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Summary

The pathogenicity of the clinically important yeast,

Candida albicans, is dependent on robust responses

to host-imposed stresses. These stress responses

have generally been dissected in vitro at 308C on arti-

ficial growth media that do not mimic host niches.

Yet host inputs, such as changes in carbon source or

temperature, are known to affect C. albicans stress

adaptation. Therefore, we performed screens to iden-

tify novel regulators that promote stress resistance

during growth on a physiologically relevant carbox-

ylic acid and at elevated temperatures. These screens

revealed that, under these ‘non-standard’ growth

conditions, numerous uncharacterised regulators are

required for stress resistance in addition to the clas-

sical Hog1, Cap1 and Cta4 stress pathways. In partic-

ular, two transcription factors (Sfp1 and Rtg3)

promote stress resistance in a reciprocal, carbon

source-conditional manner. SFP1 is induced in

stressed glucose-grown cells, whereas RTG3 is

upregulated in stressed lactate-grown cells. Rtg3 and

Sfp1 regulate the expression of key stress genes

such as CTA4, CAP1 and HOG1 in a carbon source-

dependent manner. These mechanisms underlie the

stress sensitivity of C. albicans sfp1 cells during

growth on glucose, and rtg3 cells on lactate. The

data suggest that C. albicans exploits environmen-

tally contingent regulatory mechanisms to retain

stress resistance during host colonisation.

Introduction

Of the circa 1.5 million fungal species thought to inhabit

our planet, only around 600 have been reported to be

pathogenic for humans. The yeast Candida albicans is a

common cause of mucosal infection (oral and vaginal

thrush), and is the most frequent cause of nosocomial

fungal infections (Brown et al., 2007; Brock, 2009; Cal-

derone and Clancy, 2012). The fate of this opportunistic

fungal pathogen is intertwined with its mammalian host,

in which it is normally found as a relatively harmless

commensal in the oral, urogenital and gastrointestinal

microbiota (Bouza and Mu~noz, 2008; Calderone and

Clancy, 2012). However, infections can arise when our

immunological defenses become compromised, allowing

C. albicans to thrive in niches where it would normally

be subject to phagocytic clearance (Gow et al., 2012;

Brown et al., 2014a,).

The ability of C. albicans to colonise diverse host

niches is dependent on its rapid adaptation to the local

conditions in these microenvironments, including

changes in the availability of key nutrients such as the

carbon source (Staib et al., 1999; Barelle et al., 2006;

Ene et al., 2013; Brown et al., 2014b). For example, glu-

cose levels are minimal in the colon, between 0.06 and

0.1% in the bloodstream, and are reported to be about

0.5% in vaginal secretions (Brown et al., 2014b). Tran-

script profiling studies that have examined the in vivo

gene expression patterns of C. albicans cell populations

from the blood or internal organs suggest that both gly-

colytic and gluconeogenic pathways are active in these

fungal populations (Andes et al., 2005; Fradin et al.,

2005; Barelle et al., 2006; Walker et al., 2008). This

counterintuitive finding could be explained either by an

ability of individual C. albicans cells to express both

pathways simultaneously (Sandai et al., 2012; Childers

et al., 2016) or by the complexity of host niches, in

which individual C. albicans cells can be exposed to

glucose-containing or glucose-lacking microenviron-

ments depending on their location (Hube, 2004; Barelle

et al., 2006; Miram�on et al., 2012). In the gut, most die-

tary sugars are absorbed in the small intestine before
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the remaining nutrients enter the large intestine. This

view is supported by bacterial expression profiling stud-

ies, which suggest that sugar concentrations are mini-

mal in colon microenvironments (Kr€oger et al., 2013;

Avican et al., 2015). It has been reported that glycolytic

genes are upregulated in C. albicans cells colonizing the

mouse caecum (Rosenbach et al., 2010), but these

experiments involved the pretreatment of mice with anti-

biotics to deplete the gut microbiota. Indeed, the view

that sugars are limiting in gut microenvironments is rein-

forced by the observation that C. glabrata mutants that

cannot utilize the organic acid lactate are unable to colo-

nize the gut (Ueno et al., 2011).

The pathogenicity of C. albicans is further enhanced

by its ability to counteract local environmental stresses.

This yeast is relatively resistant to certain stresses com-

pared with other fungi (Jamieson et al., 1996; Nikolaou

et al., 2009). Host-imposed stresses include oxidative,

nitrosative and cationic stresses, as well as thermal fluc-

tuations in febrile hosts (Enjalbert et al., 2003; Hube,

2004; Enjalbert et al., 2006; Enjalbert et al., 2007;

Leach et al., 2012a,b,c; Miram�on et al., 2012). C. albi-

cans mounts robust responses to these stresses via

specific signaling pathways. The Hog1-dependent MAP

kinase pathway promotes resistance to cationic, osmotic

and oxidative stresses (San Jos�e et al., 1996; Alonso-

Monge et al., 2003; Smith et al., 2004). Additional MAP

kinase signaling pathways, characterized by the Mkc1

and Cek1 MAP kinases, promote the resistance of C.

albicans to cell wall stresses (Navarro-Garc�ıa et al.,

1995; Alonso-Monge et al., 2006; Eisman et al., 2006).

