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Abstract
In dynamical systems, onemay ask how long it takes for a trajectory to reach the attractor, i.e. how
long it spends in the transient phase. Although for a single trajectory themathematically precise
answermay be infinity, it stillmakes sense to compare different trajectories and quantify which of
them approaches the attractor earlier. In this article, we categorize several problems of quantifying
such transient times. To treat them,we propose twometrics, area under distance curve and regularized
reaching time, that capture two complementary aspects of transient dynamics. Thefirst, area under
distance curve, is the distance of the trajectory to the attractor integrated over time. Itmeasures which
trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right
away. Regularized reaching time, on the other hand, quantifies the additional time (positive or
negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as
compared to some reference trajectory. A positive or negative valuemeans that it approaches the
attractor by thismuch ‘earlier’ or ‘later’ than the reference, respectively.We demonstrated their
substantial potential for applicationwithmultiple paradigmatic examples uncovering new features.

1. Introduction

In complex dynamical systems, the importance of a trajectory’s transient, i.e. the part of the trajectory distant
from the attractor, has been identified in physics research aswell as in various otherfields. Different phenomena
during the process ofmagnetization for variousmaterials, in particular the domain growth, have been studied
extensively [1–3]. In laser physics, it was possible to derive analytical resultsmatching the transient phases of
different lasers [4, 5]. In kinetic theory, there has been research on non-equilibrium approaches formore than a
century by now [6]. Othermodern areas of statistical physics have emphasized the importance of transient
dynamics, too, e.g. in social systems [7] and transient phases between jam and free-flowphases in vehicular
traffic [8].

Even outside of the direct field of physics, but still within the scope of complex dynamical systems, a focus on
transient dynamics has been developed recently. Hastings [9]made a call formore transient analysis of
ecologicalmodels. An example of this was given by vanGeest [10], describingmacrophyte-dominated states of
lakes as non-equilibrium states. Inmedicine and biology, epilepsy is seen as a transient phenomenon andmuch
work has been done [11, 12]. In economics, a transient analysis complementing the asymptotic analysis proved
to be fruitful, particular supportingwith the stability analysis and understanding how to reach the equilibria
[13]. Climate change is often seen as a transition to a new situation, i.e. a transient change to a new attractor
[14–16]. Closely related, discussions in sustainability sciences are on transient dynamics because they refer to
transformations from and to sustainability. Important key topics are the Anthropocene [17–19], particular the
great acceleration [20], and planetary boundaries [21, 22].
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An important emphasis on long transients has beenmade in [10, 15, 23].With this term, they refer to
trajectories where the relevant and observable phenomena/states, e.g.macrophyte-covered lakes or desert states
of the Earth system, are away from the actual attractor, but in the transient phase where a trajectorymay stay for a
substantial amount of time.

Hastings [9] stressed the importance of different time scales and pointed out how the transient dynamics can
be very different andmuchmore interesting than the asymptotic behavior. In addition, he explained how
saddles play a central role by inducing long transients. This has been demonstrated in a study byAnderiesetal
[15] in the context of sustainability science. The ‘interacting planetary boundary’ [21, 22] has been defined by
whether states take ‘long’ to the attractor or not. This idea leads precisely to themain question for this article
‘Howcanwe properly quantify the time to reach a system’s attractor?’, i.e. associatemeaningful numbers with it.

This study ismeant as amethodological step in direction for applications in real-world systems. So in the
following, we focus on being able to do numerical estimationswhile analytical results are only given to
understand general properties.

Often, a trajectory is divided arbitrarily in a transient part and the asymptotics close to the attractor. Sowe
split themain question into two sub-questions: (a) ‘What are the problems of these current/intuitivemethods to
quantify transient time?’ and (b) ‘Howcanwemend them?’.

To answer thefirst question, wework out four essential problems one is confrontedwith: (I) infinite reaching
time: the attractor is not reached infinite time for a large class of physically relevant systems; (II) physical
interpretation: it is unclear how to define precisely ‘when the transient is over’, so it is ambiguouswhere to divide
between the transient and the asymptotics; (III) discontinuities: when having parameter dependence, small
changes in the parameter often induce a large (noncontinuous) effect on themeasured quantity; and (IV) non-
invariance: the results depend on the choice of coordinates. Problem (IV) is particularly important, as a result
should be a property of the dynamical system and thus independent of the choice of coordinates, i.e. invariant
(or correctly transforming) under smooth transformations of the state space (see ‘smoothly equivalent’ in [24]).

Then, we approach question (b) by formulating twometrics, area under distance curve (D) and regularized
reaching time (TRR). Thefirst one is the integral over the distance to the attractor along the trajectory, and has a
physical dimension of time times distance. Itmeasures which trajectories are reluctant, i.e. stay distant from the
attractor for long, or eager, i.e. approach it right away. The second one,TRR, is defined by the difference between
the reaching times for the trajectory of interest and a reference trajectory. Thus, it takes a different point of view,
actuallymeasuring a time. The idea is that even though the actual reaching times are infinite (problem (I)), their
difference is typicallyfinite. So, we can compare trajectories approaching the attractor and define the notions
earlier and later.

We chose four examples to illustrate different features of thesemetrics.Wefirst use a linear system to
understand how themetrics act generally and to observe the divergence ofTRR on the strong stablemanifold
particularly. Also, due to the system’s simplicity, analytical solutions are possible.We then use a global carbon
cyclemodel [15] and amodel of a generator in the power grid [25] to apply the ideas to some first real world
systems.Our final example, the chaotic Rössler oscillator, demonstrates that one can apply thesemethods to
more complex attractors also, in this case a chaotic one. The chosen examples are rather well-understood. So
they are good testing cases for themetrics, while their complexity still needs numerical approaches for a proper
quantification of reaching times.

Finally, a detailed discussion on how far the twometrics solve the aforementioned problems is given,
followed by a summary and an outline of future research.

