale. The PMJST, PMB and MJST and BTA models were not able to capture the 459 

daily dynamic of transpiration. It should be noted that the k and R
2 

were obtained through 460 

linear regression with a zero intercept. 461 

 462 



 463 

Figure 11 Comparison between simulated and measured transpiration at the daily scale. 464 

Colored lines in the top plots correspond to the models indicated by the legends in the 465 

bottom plots. 466 

Table 3 Statistical results of comparison between simulated and measured daily transpiration by 467 
the PM, MJS and BTA models in Figure 11. k is linear regression slope, R

2
 is the coefficient of 468 

determination, RMSE is root mean square error, in mm/d. 469 

 PMJS4 PMJST PMJSѱ PMB MJS4 MJST MJSѱ BTA 

k 0.94 0.77 0.86 0.85 0.96 0.92 0.96 0.90 

R
2
 0.73 0.00 0.47 0.01 0.78 0.02 0.77 0.01 

RMSE 0.3309 0.8667 0.5686 0.6490 0.2966 0.6975 0.3054 0.7267 

 470 

The fitting of daily sap flow measurements by PMJST and MJST degraded dramatically 471 

compared to PMJS4 and MJS4, which implies that soil water function had a very strong 472 

influence on daily Ec modeling. In addition, PMJS4 resulted in k=0.94, R
2
=0.73 and 473 
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RMSE=0.3309 mm/d, better than those given by PMJSψ, while MJS4 gave similar 474 

simulations with MJSψ, indicating that the influence of f(T) on Ec modeling is more 475 

significant in the PM models than the MJS models. The poor performance of models 476 

BTA and PMB at a daily scale could be partly attributed to the parameter Emax in BTA Ec 477 

model, which limited the ability of BTA model to adjust its performance at the daily scale 478 

to reflect properly the effects of soil water availability on tree water uptake, but the 479 

limitation was not profound at the hourly scale, as the hour-to-hour maximum sap flow 480 

difference was smaller than the day-to-day difference. 481 

3.3.Parameter values 482 

The simulation of transpiration in current land surface models is often based on the 483 

Jarvis-Stewart scheme, so in this section we only compared the parameters in PMJS4, 484 

PMJST, PMJSѱ, and also MJS4, MJST and MJSѱ which are variants of the Jarvis-485 

Stewart approach. By comparing the values of each parameter in different models across 486 

temporal scales (Error! Reference source not found.), we examine the universality of 487 

parameter values. 488 

Some parameters have very small values compared to others, so for the convenience of 489 

comparison and display, we scaled the parameter values by multiplying different powers 490 

of ten. The results show that the maximum stomatal conductance gmax in the three PM 491 

models was similar at daily scale but varying at hourly scale in each season, generally 492 

larger in spring than in autumn and summer. The maximum transpiration rate Emax in the 493 

three MJS models was close at both daily scale and hourly scale, yet at hourly scale Emax 494 

was similar in the three models in spring, but varied much in summer and autumn. In 495 

different models, e.g., PMJS4, PMJST and PMJSѱ, parameter kRs is similar at the same 496 



time scales, i.e. daily or hourly scales in three seasons. Likewise, To, kѱ and ѱm are also 497 

similar among models at the same temporal scale. The parameter kT in temperature 498 

function has big variations among models and across time scales, which renders the 499 

importance to input specific parameter values rather than a fixed value as adopted in 500 

some land surface models, e.g., 0.0016 in Chen and Dudhia (2001). 501 

 502 

 503 

Figure 12 Parameter values multiplied by different powers of ten as shown in the figure for the 504 

convenience of comparison among models and across temporal scales. 505 

The difference of daily and hourly parameter values in each model calls for attention in 506 

model applications at different temporal scales. Models need to be recalibrated when 507 

applied at a different temporal scale from which they were tuned initially. To demonstrate 508 
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this scale issue of parameters more clearly, we simulated hourly Ec with daily parameter 509 

values, and daily Ec with hourly parameter values using the PM models. No MJS models 510 

were tested because of the obvious difference of daily and hourly Emax, which will lead to 511 

a big difference in simulated hourly Ec using daily parameter values, and vice versa. The 512 

results demonstrate that using daily parameter values for hourly simulation and the other 513 

way around failed to reproduce the daily sap flow measurements, showing 514 

underestimation and overestimation, respectively (Figure 13). For instance, hourly 515 

simulation by PMJS4 model with daily parameter values underestimated daily Ec by 516 

about 45%, while daily simulation with hourly parameter values overestimated daily Ec 517 

by about 52% based on the same model. 518 

 519 

 520 

Figure 13 Comparison of simulated and measured Ec: (a) hourly simulation based on 521 

parameters calibrated with daily data; (b) daily simulation based on parameter values 522 

calibrated with hourly data 523 
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4. Conclusions 524 

We compared three types of transpiration models, i.e. Penman-Monteith (PM) equation 525 

with gc simulated from environmental variables by Jarvis-Stewart (JS) approach, 526 

modified JS approach (MJS) that links transpiration directly to environmental variables, 527 

and a simplified process-based model (BTA). The MJS models gave generally better 528 

simulations than the PM models at both daily and hourly scales. Nevertheless, at the daily 529 

scale, the best PM model performs comparable to the best MJS model. The BTA model 530 

used in this study is a simplified form of a process-based model, with the least number of 531 

parameters and sound physical interpretations of plant physiology, and is worth being 532 

promoted in future applications. However, BTA failed on the tree under water stress at 533 

the daily scale due to its treatment of soil water availability and other factors as an 534 

integrated parameter. The major advantage of the MJS and BTA models is the simplicity 535 

in terms of inputs and number of parameters.  536 

Soil water availability function is important for Ec simulation at both temporal scales, 537 

particularly at the daily scale. For hourly Ec modeling the soil water function can be 538 

omitted in spring time in this study when there was sufficient water in the root-zone soil 539 

for vegetation water uptake. The influence of an air temperature function on model 540 

performance varies. Parameter values showed divergence across models and temporal 541 

scales, calling for attention to model application across temporal scales. At the hourly 542 

scale, parameters are better to be calibrated for each season rather than calibrated for all 543 

seasons for the improvement of long-term total tree water use modeling.  544 

The results and conclusions are based on data observed from an individual tree. Another 545 



three trees of the same species were observed to behave similarly in terms of water use in 546 

response to environmental conditions. We are aware that it may be difficult to extrapolate 547 

spatially to a large ecosystem composed of different species for transpiration estimation; 548 

however, the findings can still provide us some insights about the imperfection of the 549 

current transpiration model in terms of structure and parameterization schemes, e.g., 550 

careful selection of stress functions and parameter calibration strategy, thus aid for 551 

further model improvement and application for water balance studies. 552 
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