The AP-1-like transcription factor, Cap1, plays a major

role in driving the transcriptional response to oxidative

stress (Alarco and Raymond, 1999; Znaidi et al., 2009;

Kos et al., 2016), and the response-regulator Skn7 con-

tributes to this response (Singh et al., 2004). Meanwhile,

the transcription factors Cta4 and Hsf1 play key roles in

the transcriptional responses to nitrosative stress and

heat shock, respectively (Hromatka et al., 2005; Chira-

nand et al., 2008; Nicholls et al., 2009). These signaling

pathways protect C. albicans against many of the

stresses imposed by the host (Alonso-Monge et al.,

2006; Herrero-de-Dios et al., 2010). Consequently, the

inactivation of key stress responses attenuates the viru-

lence of this fungus (Wysong et al., 1998; Alonso-

Monge et al., 1999; Hwang et al., 2002; Fradin et al.,

2005; Nicholls et al., 2011).

The in vitro dissection of these signaling pathways

and their contributions to stress adaptation has gener-

ally been performed using C. albicans cells grown at

308C on rich media containing 2% glucose. However, as

described above, many host niches colonized by this

pathogenic yeast contain low levels of glucose or lack

this sugar. Also, C. albicans is subjected to changes in

ambient temperature, in the febrile host for example.

Therefore, during host colonization, C. albicans must

respond to local environmental stresses while adapting

to alternative carbon sources or thermal fluctuations.

Changes in temperature or carbon source have been

shown to affect the stress resistance of C. albicans

cells. For example, ambient temperature influences their

resistance to osmotic and cell wall stresses (Leach

et al., 2012a). Exposure to glucose enhances the resist-

ance of C. albicans to oxidative stress (Rodaki et al.,

2009). Also, growth on lactate rather than glucose con-

fers elevated resistance to osmotic stress (Ene et al.,

2012a, 2012b; Ene et al., 2015).

These observations suggest crosstalk between car-

bon assimilation and stress adaptation in C. albicans,

but the mechanisms that underlie this crosstalk remain

to be defined. Therefore, we performed high-throughput

robotic screens to identify C. albicans mutants that dis-

play carbon source- or temperature-conditional resist-

ance to oxidative, osmotic or nitrosative stresses. Our

screens, which have revealed extensive environmentally

conditional stress sensitivities, have highlighted two tran-

scription factors that play complementary roles in the

carbon-conditional modulation of stress responses. Rtg3

promotes stress adaptation in lactate-grown cells,

whereas Sfp1 enhances stress adaptation in glucose-

grown cells. Mechanisms such as these presumably

allow C. albicans to maintain robust stress responses as

it colonizes host microenvironments with different nutri-

ent profiles.

Results

Carbon-conditional stress sensitivity in C. Albicans

High-throughput robotic screens of previously con-

structed mutant collections (Supporting Information

Table S1) were used to identify genes that promote

environmentally contingent stress adaptation in C. albi-

cans. These collections included the set of regulatory

transposon insertion mutants generated by the Mitchell

laboratory (Norice et al., 2007; Nobile and Mitchell,

2009), the transcription factor deletion mutants con-

structed by Sanglard’s group (Vandeputte et al., 2011),

and the library of null mutants created by Noble and co-

workers (Noble et al., 2010). These mutants represent

approximately 16% of C. albicans protein coding genes.

The stress resistance of each mutant was compared to

its congenic control strain using plate assays under a

range of growth conditions. Moderate doses of oxidative

(0.4 mM H2O2) and nitrosative stress (5 mM NaNO2)

were used (Chiranand et al., 2008). We also used a rel-

atively moderate dose of salt (1 M NaCl) (Kaloriti et al.,
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2012), which imposes osmotic and cationic stress

(Hohmann, 2002). In control experiments these doses

were shown to significantly attenuate the growth of hall-

mark deletion mutants, such as hog1, cap1 or cta4, but

not the growth of the corresponding wild type control

strains under standard growth conditions (YPD at 308C:

Experimental Procedures). The stress sensitivities of all

mutants were then compared in 96 array format on rich

glucose-containing medium and minimal media contain-

ing glucose or lactate as sole carbon source at 308C,

378C and 428C (36 conditions in total, including the

unstressed controls) (Supporting Information Fig. S1).

The plates were then imaged, and the growth of each

strain, relative to its isogenic wild type control, was

recorded by computational analysis of these raw

images. A strain was defined as displaying stress sensi-

tivity if it consistently displayed more than an 80%

reduction in growth in the presence of that stress rela-

tive to the control plate without the stress but with

matching carbon and temperature conditions (Experi-

mental Methods). The data were filtered to exclude

mutants that were unable to grow under the control

unstressed condition. The output was then used to con-

struct carbon- and temperature-conditional stress

networks.

Mutants with defects in the HOG signaling module did

not display carbon conditional sensitivity to cationic

stress: pbs2 and hog1 cells were sensitive to NaCl

whether cells were growth on rich glucose-containing

medium (YPD) or on minimal medium containing glu-

cose or lactate as sole carbon source (Fig. 1). Cells

lacking Pbs2 seemed more sensitive to cationic stress

than hog1 cells when grown on glucose as sole carbon

source (GYNB; Fig. 1), but in the context of our screen,

both mutants displayed greater stress sensitivity than

wild type cells under this growth condition. Therefore,

this key MAP kinase module contributes to cationic

stress adaptation under conditions outwith the standar-

dized conditions that have generally been used to dis-

sect C. albicans stress adaptation in vitro. However, our

screens revealed many other C. albicans mutants that

did display carbon-conditional sensitivity to cationic

stress. In comparison with glucose-grown cells, cells

growing on lactate required many additional functions

for adaptation to cationic stress. This did not simply

reflect the additional biochemical functions required for

growth on lactate, because in our screen, the stress

sensitivity of a mutant grown on lactate was defined in

comparison to its growth on lactate in the absence of

stress. The carbon-conditional cationic stress sensitive

mutants included cdc10 (lacking a septin required for

virulence and tissue invasion), frp1 (ferric reductase)

and sfp1 (C2H2 transcription factor involved in regulation

of biofilm formation: Chen and Lan, 2015) (Fig. 1).