The remainder of this article is structured as follows. After stating the four essential problems of reaching
time definitions in section 2, we illustrate themwith a small example. Then, we present the twometrics in
section 3 and apply them to examples in section 4.Next, we give a detailed discussion on how far themetrics
solve the essential problems in section 5. Finally, we closewith a summary and an outlook. Additional
information that can be found the supplementalmaterial is available online at stacks.iop.org/NJP/19/083005/
mmedia referencedwithin the article with the prefix ‘Suppl.Mat.’.

Assumptions and notations.Weassume a general, deterministic and autonomous dynamic system given by
the differential equation

x f x x X 1= Î˙ ( ) ( )

with an n-dimensional state space X n= and the right-hand side (rhs) f (x). Usually, we use x to denote an
arbitrary state x XÎ , and refer to specific/fixed states with letters as superscripts, e.g. xa, xb, and xref . The
components of a state arewrittenwith subscripts, so x x x x, ,..., n0 1 1

= -( ) and x x x x, ,...,a a a
n
a

0 1 1
= -( ) . The

words ‘point’ and ‘state’ are used synonymously for the elements ofX.We assume the system (1) to have at least
one attractor X Í with a basin of attraction X Í . In case the systemhasmore than one attractor, the
analysis should be applied to the attractors of interest separately.
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For convenience, wewillmake heavy use of the time-evolution operatorjwhere t x,j ( ) is the state after
starting at some point x and letting the system evolve for some time t 0 . Hence

x x
t

t x f t x0, and , , . 2j
j

j=
¶
¶

=( ) ( ) ( ( )) ( )

Whenwe speak of ‘quantifying the transient time’wemean tofind a function X ⟶ , a ‘metric’, that gives
a reasonable number for the time a trajectory spent in transient phase for each initial condition x Î .

Additionally, within the article we assume the asymptotics of the system to be understood as wewant to
focus on the transient only.

2. The problems of reaching time definitions

In this section, we introduce four essential problems. They need to be addressedwhen aiming to quantify the
transient time to reach an attractor in a systemof type (1). Then, we illustrate themwith an examplemodel.

(I) Infinite reaching time.Abasic property of a large class of complex systems is that trajectories reach the
attractor in infinite time only. That includes even steady states or limit cycles andmost systems of ordinary
differential equations with smooth rhs functions. This is the fundamental problemwhy the analysismade in this
article is necessary.

(II) Physical interpretation. It is far frombeing obviouswhat the terms ‘close to the attractor’ or ‘when the
transient is over’means.Often, this is tackled by using some arbitrary threshold ò to definewhat is a ‘small
distance’ to. But because of problem (I), the time to reach this ò-neighborhood typically diverges for 0  .
So the result depends strongly on the value of ò. Note that the focus of this article is to quantify the transient time
to reach the attractor. Sowewant to associatemeaningful numbers and need to treat this problem.

(III) Discontinuities.When defining ametric to quantify the transient time to reach using some
parameters e.g. ò, the resultmight depend discontinuously on the parameter. Usually, wewant results to change
smoothly and, if possible, weakly to changes of the parameter. If there is a discontinuous dependence, thenwe
would expect there to be a corresponding specific property of the system that introduces this behavior.

(IV)Non-invariance.Our focus is on real-world systems. So the transient time should be a general property
of the system, and not dependent on the chosen variables or coordinates to represent it. These coordinates
correspond to a point of view on the systemonly. In other terms, invariance under change of coordinates should
be given.

Example.While the aforementioned problems are of general nature, we illustrate themnext using the example
system

x
x

bx x a x a b1
2

, 2 , 2, 0.3. 30
1

0 1 0
2= - - = - = =  ( ) ( )

It has a stable focus x a b a, 2 1s = - +( ( )) as its only attractor, and a saddle x a b a, 2 1u = -( ( )) .
This has been chosen deliberately simple but is still sufficient to demonstrate all four problems. This way, we do
not have to copewith problems inherent to the example system, like high-dimensionality or chaos.

Itsflow is shown infigure 1(a). For a chosen trajectory starting at x 2.8, 6.2a = ( ) (see figure 1(a)) the time-
dependence of the Euclidean distance to the attractor

d t x x t x x, , , 4a a
E

s sj j=( ( ) ) ( ) · ( )

is depicted infigure 1(a). Two commonmetrics are the timeswhen an ò-neighborhood is entered the first and
the last time. Sowe define the class of sets

T x t d t x x, , , 5a a
E

s f= =( ) { ∣ ( ( ) )} ( )

that invert the axes offigure 1(b) as depicted infigure 1(c) (blue dotted line).T xa ( ) is the set of timeswhen the
ò-neighborhood is entered or left. Furthermore, the first and last entry times are thenT x T xinfa a

F
 =( ) ( ) and

T x T xsupa a
L
 =( ) ( ) respectively. They are graphed infigure 1(c) also.
The infinite reaching time (problem (I)) is visible infigure 1(c) right away, asT x T x,a a

F L
   ¥( ) ( ) for

0  . By definition, this implies that all elements inT xa ( )will approach¥ also.

Problem (II):T xa
F
 ( ) andT xa

L
 ( ) depend heavily on the choice of ò. So a proper physical interpretation is

rather difficult. The notions of ‘close to the attractor’ or ‘when the transient is over’ depend strongly on ò.
The strong discontinuities (problem (III)) forT xa

F
 ( ) andT xa

L
 ( )when changing ò infigure 1(c)make the

choice of a proper ò even harder. The discontinuities arise because the trajectorywill (for afixed ò) enter and exit
the corresponding ò-neighborhood several times. This behavior is caused by the complex eigenvalues of the
system. It could be circumvented locally by choosing a different distance function, for instance
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d x x P x x P
a a

, ,
1 1

4 4
, 6P

s 1 s
l l= - =-

+ -
  ⎜ ⎟⎛

⎝
⎞
⎠( ) · ( ) ( )

where b b a2 4 22l = -  - are the complex eigenvalues of the linearization of (3) around xs. (This is
related to the P · -normused in Suppl.Mat. Proposition 3.4.)Unfortunately, this is not so easy formore
complex attractors, e.g. the later treated chaotic Rössler system.However, wewill present a pragmatic solution to
this problem in section 3.2.