Interestingly, both cap1 and cta4 cells were sensitive to

cationic stress during growth on lactate, but not on glu-

cose (Fig. 2A). Under standard growth conditions

(YPD), Cap1 and Cta4 play central roles in the tran-

scriptional responses to oxidative and nitrosative

stresses, respectively (Alarco and Raymond, 1999;

Chiranand et al., 2008; Znaidi et al., 2009). Our data

suggest that these transcription factors also contribute

to cationic stress adaptation under other growth condi-

tions. Mutants with defects in cell wall biosynthesis

(crz1, kre62, mnn4, phr3), cellular morphogenesis and

biofilm formation (efg1/cph1, ace2, bcr1, cbk1, cdc10,

pde2, swe1, wsc1) also displayed carbon conditional

cationic stress sensitivity. These genes are required for

normal levels of NaCl resistance during growth on lac-

tate (Fig. 2A).

Other C. albicans mutants showed carbon-conditional

sensitivity to oxidative stress. These included rtg3

(C1_10990C), which encodes a putative transcription

factor orthologous to Saccharomyces cerevisiae Rtg3

and recently shown to be involved in galactose metabo-

lism in C. albicans (Dalal et al., 2016), and also sfp1

(C3_04860W), which as mentioned above, encodes a

partially characterized transcription factor involved in

biofilm formation (Fig. 1). Interestingly, hog1 cells were

sensitive to oxidative stress during growth on lactate,

but not on minimal medium containing glucose (Fig. 1).

This was also the case for ssk2 and pbs2 cells, suggest-

ing that the HOG MAPK module makes environmentally

contingent contributions to oxidative stress resistance

(Fig. 2B). In contrast, cap1 and skn7 cells, which lack

key players in the oxidative stress response under

standard growth conditions, were sensitive to oxidative

stress during growth on lactate as well as glucose.

Therefore, Cap1 and Skn7 would appear to promote oxi-

dative stress adaptation under conditions additional to

the standardized in vitro growth conditions that have

generally been used to examine these regulators (Alarco

and Raymond, 1999; Zhang et al., 2000; Alonso-Monge

et al., 2003; Singh et al., 2004; Wang et al., 2006;

Enjalbert et al., 2007).

Carbon-conditional sensitivity to nitrosative stress was

also displayed by some specific C. albicans mutants

(Fig. 1). These included morphogenetic mutants such

as cph1/efg1 and rbt1 (Fig. 2C). They also included the

rtg3 and sfp1 mutants, which also displayed carbon-

conditional sensitivities to cationic and oxidative stresses

(Fig. 1). Once again the significance of carbon-

conditional nitrosative stress phenotypes was empha-

sized by the observation that cta4 cells, which lack the

key regulator that drives transcriptional responses to

nitrosative stress, displayed sensitivity to this stress dur-

ing growth on glucose and lactate (Fig. 2C). Interest-

ingly, mutants lacking Fkh2 (forkhead transcription factor
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involved in morphogenetic regulation), Cht2 (chitinase)

or Aaf1 (adhesin-like protein) were sensitive to nitrosa-

tive stress, irrespective of the carbon source. These

findings reinforce the previously reported links between

metabolic adaptation, cell wall biogenesis and morpho-

genesis (Ene et al., 2012a, 2012b; Brown et al., 2014a).

The carbon-conditional stress mutants identified in our

screens displayed significant enrichment of specific func-

tional categories (GO terms), relative to the functional cat-

egories represented in the entire mutant set used in the

screens (Fig. 2D). For example, genes related to ‘Patho-

genesis’ were enriched in lactate-dependent oxidative

stress genes, and genes related to ‘Filamentous Growth’

were enriched in lactate-dependent nitrosative stress

genes (Fig. 2D). A significant proportion of the carbon-

conditional stress mutants we identified carry defects in

uncharacterized genes (33% of the carbon-conditional

cationic stress mutants) (Fig. 2A). This reflects our igno-

rance about the ways in which environmental changes

within host niches impact upon stress adaptation mecha-

nisms in this major pathogen.