Finally, using a different set of coordinates, i.e. smoothly transforming the system, gives different values for
T xa

F
 ( ) andT xa

L
 ( ), because the Euclidean distance is not invariant. Hence, the result depends on the set of

coordinates chosen for the system and is not invariant under coordinate transformations (problem (IV)). This
dependence on the chosen distance is also known to appear infinite-time dynamical systems and their
stability [26].

3. Two complementarymetrics

To treat the aforementioned problems, we devise twometrics for a general system as equation (1): area under
distance curve (abbreviated as D) and regularized reaching time (TRR). They naturally lead to a transient analysis
from separate points of view as explained in the following.

3.1. Area under distance curve
Area under distance curve (D) comes from the idea that a trajectory stays distant from the attractor during the
transient while it is close in the asymptotics. A distance function d ,(· ·) is needed to have notions of ‘far’ and
‘close’ andwe define D

D x t d t xd , , , 7
0

ò j=
¥

( ) ( ( ) ) ( )

where is the attractorwith the basin  andj the time-evolution operator as in equation (2). Sowe look at the
cumulative distance to the attractor and remove the influence of the asymptotics. As (7) is the integral over the
distance in time, D is the area below the distance curve. A different point of view is that it is the timeweighted by
the distance.

Figure 1.The phase space for the example system equation (3) is depicted in (a). Furthermore, the stable spiraling node xs and the
saddle xu are added. The trajectory (blue) starting at xa closely passes by xu before it finally circulates in to xs. (b) shows the Euclidean
distance dE (dotted, blue) of this trajectory to its attractor xs over time t. The first longer dip between t=1 and t=5 is the transient at
the (unstable) saddle xu while the oscillations afterwards are the spiraling around xs. (c) turns (b) around in order to show the
dependence of the time t on some distance d = (dotted, blue) of the trajectory to the attractor xs. Secondly, there aremultiple
values of ò for each t so observables like t xa

F
 ( ) and t xa

L
 ( ) need to be introduced. t xa

F
 ( ) (dash–dotted, black)markswhen thefirst time

the ò-neighborhood around xs is entered and t xa
L
 ( ) (dashed, green) the last time. The implications, particularly the arising problems

for time definitions, are described in text.
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As D is definedwith the limit of an integral, a note on the convergence is due and can be found in the
discussion in section 5.

The distance function d should be between a point in state space and the attractor. If containsmore
than just one element, it could be the infimumof the distances to all points within. Choosing a tailor-made
function d ,(· ·) allows to adapt themetric to specific research questions, e.g. by letting d x, ( ) represent some
formof costs or damages due to being away from the attractor. For the idea of D towork, dneeds to approach 0
around the attractor and be 0 on it.

Due to the integral representation, D can be estimated numerically directly from the trajectory assuming the
attractor is known. The latter was taken as a prerequisite for this article as wewant to emphasize the analysis of
the transient.

Initial conditionswith relatively high values of D are called ‘reluctant’ and thosewith low values ‘eager’. This
terminology is used to emphasize that reluctant states go through large transients distant from the attractor,
while eager states approach it directly.

By straightforward differentiation, we can compute the orbital derivative

t
D t x d t x, , , , 8j j

¶
¶

= -( ( )) ( ( ) ) ( )

meaning its value strictly decreases along the flow; a property we use later. Furthermore, this shows it to be a
Lyapunov function [27]. Furthermore, using equation (8) and adding the condition D x x0 = " Î( ) is an
alternative definition forD.

3.2. Regularized reaching time
The second idea, regularized reaching time (TRR), is based on time differences between trajectories. It can be
interpreted as the additional time (positive or negative) that a trajectory starting at a point of interest needs to
approach the attractor after a reference trajectory has already approached it. A positive or negative valuemeans
that the trajectory at hand approaches the attractor by thismuch later or earlier, respectively, than the reference
trajectory does.

To formalize this idea, we introduce t x ( ) as the time a trajectory starting at an arbitrary state xneeds in
order to reach an ò-environment around the attractor. Thatmeans for some function X: 0D ⟶ it holds
that

t x x, , 9 j= D( ( ( ) )) ( )

wherewewantΔ to be 0 on the attractor and t x,jD( ( )) to be strictly and continuously decreasing in t. This
means, in equation (9),Δ has the role of a generalized distance function,measuring how far a point in state space
is away from the attractor. Note that t x x,j ( ( ) ) is the state after starting at x and evolving the system for a time
t x ( ). Hence, equation (9) implicitly defines t x ( ) to be the time at which an ò-environment around the
attractor, with respect to the generalized distance functionΔ, is entered.

Since the actual reaching times to the attractor are both infinite,TRR is formally described as the limit for
0  of the difference between how long the trajectory starting at some arbitrary state x and the trajectory

starting at a chosen (fixed) reference point xref need to enter the corresponding ò-environment

T x x t x t x; lim . 10RR
ref

0

ref



 = -


( ) ( ( ) ( )) ( )

For hyperbolic fixed points, we prove in Suppl.Mat. section 3 undermild conditions that there exists a class of
choices forΔ such that this limit exists for all xwithin the basin of attraction except the strong stablemanifold
and the attractor itself.We call themanifold associated to all Lyapunov exponents except the leading one the
strong stablemanifold. And, ifTRR exists, it is unique, i.e. independent of whichΔ has been chosen from the
class.

Furthermore, we show thatTRR is a parametrization of the strong stable foliation. Thus, after a smooth
change of coordinates F, i.e. a diffeomorphismof the state space, the diffeomorphic image of the strong stable
foliationwill again parametrize the level sets ofTRR in the new variables. Therefore,TRR is invariant under such
transformations and it holds that

T x x T x x; ; , 11RR
ref

RR
refF F =( ( ) ( )) ( ) ( )

wherewe obviously transformed xref , too.
TRR represents the actual time by howmuch a trajectory approaches the attractor later or earlier than the one

starting at the reference point, sowe call states with relatively lowTRR ‘early’ andwith highTRR ‘late’.
Different choices of xref (that are not on the strong stablemanifold or the attractor) result in additive

constants. To be precise, choosing another xref ¢ yields
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T x x T x x T x x; ; ; . 12RR
ref

RR
ref

RR
ref ref- ¢ = ¢( ) ( ) ( ) ( )

Because the rhs of equation (12)does not depend on x , different choices of xref do not influence the structure of
TRR w.r.t. x . Thus centralmoments, i.e. ones invariant under shifts, are sensible for analyzingTRR over a
distribution of initial conditions in state space; especially the standard deviation proves useful for the examples
below. In particular, for any choice of xref it obviously holds thatT x x; 0RR

ref ref =( ) .
The reference point should not be chosen on the attractor because this gives t x 0ref =( ) for any ò, but for

x X Î ⧹ the time t x  ¥( ) for 0  . Vice versa, thismeanswhen having chosen xref Î then

T x x x;RR
ref = -¥ " Î( ) . The same holds for the strong stablemanifold.

In order to compute the orbital derivative T t y x, ;
t RR

refj¶
¶

( ( ) ), we use equation (10) andfind

t
T t y x

t
t t y, ; lim , , 13RR

ref

0

j j
¶
¶

=
¶
¶

( ( ) ) ( ( )) ( )

where y XÎ is an arbitrary state and exchangeability of the limit and the derivative has been assumed.Next, we
take the derivate with respect to time t in equation (9) for x t y,j= ( ). Sorting the terms appropriately gives

t
t t y t y

t
t t y0 , , , 1 . 14 j j j=

¶
¶

D +
¶
¶

+⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ◦ ) ( ( ( )) ) · ( ( )) ( )

t x,jD( ( )) is strictly decreasing in t for any x XÎ . So its derivative is t x t x, , 0
t t

j jD = D <¶
¶

¶
¶( )( ( )) ( ◦ ) ( )

and in particular non-zero. Hence, t t y, 1
t
 j = -¶

¶
( ( )) , leadingfinally to the orbital derivative ofTRR

t
T t y x, ; 1. 15RR

refj
¶
¶

= -( ( ) ) ( )

This equation is actually rather natural, as the change of time to approach the attractor along the trajectory
should exactly be the time passed. Also, thismakes it a Lyapunov function [27].

To use equation (15) as an alternative definitionwe need another constraint. Because ofT x x;RR
ref =( )

x -¥ " Î , this cannot be done on the attractor (in contrast to D). In case of hyperbolic fixed points, it
follows directly from Suppl.Mat. Proposition 3.7 thatTRR is a parametrization of the strong stable foliation ss ,
whose definition is recalled in Suppl.Mat. Theorem 3.6. Sowe can use the constraint that
T x x x; 0RR

ref
ss
ref= " Î( ) , wherewe call xss

ref ss ref = ( ) the reference leaf containing xref . Formore
complex attractors, a generalized condition needs to be found and this is part of the outlook.

Suppl.Mat. Proposition 3.4 provides the convergence ofTRR in equation (10) for hyperbolic fixed points
only.When thinking aboutmore complex attractors thatmay arise in real-world examples the question of
convergence comes up again. A general ideawhyTRR should convergewith awell chosenΔ in this case, too, is
that in the asymptotics, trajectories will ‘behave similarly’ because they are close to the attractor. So, for two very
small 1 2 > , the time difference to enter the 2 -environment after entering the one of 1 should be roughly the
same, independent fromwhere a trajectory started. Hence, for two states x and xref we can assume
t x t x t x t xref ref2 1 2 1   - » -( ) ( ) ( ) ( ) implying t x t x t x t xref ref2 2 1 1   - » -( ) ( ) ( ) ( ). This suggests that the
limit in equation (10)might exist. So a crucial problem is tofind an appropriate function forΔ in order to get an
estimation forTRR.

Estimation ofTRR. Thefirst idea for aΔwould be the infimumof the Euclidean distance to the points in the
attractor. Basically, thismeans that t should be replaced byTF

 orTL
 from section 2. This would give a very

coarse estimation but is probably not the correct choice as the condition ofΔ being strictly decreasing along the
flow is in general not fulfilled.

A pragmatic choice ofΔ isD, the area under distance curve. It fulfills both conditions demanded forΔ (see
section 3.1)whenusing for d the infimumof the Euclidean distance to the attractor points.Hence, we can define
t xD
 ( ) as the time until the D (equation (7)) of the trajectory’s remainder is ò-small

D t x x t d t x, d , , . 16D
t xD

 
òj j= =
¥

( ( ( ) )) ( ( ) ) ( )
( )

Note that the ideas for D andTRR are generally independent and the usage of D in this case is purely because it
fulfills the abovementioned conditions. So it is a good, pragmatic choice.

Using tD
 defined in equation (16) as the time-function t in equation (10) for the estimation ofTRR, our

numerical results show that this idea is sensible formore complex attractors, e.g. in the Rössler systembelow.

4. Examples

In order to demonstrate the applicability of themetrics, we selected four examples with differing properties and
increasing complexity.
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4.1. Linear systemwith two different time scales
Even thoughwewant to focus on going in the direction of application to real-world systems, understanding
some features in a basic linear systemproves useful. For general systems, TRR and D can be tackled numerically
only. But a linear system can be solved analytically and explicit expressions for bothmetrics were found.Wewill
first analyze bothmetrics for a general linear system and then discuss a chosen example.

TRR for a general linear system. For a hyperbolically stable linear systemwith a (complex-)diagonalizable
matrix A n nÎ ´ and thefixed point x f at the origin,

x A x, 17=˙ · ( )

wedecompose x vi
n i i

0
1a= å =

- with coefficients ,..., n0 1a a - in the eigenvector basis v v,..., n0 1- with eigenvalues
,..., n0 1l l - sorted in descending order by real part.We assume in particular 0l to have a strictly larger real part

than 1l andmultiplicity one. Hencewe can apply Suppl.Mat. equation (10) derived in the Suppl.Mat. and get

T x x;
1

ln , 18RR
ref

0

0,ref

0l
a
a

=( ) ( )

where 0,refa is the 0a coefficient for the reference point xref . 0,refa should be non-zero, i.e. xref should not be on
the strong stablemanifold.