Temperature-conditional stress sensitivity in C. Albicans

Our screens also revealed numerous C. albicans

mutants that display temperature-conditional stress phe-

notypes. For example, the sensitivity of rlm1 cells to

Fig. 1. C. albicans mutants that display carbon- and temperature-conditional stress sensitivity. To examine the impact of carbon source, C.
albicans mutants were robotically plated onto YPD, GYNB (Glu) or LacYNB (Lac) containing cationic stress (CS; 1 M NaCl), oxidative stress
(XS; 0.4 mM H2O2), nitrosative stress (NS; 5 mM NaNO2) or no stress, and grown at 308C (Experimental Procedures). The robot generated
four spots per strain: two at higher, and two at lower cell densities. To examine the impact of ambient temperature, C. albicans strains were
plated on YPD and grown at the temperature indicated. Examplar strains are shown in this figure, whilst the full sets of environmentally
contingent stress sensitive mutants are shown in Figs. 2 and 3.
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Fig. 2. Networks of C. albicans mutants revealed by the screens for carbon-conditional stress sensitivity. The networks of carbon-conditional
mutants (at 308C) are displayed for:
A. Cationic stress (CS, 1 M NaCl, green octagon).
B. Oxidative stress (XS, 0.4 mM H2O2, blue octagon).
C. nitrosative stress (NS, 5 mM NaNO2, yellow octagon) using edges between these hubs and the gene nodes that are either green
(sensitivity on lactate) or blue (sensitivity on glucose). Nodes with double edges represent mutants with sensitivity on both carbon sources.
Standard name genes are represented with circles and systematic name genes with diamonds.
D. Significant enrichment of specific GO terms (biological processes) for lactate-conditional (green) and glucose-conditional mutants (blue).
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cationic and oxidative stress was higher at 308C than at

378C and 428C. In contrast, crz1 cells were more sensi-

tive to cationic stress at 378C (Fig. 3). The Rlm1 and

Crz1 transcription factors promote cell wall remodelling

in C. albicans, and the cell wall provides some protec-

tion against environmental insults. Therefore, the

temperature-conditional stress phenotypes of rlm1 and

crz1 cells might suggest that Rlm1 and Crz1 make

Fig. 3. C. albicans gene networks revealed by screens for temperature-conditional stress sensitivity. The networks of temperature-conditional
mutants (on YPD) are displayed for:
A. cationic stress (CS, 1 M NaCl, green octagon)
B. oxidative stress (XS, 0.4 mM H2O2, blue octagon)
C. nitrosative stress (NS, 5 mM NaNO2, yellow octagon) using edges between these hubs and gene nodes that are either yellow (sensitivity at
308C), orange (sensitivity at 378C) or red (sensitivity at 428C). Nodes with double or triple edges indicate stress sensitivity at two or more
temperatures. Standard name genes are represented with circles and systematic name genes with diamonds.
D. Significant enrichment of specific GO terms (biological processes) at 308C (yellow) and 378C (orange).
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differential thermally contingent contributions to cell wall

remodelling in C. albicans (Leach et al., 2012c), for

example during caspofungin exposure (Walker et al.,

2008). Both Rlm1 and Crz1 promote resistance to this

antifungal drug in vitro (Hahn and Thiele, 2002; Selvag-

gini et al., 2004; Lesage and Bussey, 2006).

Mutants with defects in the HOG pathway (ssk2,

pbs2, hog1) did not display temperature conditional

cationic stress sensitivity (Fig. 3A). Furthermore, cap1

cells showed no temperature conditionality in their oxi-

dative stress sensitivity (Fig. 3B), and the cta4 mutant

did not display temperature conditional nitrosative

stress sensitivity (Fig. 3C). These observations are

consistent with the view that the Hog1, Cap1 and Cta4

signalling pathways play critical roles in cationic, oxida-

tive and nitrosative stress adaptation, respectively, at

ambient temperatures associated with host colonisation

and invasion. However, hog1 cells did not display sig-

nificant oxidative stress sensitivity at 378C or 428C (Fig.

3C), which was consistent with the observation that

Hog1 activation is reduced at higher temperatures in C.

albicans (Smith et al., 2004), and that Hog1 is an

Hsp90 client protein (Hawle et al., 2007; Diezmann

et al., 2012). This might suggest that Hog1 plays a

minor role in oxidative stress adaptation in vivo. In con-

trast, skn7 cells were more sensitive to oxidative stress

at 378C, suggesting that Skn7 could play a greater role

during host colonisation and invasion than might be

predicted based on in vitro analyses performed at 308C

(Singh et al., 2004).

Temperature-conditional stress mutants displayed signif-

icant enrichment in specific functional categories (Fig. 3D).

As might be expected, ‘Temperature Stimulus’ genes were

enriched in those mutants that displayed elevated stress

sensitivity at 378C, irrespective of the type of stress exam-

ined. In contrast, ‘Pathogenesis’-related genes were

enriched in the subsets of mutants that were sensitive to

oxidative and nitrosative stress at 378C, whereas ‘Patho-

genesis’ genes were enriched in mutants that were cati-

onic stress sensitive at 308C. This observation highlights

the significance of oxidative and nitrosative stresses to C.

albicans cells in vivo.

Environmental contingency of classical stress modules

The carbon- and temperature-conditional stress net-

works (Figs. 2 and 3) suggested that key stress signal-

ling pathways might display differential contributions to

stress resistance under certain growth conditions. To

better illustrate this we mapped condition-dependent

stress sensitivities against four key pathways: the Cap1,

Hog1, cell integrity (Mkc1) and hyphal MAP kinase

(Cek1) pathways (Fig. 4). This exercise clearly showed

that the Hog1 MAP kinase module (Ssk2, Pbs2, Hog1)

is essential for cationic stress adaptation under all of the

conditions analyzed. However, the Hog1 module contrib-

utes more to oxidative stress resistance during growth

on lactate and at 308C, than during growth on glucose

or at 378C or 428C. Meanwhile, Cap1 contributes to oxi-

dative stress resistance under all of the growth condi-

tions tested, but contributes to cationic stress resistance

in a carbon- and temperature-conditional manner. Few

components of the cell integrity pathway displayed sig-

nificant stress sensitivity under the conditions tested,

although mkc1 cells displayed oxidative stress sensitivity

under most of these conditions. Surprisingly, cells lack-

ing the morphogenetic regulator Efg1 (Stoldt et al.,

1997) displayed cationic stress sensitivity and oxidative

stress sensitivity on rich, but not minimal growth media.