Note that Suppl.Mat. Proposition 3.4 gives the uniqueness of this result independent of the choice ofΔ.
In equation (18),TRR depends only on 0a , meaning the projection of x on the eigenvector corresponding to

the least stable eigenvalue 0l .While thismight be counter-intuitive in the beginning, it can be explained: the
contributions from all other eigenvalues are vanishing because they decay faster than 0l by definition. So for a
linear system, only the contribution from 0l remains. Also, on the strong stablemanifoldwhere 00a = , the
values forTRR go to-¥whichwementioned already in section 3.2 for general systems.

D for a general linear system.Taking the system (17) and choosing d x x d x x, ,E
f f 2=( { }) ( ) the squared

Euclidean distance, we calculate D directly by using the definition equation (7)

D x v v . 19
i j

n i j

i j
i j

, 0

1 *
*

å a a
l l

=
-

+=

-

( ) ( )
( )

( ) ( )†

Therefore, in case of D, all eigenvalues contribute, contrary toTRR. But they are weighted as can be seen in the
denominator. In case ofA being symmetric, this formula can be reduced to D x x A x1

2
1= -( ) .

TRR for an example linear system.Wechoose the n= two-dimensional linear system

x x1 0
4 2

20= -
-( )˙ · ( )

with a stable and a strong stable eigenvalue and corresponding eigenvectors

v v1, 1
4

and 2, 0
1

. 21s s ss ssl l= - = = - = ( )( ) ( )

Wechoose the reference point to be x 1, 1ref = ( ) . Identifying 0 sl l= , v v0 s= implies x0
0a = . Then, using

equation (18) gives

T x x x; ln . 22RR
ref

0=( ) (∣ ∣) ( )

This result is also visible in the numerical estimation infigure 3(c); the values ofTRR change only in the direction
of x0. The coloring describes the values of themetrics (see the colorbar in the right of thefigures) and the green
star represents xref .

In order to get a better feeling for thesemetrics, we have chosen two exemplary initial conditions, an early-
eager one and a late-eager one, and plotted their trajectories’ distance to the attractor over time infigure 2.We see
an intuition forTRR: it can be interpreted as the time-shift between the original trajectory and the reference
trajectory until the asymptoticsmatch. Sowe plotted both trajectories shifted to each other using the analytical
result forTRR in equation (22).

D for an example linear system.Analyzing D for the example linear system in equation (20) gives

D x x x x x
11

6

1

4

2

3
, 230

2
1
2

0 1= + +( ) ( )

where equation (19) has been used. The numerical result infigure 3(a) confirms this.
Infigure 2, the blue-shaded area corresponds to the D valuewhich is the same in both cases of our particular

choice. This choice wasmade in order to see how trajectories can have differingTRR values even if the D values
match.

The exponential lower bound that comes up in the scatter plotfigure 3(b) can be calculated analytically by
combining equations (22) and (23)
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Figure 2.The figure shows for two exemplary initial conditions (a) x 0.8, 2.35b = ( ) and (b) x 1.4, 0.24c = ( ) the distance of the
attractor over time (blue curve) in the linear example systemof section 4.1. The initial conditions have been chosen such that the D
value, which corresponds to the blue-shaded area, is the same for both trajectories, D x D x 3.8b c= =( ) ( ) . But the trajectory starting
at xb approaches the attractor earlier than the reference trajectory (green in (a) and (b)), which in turn is earlier than the one from xc ,
meaning T x x T x x T x x; 0.22 ; 0 ; 0.34b c

RR
ref

RR
ref ref

RR
ref= - < = < = +( ) ( ) ( ) . In order to show this, the example trajectories

(blue) have been shifted in each plot by the value of TRR with respect to the reference trajectory (green). This demonstrates an intuition
behind TRR : it describes by howmuch one has to shift one trajectory so itmatches the asymptotics of the reference trajectory.

Figure 3. For the presented example systems (top to bottom: linear system, global carbon cycle, generator in a power grid, Rössler
system) the two newmetrics have been computed for each initial condition in the state space andmarkedwith color, see left column
area under distance curve (D, D) and right column regularized reaching time (TRR). Themiddle column shows their relations for the
particular system. The initial conditions xb (triangle) and xc (square) fromfigure 2 have beenmarked in (a)–(c), too. As the Rössler
system is three-dimensional, the above plot depicts only a slice atfixed z=0.6where the boundary of the attractor’s projection to this
plane is shown in dashed red lines. As this is only a projection,D is not 0 for all points within. For comparison, a graphical
representation of the full attractor can be found in supplementarymaterial section 2.
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D x
25

18
e . 24T x x2 ;RR

ref( ) ( )( )

4.2. Global carbon cycle
The second example has been chosen to take a step in the direction of real-world examples. It is a conceptual
model of the global carbon cycle proposed byAnderiesetal [15].We use the pre-industrialization version. It
consists of three dynamical variables, the terrestrial,marine and atmospheric carbon stocks, denoted by
c ct terrestrial= , c cm marine= and c ca atmospheric= respectively. Furthermore, the conservation of total carbon is
formulated in the constraint C c c c constt m a= + + = . Thus, we can reduce the system to 2 state variables ct
and cm and rescale the units such thatC=1:

c p r c c aNEP , , , 25t t ta= -˙ ( ) ( )

c I c c b, , 25m a m=˙ ( ) ( )

whereNEP is the net Eco-systemproduction, p photosynthesis, r respiration,αharvesting parameter and I
diffusion; indirect dependencies have been omitted andmore details are in [15, 28]. As the full equations are
rather lengthy, we put them in Suppl.Mat. section 1 and refer in the analysis to the flow that is drawn in
figures 3(d) and (f) and theα parameter stated above. Thewhole phase space of equations (25a) and (25b) is the
basin of the attraction of the fixed point in themiddlemarked by a blue dot; the dynamics is drawn as streams.
The trajectories starting in the lower part have to pass by a ‘desert-like’ saddle (with ct=0) at the left (green dot).