With respect to the hyphal MAP kinase (Cek1) pathway,

Cph1 and Tec1 displayed cationic stress sensitivity

under all conditions tested, and interestingly,

temperature-conditional oxidative stress sensitivity.

Under some conditions, certain components on each

pathway were required for stress resistance whilst

others were not (Fig. 4). This might reflect differences in

the relative contribution of a signalling module or tran-

scription factor to stress resistance under a particular

growth condition. Nevertheless, taken together as a

whole, the data indicate that these well-studied signal-

ling pathways mediate environmentally contingent out-

puts that are likely to have relevance in vivo during

infection, but that have not been subjected to detailed

examination in vitro so far.

Complementary Rtg3 and Sfp1 regulons in C. Albicans

Two mutants, namely rtg3 and sfp1, appeared to display

complimentary carbon-conditional stress sensitivities.

The rtg3 mutant appeared more sensitive to cationic,

oxidative and nitrosative stresses when grown on lac-

tate, whereas sfp1 cells were more sensitive to these

stresses during growth on glucose (Fig. 1). Rtg3 is a

bZIP transcription factor that is thought to be involved in

galactose metabolism, cationic stress resistance, anti-

fungal drug resistance and filamentous growth (Inglis

et al., 2012; Yan et al., 2014; Dalal et al., 2016). Its

orthologue in S. cerevisiae is a downstream effector of

the TOR (Target of Rapamycin) pathway, which regu-

lates growth in response to nutrients. Sfp1 is predicted

to be a C2H2 transcription factor, the expression of

which is induced in the rat catheter biofilm model (Nett

et al., 2009; Inglis et al., 2012; Chen and Lan, 2015). In

S. cerevisiae, Sfp1 regulates ribosomal protein gene

transcription as well as responses to nutrients and

stress (Inglis et al., 2012). On this basis we reasoned
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that C. albicans Rtg3 and Sfp1 might act to modulate

stress responses in a complimentary carbon-conditional

manner (Fig. 1). Before pursuing this idea further we

confirmed the carbon-conditional stress sensitivities of

rtg3 and sfp1 cells by comparing them against control

reintegrant strains. The cationic, oxidative and nitrosa-

tive stress sensitivities of lactate-grown rtg3 cells were

suppressed by reintroduction of the wild type RTG3

gene. Also, the stress sensitivities of glucose-grown

sfp1 cells were suppressed by transformation with wild

type SFP1 (Fig. 5). This confirmed that rtg3 and sfp1

cells display complimentary carbon-conditional stress

sensitivities.

We then performed a bioinformatic analysis of puta-

tive Rtg3 and Sfp1 transcriptional target genes in C.

albicans based on the presence of consensus Rtg3 (50-

GTCACGT-30) or Sfp1 binding sites (50-AAA(A/T)TTT-30)

in their promoter regions (Zhu et al., 2009; Perez et al.,

2013). Genes encoding other transcription factors,

translation and ribosomal proteins, kinases, oxidoreduc-

tases and transporters were amongst those identified

using this approach (Fig. 6). Interestingly, this analysis

suggested that Rtg3 and Sfp1 regulate complementary

sets of genes in these functional categories. The small

number of genes that may be regulated by both tran-

scription factors include HOG1, PBS2 and CAT1 (cata-

lase) (Fig. 6). Therefore, Rtg3 and Sfp1 are predicted to

control complementary regulons involved in C. albicans

growth and stress adaptation.

RTG3 and SFP1 display carbon-conditional stress
induction

We reasoned that differential RTG3 and SFP1 expression

patterns might contribute to the complementary carbon-

conditional stress sensitivities of rtg3 and sfp1 cells.

Fig. 4. Temperature- and carbon-conditional stress sensitivities for components of major stress pathways in C. albicans. Components of the
Hog1 (top left quarter of the figure), Mkc1 (top right), Cap1 (bottom left) and Cek1 pathways (bottom right) are examined. On each pathway,
those components for which cationic (CS), oxidative (XS) and nitrosative stress (NS) screening data are available are each named in black on
the left, and have panels of boxes on the right: from left to right, sensitivity on glucose (blue), on lactate (green), at 308C (yellow), 378C
(orange) or at 428C (red). If no stress sensitivity was observed under a particular growth condition, then the corresponding box in the panel is
white. MAP kinase modules are highlighted by rounded grey rectangles. Those components for which stress screening data were not available
are named in grey and have no panels of boxes.
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Therefore, using qRT-PCR, we tested whether RTG3 and

SFP1 transcript levels are induced in response to stress in

wild type cells grown on lactate or glucose. Interestingly,

the RTG3 mRNA was induced in response to cationic, oxi-

dative and nitrosative stress, but only in cells grown on

lactate (Fig. 7A). In contrast, the SFP1 mRNA was up-

regulated in response to cationic, oxidative and nitrosative

stress in glucose-grown cells. SFP1 expression was

induced in lactate-grown cells following exposure to cati-

onic stress, but not oxidative and nitrosative stress (Fig.

7B). Therefore, with only one exception (the cationic

stress-mediated induction of SFP1 in lactate-grown cells),

RTG3 and SFP1 display complementary carbon-

conditional stress induction patterns that match the

complementary carbon-conditional stress sensitivities of

rtg3 and sfp1 cells (Fig. 5).