The color infigure 3(f) depictsTRR and thefirstfinding is the splitting of the basin of attraction. The strong
stablemanifold of the stable node becomes visible as a light beige line due to its low values ofTRR, i.e. as very early
states becauseTRR  -¥. So it is the separatrix for the observed splitting. Also, the expected smooth increase
of the return timeswhen distancing (along the trajectories) from the attractor can be observed.

Still, the splitting of the basin of attraction is visible for values of c 0.3terrestrial < , where it is only due to
quantitatively different behavior and the visible boundary is actually a rather sharp but still continuous
transition. (The latter statement follows right fromSuppl.Mat. Theorem3.6 and Suppl.Mat. Proposition 3.7.)
Looking at figure 3(f) one can also see that the boundary becomesmore andmore fuzzy for even smaller values of
cterrestrial, demonstrating that there is really a need for a quantitative analysis.

When applying D to thismodel (figure 3(d)), the splitting of the basin can be observed again. In contrast to
TRR, the strong stablemanifold of the stable node is not visible because D can be seen as a (by distance)weighted
time and the contributions from the asymptotic part where the difference in the Lyapunov spectrummatters are
negligible.

Furthermore, we see a clear linear correlation of bothmetrics infigure 3(e) because all trajectories starting in
the lower part have to pass by at the saddle on the left and spend a long time there.

Bothmetrics work as early-warning signals [14, 29], too.When increasingα, corresponding to the harvest of
terrestrial carbon, the systempasses through a subcritical pitchfork bifurcationwhere the saddle becomes stable
and the lower-left part of the phase space splits off. The divergences of the twometrics’ statistics as seen in
figure 4 prove their prebifurcational sensitivity, while other systemic indicators like basin stability [30] do not
change (up to numerical fluctuations, see figure 4). Note that in this example, a Lyapunov exponent analysis of
the saddlewould be able to predict the bifurcation due to the simplicity of the saddle also. However, in case of a
more complex saddle, this would become arbitrarily difficult while this numerical estimationwould still be
possible for bothmetrics.

Figure 4. For the global carbon cycle in equations (25a) and (25b), themean of D and standard deviation of TRR are plotted (with their
5%–95%bootstrap error) and show a divergence before the parameterα (yearly human carbon offtake) reaches the bifurcation value
(marked by the red line). For comparison Basin stability is shown, which does not show any change because the size of the basin stays
constant before the bifurcation.
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4.3. Generator in a power grid
As the next example, we chose the swing equation in equation (26), a basicmodel describing the dynamics of a
single generator connected to a large power grid [31]. It consists of two dynamical variables, the phase θ and
angular frequencyω, both in a reference frame rotating at the grid’s rated frequency. The parameters of the
system correspond to the net power production P=1 (at the node), the capacity of the transmission lineK=6
and dampening 0.1a = .

P K, 2 2 sin . 26f w w aw f= = - -  ( )

In this form,which is used in electrical engineering [25, 32], it is formally equivalent to a pendulumwith
constant driving and damping.

The stable fixed point at 0sw = , arcsin P

K
sf = describes a state of synchronization. For the chosen set of

parameters, the system exhibits another attractor: a limit cycle at larger positive values ofω. For negative values,
the two basins of attraction are interleaved. Amore detailed introduction and analysis can be found in
[25, 31, 33].

Calculating TRR inside the basin of the stable fixed pointed ,s sw q( ) yieldsfigure 3(i). There is basically no
color change away from the attractor, sowe can see that a trajectory barely spends any time in the transient and
goes quickly to the attractor. Analogously, figure 3(g) for D leads to the same conclusion asTRR.

Comparing bothmetrics infigure 3(h) shows that they are closely linked.Note that this timeD is presented
on a logarithmic scale, so the relation is exponential andwhat we see here is actually the influence of the
linearized part of the system. The accumulation in the upper right corresponds to the initial conditionswith
lower values ofω. Thismeans, they only go through a very short transient and spendmost of their time in the
part where the linearization holds.

Thewhite parts in the phase spaces figures 3(g) and (i) correspond to the basin of attraction of the limit cycle.
As thismeans the system is away from synchrony, the generators would usually switch off before reaching it. So
we did not include it in the analysis.

4.4. Chaotic Rössler oscillator
Althoughwe have proven the convergence ofTRR forfixed points only, we showwith the chaotic Rössler system
[34, 35] that bothmetrics are applicable to higher-dimensional andmore complex attractors, too. The equations
are

x y z y x ay z b z x c, , , 27= - - = + = + -   ( ) ( )

where x, y and z are the coordinates in state space.While this naming convention is not in line with the rest of the
article, it has been chosen as it is standard for these equations.

Figure 3(l) shows a slice of the phase space with the standard parameters a=0.2, b=0.2, c=5.7 forTRR

and the expected sensitivity to initial conditions for chaos is observed: early and late trajectories lie closely
together and themetricTRR has low spatial correlation.

In contrast, D shows infigure 3(j) surprisingly smooth changes of an embryo-like shape. Because the focus
of this article is on transient dynamics a new feature of the chaotic Rössler system is uncovered: while the
attractor is chaotic, the basin of attraction is very regular. D focuses on the initial transient and the chaotic
asymptotics isfiltered out. For comparison, the boundaries of the attractor’s projection have been addedwith
dashed red lines infigure 3(j) and depictions of the attractor are in Suppl.Mat. section 2.

Furthermore, TRR can be applied as an early-warning signal in this case, too. In order to demonstrate this, we
chose to vary a as it has a crucial influence on the system’s dynamics (see the bifurcation diagram infigure 5
(green)). For values of a 0.006< (see [36]) there is only a single stablefixed point. At a 0.006» a limit cycle
emerges due to aHopf bifurcation [36]. For a 0.11> , several period doublings are observed,finally leading to
chaos for a 0.155> . Even in the chaotic regime, further bifurcations can be observed.

Infigure 5, the standard deviation of theTRR distribution from randomly chosen initial conditions inside the
basin of attraction is given. Due to the sensitive dependence on initial conditions, the reference value varies a lot
and hence introduce shifts in the distribution that do not describe actual changes in the system’s dynamics. To
remove this effect, it is crucial to use centralmoments like the standard deviation.