Rtg3 and Sfp1 control key stress genes in carbon-

conditional manner

We then tested the impact of Rtg3 and Sfp1 on the

expression of genes encoding key stress regulators in

C. albicans that carry Rtg3 and Sfp1 consensus

sequences in their promoter regions: CAT1, CTA4,

NIK1, YPD1, SSK2, PBS2 and HOG1. The levels of

these transcripts were measured by qRT-PCR in

untreated and stressed wild type, rtg3 and sfp1 cells

growing in YPD or in minimal medium containing glu-

cose or lactate as sole carbon source. Both Rtg3 and

Sfp1 were found to play major roles in the regulation of

these genes in response to stress (Figs. 8 and 9).

In wild type cells, CAT1 expression was strongly

induced in response to oxidative stress under all three

growth conditions (Fig. 8). The inactivation of Rtg3 or

Sfp1 did not affect the up-regulation of CAT1 in cells

grown on rich media (YPD). However, CAT1 induction

was significantly reduced in lactate-grown rtg3 cells and

in glucose-grown sfp1 cells (Fig. 8). Therefore, the tran-

scription factors Rtg3 and Sfp1 play complementary

roles, up-regulating CAT1 expression in response to oxi-

dative stress in cells growing on different carbon

sources.

Similar observations were made for CTA4 in the con-

text of nitrosative stress (Fig. 8). In the absence of

stress, basal CTA4 transcript levels were higher in cells

grown on minimal medium than in rich medium. Also,

modest CTA4 up-regulation (about two-fold) was

observed following nitrosative stress treatment in

lactate-grown cells. Nevertheless, CTA4 was upregu-

lated by nitrosative stress under all growth conditions

analysed. Interestingly, CTA4 induction was significantly

attenuated in lactate-grown rtg3 cells and in glucose-

grown sfp1 cells (Fig. 8), reflecting the responses of

CAT1 to oxidative stress (Fig. 8). Therefore, Rtg3 and

Sfp1 also play complementary roles in regulating CTA4

expression in response to nitrosative stress.

We then analysed the regulation of NIK1, YPD1,

SSK2 and HOG1 in response to cationic stress. The

basal levels of these transcripts varied between cells

grown on rich or minimal medium, but almost without

exception, these mRNAs were induced in response to

cationic stress in wild type cells grown in YPD, glucose

or lactate (Fig. 9). The only exception was NIK1, which

was not induced in NaCl-treated lactate-grown cells

(Fig. 9). Significantly, the NIK1, SSK1 and HOG1 tran-

scripts were not induced in NaCl-treated sfp1 cells grow-

ing on glucose. Also, the YPD1 and HOG1 mRNAs

Fig. 5. Carbon-conditional contributions of RTG3 and SFP1 to
stress resistance. The susceptibility of rtg3 and sfp1 mutants to
cationic (CS), oxidative (XS) and nitrosative stress (NS) during
growth on YPD, or on glucose (GLC) or lactate (LAC) as sole
carbon source at 308C. Percentage viability relative to the
unstressed controls is presented. Statistically significant differences
between the rtg3 (blue) and sfp1 (yellow) mutants and their
corresponding reintegrant control strains (pale blue and pale yellow,
respectively) are highlighted: *, P< 0.05; **, P< 0.01; ***,
P< 0.001***; ****, P< 0.0001. Both the mutant and reintegrant
strains were transformed with CIp30 to repair their remaining
auxotrophies and to prevent URA3 position effects (see
Experimental Procedures).
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were not up-regulated in NaCl-treated rtg3 cells grown

on lactate (Fig. 9). Therefore, Rtg3 and Sfp1 play com-

plementary carbon-conditional roles in regulating the

expression of key regulators of the cationic stress

response in C. albicans.

Discussion

The success of C. albicans as a pathogen is dependent

on its ability to adapt to multifarious environmental chal-

lenges and cues in host niches. Our data support the

view that the responses of C. albicans to some key

environmental cues – stresses and nutrients – are

tightly coordinated (Rodaki et al., 2009; Ene et al.,

2012a,b). In addition to those regulators that have been

shown to contribute to stress adaptation under standar-

dized growth conditions in vitro (Fig. 4), we have dem-

onstrated that many additional factors contribute to

stress adaptation under alternative growth conditions

(Figs. 1–3). This is particularly important because the

standardized growth conditions that have generally been

used to dissect stress responses in this pathogenic

yeast (YPD at 308C) do not accurately reflect host

niches, where glucose is often limiting and the ambient

temperature often approximates to 378C. Our robotic

Fig. 6. Rtg3 and Sfp1
regulons in C. albicans.
Networks of putative gene
targets of Rtg3 (blue) and
Sfp1 (yellow) based on the
presence of their consensus
binding sites in the promoters
of these genes. Those genes
that might be targets for both
transcription factors are
highlighted in green. The
networks are organized into
significantly enriched GO
categories (TF, transcription
factors).

Fig. 7. Carbon-conditional
induction of RTG3 or SFP1 genes
in response to stresses. Induction
of the RTG3 (A) and SFP1 (B)
transcripts (relative to the
unstressed YPD control) after 10
min of exposure to cationic,
oxidative or nitrosative stress.
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screens of approximately 16% of C. albicans genes

revealed novel regulators that promote C. albicans

stress resistance in a carbon source- and temperature-

conditional manner (Figs. 1–4). Many of these novel

regulators are uncharacterised transcription factors (Fig.