TRR is strongly sensitive to any qualitative changes in the dynamics of the system, incl. even chaos–chaos
transitions. Closely observing figure 5 uncovers that there is a base-linewith littlefluctuations at TStd 10RR »( )
complementedwith strong peaks. In the chaotic regime, the peaks correspond directly to qualitative changes.
Also, we observe sensible changes during the period-doubling phase and a strong increase before theHopf
bifurcation at a 0.006» , proving the usefulness as an early-warning signal.

The abrupt downward peak at a 0.11» is unexpected andmore details are needed to clarify it. The other
peaks correspondwell with the transitions visible in the bifurcation diagram.
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5.Discussion

In order to see how far the two proposedmetrics answer the question ‘How canwe properly quantify the time to
reach a system’s attractor?’wewill go along the four essential problems that have beenworked out in section 2
for this discussion: (I) infinite reaching time, (II) physical interpretation (III)discontinuities and (IV)non-
invariance.

Area under distance curve (D) has been defined as the cumulative distance to the attractor over time in order
to emphasize the idea that a trajectory stays ‘far’ from the attractor in the transient while being close in the
asymptotics. The distance d is not necessarilymeant in themathematical sense [37], but it only needs to
approach 0 around the attractor and be 0 on it. In that way, it is possible to choose the appropriate d for different
research questions, e.g. asking about costs or damages. Even in these interpretations D is ametric capturing the
transient time, because there are only contributions when the trajectory is distant from the attractor, i.e. still in
its transient phase. Another point of view is to see D as the time to reach the attractor weighted by the distance.

We understand Problem (I), infinite reaching time, as solved. For hyperbolic attractors and d being a
mathematical distance function, the integral in equation (7) does converge. Trajectories approach the attractor
exponentially in the asymptotics and the integral over the exponential envelope isfinite.

While this coversmost systems relevant for real-world applications, in some very specific cases, D might be
infinite. The asymptotic tail of the integralmight not converge, i.e. the trajectory does not approach it ‘fast
enough’. Thismeans, either this is thewanted result or d has not been chosen appropriately. In the first case, it
could be for example that D was computed for an initial condition that is not economically feasible, so the cost
diverges. Furthermore, this would imply that even though the attractor is systemically stable, it is not
economically feasible to copewith small perturbations.

From a technical perspective a divergence inD can be understood as indicating that d has not been chosen
matching to the system. E.g. using the Euclidean distance and x x1

2
3= -˙ where the solutions are

t x x, sign
t x

1
2

j =
+ -

( ) ( )
∣ ∣

, D does not converge. Another example is to take a linear system x x= -˙ with

x 1< . Using d x, 0
x

1

ln
= -( { })

∣ ∣ with d 0, 0 0=( { }) gives D  ¥.

This can usually be solved by choosing an appropriate d. E.g. choosing for x x1

2
3= -˙ using

d x x, 0 exp 1= - -( { }) ( ∣ ∣ ) and d 0, 0 0=( { }) gives finite values for D.
Problem (II) is solved because there is no direct parameter. Still, as there is the indirect dependence on d a

discussion is necessary and given in comparison to the first and last entry time to an ò-environment T xF
 ( ) and

T xL
 ( ) respectively. For them, a small change in òwill have a huge impact on themeasured times because for

0  both values go to infinity. Furthermore, if onewould locally change theway how the distance to the
attractor ismeasured, the values forT xF

 ( ) andT xL
 ( )would change drastically, too.

BecauseD is defined as the cumulative d over time, a local change in dwill have onlyminor effects on the
exact value, so even estimated functions for dwith some uncertainty can be used.

Problem (III), discontinuities, have been avoided in D by using the integral representation. Hence the
function is even differentiable along the flow (see equation (8)).

We see Problem (IV), non-invariance, as solved, if d has been chosenwith somemeaning, e.g. economic
damages. Then one can simply represent the economic damage function in the changed coordinates, because the
meaning is independent of the coordinates. This reasoning is notmathematical but context-dependent. From a
purelymathematical point of view, if d is just any distance function, generally the result is not invariant under

Figure 5.The bifurcation diagram (green) of the Rössler system for varying the parameter a in equation (27)was computed from the
localmaxima in z of the attractor and TRR (orange) shows a strong sensitivity to these qualitative changes. The gray background is used
so the reader canmore easily connect the peaks in TRR to the corresponding parts in the bifurcation diagram.
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change of coordinates as it depends on geometric features of the system. But as wewant to go in the direction of
real-world systems, amodel-specific choice of d is compulsory anyway.

Regularized reaching time (TRR) has been defined as the difference in time to approach the attractor.
Problem (I), infinite reaching time, does not appear for all states in the basin of attraction except the attractor

and the strong stablemanifold. In case of the attractor, the trajectorywill stay on it while trajectories fromother
points approach the attractor only; and, by definition, points on the strong stablemanifold approach the
attractor a lot faster, also in the asymptotics. So these infinities are actually reasonable results. Also, both are
usually of a smaller dimension than the state space.Hence coincidently being there is unlikely, and these cases
are rather irrelevant for real-world applications.

Problems (II) and (III) are intrinsically solved by avoiding parameters. The necessary choice of xref

introduces a constant shift only while not changing the structure of the function.When looking at central
moments ofTRR, i.e. ones invariant under shifts, this dependence on the choice of xref disappears completely as
theywould only shift themean. So an analysis by changing the system’s parameters is possible. This has been
done in the examples for the global carbon cycle andRössler system andTRR has been confirmed as an early-
warning signal. This analysis can be seen as a systemic approach to the concept of critical slowing down (CSD)
[14, 29, 38] after a shock, i.e. an instantaneous and non-infinitesimal perturbation, uncovering prebifurcational
changes in the transient behavior. In contrast, CSD is usually donewith (local)noise only. The usage of shocks
has been developed in the context of Basin stability [30, 31] and its extensions [23, 39–42].

Problem (IV), non-invariance, is proven to be solved for hyperbolicfixed points. In case ofmore complex
attractors, we can currently only define an estimation ofTRR which depends on geometric properties. So
invariancemight not be given andmore research due in that direction. An important step in that direction has
been done bywriting down the properties ofΔwhich imply that the necessaryway ofmeasuring how a
trajectory approachesmight not be local (exceptfixed-points). The used pragmatic choice of DD =
demonstrates this as it basically says that the remainder of the trajectory should have an ò small value ofD only.