2). This suggests that much remains to be discovered

about the mechanisms that underlie environmentally

contingent stress adaptation in this pathogen. This is

significant because these mechanisms are likely to

promote the physiological robustness of C. albicans in

host niches, and hence could conceivably present novel

targets for therapeutic intervention.

We then focussed on two regulators, Rtg3

(C1_10990c) and Sfp1 (C3_04860w), the inactivation of

which caused complementary carbon-conditional stress

sensitivities in C. albicans. Rtg3 cells were sensitive to

cationic, oxidative and nitrosative stresses during growth

on lactate, whereas sfp1 cells were stress sensitive

Fig. 8. Impact of RTG3 or SFP1 inactivation upon the regulation of key oxidative and nitrosative stress genes in C. albicans. The levels of
the CAT1 transcripts were measured by qRT-PCR, relative to the internal ACT1 mRNA control, after 10 min of exposure to oxidative stress
(XS) during growth on YPD, glucose or lactate: wild type, black; rtg3, blue; sfp1, yellow. Fold regulation was then calculated by normalizing
CAT1 transcript levels to those on YPD in the absence of stress. Using analogous procedures, CTA4 transcript levels were measured in wild
type, rtg3 and sfp1 cells following nitrosative stress (NS). Data represent the means and standard deviations from three independent
experiments: *, P< 0.05; **, P< 0.01; ***, P< 0.001***; ****, P< 0.0001.

Fig. 9. Impact of RTG3 or SFP1
inactivation upon the regulation of
key cationic stress genes in C.
albicans. The levels of the NIK1,
YPD1, SSK2 and HOG1
transcripts were measured by
qRT-PCR, relative to the internal
ACT1 mRNA control, after 10 min
of exposure to cationic stress
(CS), during growth on YPD,
glucose or lactate: wild type,
black; rtg3, blue; sfp1, yellow.
Fold regulation was then
calculated by normalizing
transcript levels to those on YPD
in the absence of stress. Data
represent the means and
standard deviations from three
independent experiments: *,
P< 0.05; **, P< 0.01; ***,
P< 0.001***; ****, P< 0.0001.
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during growth on glucose (Figs. 1 and 5). The expres-

sion of RTG3 and SFP1 was induced in lactate- and

glucose-grown cells, respectively (Fig. 7), which was

consistent with the carbon-conditional stress sensitivities

of rtg3 and sfp1 cells. Many C. albicans transcription

factors bind similar DNA sequences to their S. cerevi-

siae orthologues (e.g. Tripathi et al. 2002; Nicholls

et al., 2004, 2009; Ihmels et al., 2005; Tsong et al.,

2006). This has been confirmed for Rtg3 (Perez et al.,

2013), but not for Sfp1. Nevertheless, on this basis,

Rtg3 or Sfp1 appear to regulate complementary sets of

genes with related functions, such as transcription fac-

tors, kinases, transporters, transferases and ligases

(Fig. 6). This does not simply reflect the nature of the

mutants in the libraries that were screened because

these represent many other functional categories (e.g.

Figs. 2 and 3). We then showed that Rtg3 and Sfp1 reg-

ulate the expression of genes encoding key regulators

of the cationic, oxidative and nitrosative stress

responses, and that they do so in a carbon conditional

manner that again reflects the carbon-conditional sensi-

tivities of rtg3 and sfp1 cells to these stresses (Figs. 8

and 9). Therefore, Rtg3 and Sfp1 appear to maintain

key stress pathways and promote stress resistance

under different growth conditions – Rtg3 during growth

on lactate, and Sfp1 during growth on glucose (Fig. 10).

How does Rtg3 contribute to stress resistance during

growth on lactate? In addition to promoting the induction of

key stress regulators in lactate-growing C. albicans cells

(Figs. 8 and 9), Rtg3 appears to regulate the expression of

a range of transporters, hydrolases and transcription fac-

tors, some of which may contribute to stress adaptation

(Fig. 6). These include Hal21 (a phosphatase that is pre-

dicted to be involved in the hyperosmotic response) and

Hac1 (a transcription factor that regulates the endoplasmic

reticulum (ER) stress response in C. albicans (Wimalasena

et al., 2008). They also include numerous mitochondrial

functions (COX3A, COX3B, COX4, TIM50). In S. cerevisiae,

Rtg3 is regulated by TOR signalling (Crespo et al., 2002)

and contributes to mitochondrion-to-nucleus signalling via

the retrograde response pathway (Rothermel et al., 1997;

Jia et al., 1997; Jazwinski, 2014). While this type of intra-

organellar communication has not been studied extensively

in C. albicans, mitochondrial functionality is known to influ-

ence stress resistance in this pathogenic yeast. For exam-

ple, the inactivation of Goa1 (which is required for

respiratory function and localizes to the mitochondrion

under stress conditions) or Sam37 (a component of the

mitochondrial outer membrane Sorting and Assembly

Machinery complex) renders C. albicans cells sensitive to

stresses, affects cell wall integrity and attenuates their viru-

lence (Jia et al., 1997; Rothermel et al., 1997; Bambach

et al., 2009; Leach et al., 2012c; Qu et al., 2012; Yan et al.,

2014). Also the attenuation of mitochondrial functionality by

Rtg3 inactivation might reduce the ability of lactate-growing

cells to generate the metabolic energy required for stress

adaptation.