An assumption that has beenmade during the proof of invariance ofTRR for hyperbolicfixed points is: the
eigenvalue of the RHS’s Jacobianwith the largest real-part is either unique andwithmultiplicity 1 or there are
two that are complex conjugated to each other. However, this condition is not really constraining becausewe
assumemost real world systems fulfill it.

Comparison.Themetrics have been applied to several examples andwewill discuss a comparison between
bothmetrics here. They are depicted in figures 3(b), (e), (h) and (k) and showdifferent relations, as stated in the
figures. The exponential lower bound and the exponential relation for the linear system and swing equation
respectively comemostly from the asymptotic behavior, in particular as the linear systemdoes (by definition)
not have any nonlinearities. Still the relations are different as the asymptotic behavior differs slightly, too, one
being a node the other a focus. This shows that even thoughwe clearly focus on the transient, it is actually
important to be aware of the asymptotic behavior, too. And one cannot analyze the formerwithout knowing
about the latter.

In contrast, the linear relation for the global carbon cycle really points to the transient behavior only. It is due
to the states passing by the ‘desert-like’ saddle. Finally, there seems to be no clear relation between bothmetrics
for the Rössler example, pointing to the chaotic behavior. Still, bothmetrics have separately been useful, D
demonstrating the smoothness of the basin of attraction and the standard deviation ofTRR being sensitive to
qualitative changes of the system.

Othermethods.Whendeveloping this research onmeasuring times to approach the attractor, we had the
impression that there are twomore common ideas, additionally to thefirst and last entry time.We do not intend
to have a complete overview of allmethods but would like to discuss these two shortly here. This part refers to a
general system in the sense of (1).

Thefirst idea is to developmetrics based on characteristic times. These are usually defined as the time until a
quantity is reduced to 1 e of its original value [43]. This quantity could be a distance to the attractor or a
coordinate. From this definition it already follows that they are subject to problem (IV). Also, even if the quantity
is at 1 e of its initial value, the trajectorymight still be far away from the attractor and in its transient dynamics.
Lastly, taking a one-dimensional linear system and assuming the quantity is the coordinate, the characteristic
time is constant for all initial conditions. This is counter-intuitive when thinking about a time to approach the
attractor.

The second idea for general systems is to use Lyapunov exponents [44]. They have units of inverse time and
are invariant under changes of coordinates. However, they are actually a property of the attractor. So they do not
capture the transient but only the asymptotics closely around and at the attractor.
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6. Summary and outlook

In this article, we have treated the question: ‘How canwe properly quantify the time to reach a system’s
attractor?’

First, we haveworked out the four essential problems of quantifying the timing of transients in order to
develop two newmetrics, area under distance curve D and regularized reaching timeTRR. As the focus of this work
ismeant to be onmaking afirst step to real-world systems, we have applied themetrics numerically to four
chosen examples systems, observing different features. Finally, we have discussed in detail how far themetrics
treat the four essential problems.

With this approach, interesting features of the examples have been uncovered. Using the global carbon cycle,
we have demonstrated the importance of the transient analysis, as the desert state is only a saddle but
nevertheless passing by therewould lead to an extinction of humanity. The splitting of the basin of attraction is
partially due to the strong stablemanifold of the attractor but it continues for lower values of cterrestrial where it is
only due to quantitatively different behavior demonstrating the need for quantitativemethods. Particularly
interesting is how the (central) statistics of ourmetrics are a systemic approach to the concept of CSD leading to
an interpretation as early-warning signals, whichwe have demonstrated also. The independence of the choice of
reference points has been achieved by the usage of centralmoments. In case of the generator in a power grid,
most of the relevant dynamics seems to be dominated by the linearization of the equations around the focus.

In order to prove the applicability tomore complex dynamics, we have used ourmetrics on the Rössler
system, too, and found the smoothness of the attractor’s basinwith D. As the attractor itself is chaotic, this
smoothness is surprising.TRR reacts strongly to the sensitivity to initial conditions of the chaotic system and one
mightwant to askwhether there is a relation towinding numbers when approaching the attractor. Still, its worth
is displayedwhen varying the a parameter. This parameter has strong influence on the Rössler system’s
dynamics andTRR reacts strongly to the different bifurcations and even the chaos–chaos transitions, proving
again its worth as early-warning-signal.

We have not performed any comparative analysis with thementioned first- and last-entry-time approaches
because these behave inconsistently and their quantitative results are arbitrary, as discussed at length in section 2.

The detailed discussion on the twometrics have showed that, while they do treat the four essential problems,
they do not fully solve them and further investigation is needed. Also, they come from two very different basic
ideas so the comparison showed that they reallymeasure independent features but can improve the
understanding of a systemby combining them. For bothmetrics, we have showed that they are Lyapunov-
functions.While some properties have already been used in the article, these definitions in terms of orbital
derivativesmay be a rich groundwork for the next steps.

Four directions of immediate future research are due:
(1)Working on the definition ofTRR using the Lyapunov function properties. This step is crucial in order to

further the understanding of transient analysis and needs to take the attractor into account aswell. Hence, the
analysis ofmore complex attractors and basin shapes, e.g. riddled basins, is part of this.

(2)Applying the current definition of themetrics, in particular using the estimation ofTRR with DD = , to
understand the implications and the precise use cases better. Furthermore, their relations to topological
structures, e.g. in complex networks [45], need to beworked out in detail. This part, even though
complementary, should be done in accordance with the results in (1).

(3)On the numerical side, it is important to introducemore sophisticatedmethods of Lyapunov function
estimations, where a starting point is thework byGiesl andHafstein [46]. The curse of dimensionality is going to
be a problem for network systems, hencemethods for estimation of thesemetrics’ statistics in such kinds of
systems induce a need for developing specific algorithms.

(4)Comparison of the timing of transients inmodel output and observation data as the newobservable time
is now available.
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