How does Sfp1 enhance stress resistance during

growth on glucose? In S. cerevisiae, Sfp1 is thought to

be a downstream effector of the TORC kinase (Crespo

et al., 2002; Jorgensen et al., 2004; Lempi€ainen et al.,

2009). Following activation via TORC signaling, Sfp1

activates a large number of S. cerevisiae genes (10%),

mainly driving ribosomal protein synthesis and ribosome

biogenesis under favorable nutrient conditions (Xu and

Norris, 1998; Crespo et al., 2002; Jorgensen et al.,

2004; Marion et al., 2004; Cipollina et al., 2008). Inter-

estingly, in C. albicans Sfp1 appears to regulate a large

number of ribosomal protein genes (RPL5/8/20B/23A/

28B/30/32/40B, RPS3/5/13/18/27) (Fig. 6). In S. cerevi-

siae, the activity of the TORC kinase is low on lactate,

compared to glucose. Also, TORC signaling has been

shown to inhibit the retrograde response especially in

the presence of glutamine (Dilova et al., 2002). Thus,

the differential regulation of Sfp1 and Rtg3 by TORC

signaling in response to carbon source might underlie

the differential contributions of these transcription factors

to stress resistance in C. albicans.

To summarize, this study has revealed that numerous

regulators, in addition to the classical stress regulators,

Fig. 10. Model illustrating the
carbon-dependent modulation of
stress adaptation in C. albicans
by Rtg3 and Sfp1. Continuous
arrows suggest direct effects of
Rtg3 and Sfp1 upon gene
expression, while dashed arrows
suggest indirect effects (because
a perfect match to the consensus
binding site was not observed in
the promoter of the target gene).
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contribute to stress resistance of C. albicans cells under

growth conditions that better reflect some of the key

environmental inputs encountered in host niches. These

genes were not previously identified using the standar-

dized in vitro growth conditions that have generally been

used in the past. Our analyses of two transcription fac-

tors, Rtg3 and Sfp1, have revealed mechanisms by

which C. albicans retains stress resistance under differ-

ent growth conditions and have highlighted the complex-

ity of crosstalk between nutrient and stress signaling in

this pathogen.

Experimental procedures

Strains and growth conditions

The mutant libraries used in the screens (Supporting Infor-

mation Table S1), representing a total of 1158 strains,

were generously provided by Suzanne Noble, Aaron

Mitchell and Dominique Sanglard. C. albicans rtg3 (ura3D/

ura3D, his1D/his1D, arg4D/arg4D, rtg3::ARG4/rtg3::URA3)

and sfp1 mutants (ura3D/ura3D, his1D/his1D, arg4D/

arg4D, orf19.5953::ARG4/orf19.5953::URA3) (Vandeputte

et al., 2011) were subjected to more detailed analysis.

The genotypes of these strains were confirmed by diag-

nostic PCR using the primers described in Supporting

Information Table S2. To confirm the phenotypes of the

rtg3 and sfp1 mutants, the corresponding wild type gene

was cloned into the vector CIp30 and integrated into the

RPS1 locus (Murad et al. 2000; Dennison et al., 2005).

These reintegrant strains were compared with mutant

strains transformed with the empty CIp30 vector to ensure

that: (i) the histidine and arginine auxotrophies was

repaired in both mutant and control and (ii) both mutant

and control strains carried URA3 at the RPS1 locus to

avoid URA3-related position effects (Brand et al., 2004).
C. albicans were grown on YPD (2% glucose, 2% Myco-

peptone, 1% yeast extract, 2% BactoAgar), GYNB (2% glu-

cose, 0.67% yeast nitrogen base without amino acids, 2%

BactoAgar), or LacYNB (2% sodium lactate, pH 7, 0.67%

yeast nitrogen base without amino acids, 2% BactoAgar)

containing uridine, histidine, arginine and leucine (400 l/ml)

at the specified temperatures (Sherman, 2002; Tillmann

et al., 2011; You et al., 2012). To impose stress, 0.4 mM

H2O2, 5 mM NaNO2 or 1 M NaCl were used (Chiranand

et al., 2008; Kaloriti et al., 2012). These concentrations

were selected because in control experiments they were

found to attenuate the growth of hallmark cap1, cta4 and

hog1 strains, respectively, but not the wild type control

strain.
To test cell viability, strains were grown on YPD at 308C.

Exponential phase cells were harvested, washed with YPD,

GYNB or LacYNB, and then exposed to osmotic (1 M

NaCl), oxidative (0.4 mM H2O2) or nitrosative stress (5 mM

NaNO2 plus 25 mM succinic acid) or to no stress (control

cells) for one hour. Cells were then washed using the same

medium and left to recover for 120 min in the absence of

stress. Percentage viability is presented, relative to the

unstressed control. Mutants are compared with the

corresponding re-integrant strain using a 1-way ANOVA -

Dunnett’s Multiple Comparison Test.

Genetic screen

The 1158 C. albicans strains subjected to screening (Sup-

porting Information Table S1) were organized into twelve

96-well plates. Using a Singer RoToR robot (Singer Instru-

ments, Watchet, UK), each strain was pinned (four spots

per strain) onto plates prepared using RoToR Singer plates

using the above media. Replicate plates were incubated for

24 h at 308C, 378C and 428C and photographed using a

GeneFlash (Syngene UK, Cambridge, UK) gel imager.

Image analysis was conducted using Proteus pilot software,

and growth assessed electronically via pixel quantification

(0 5 0–20%; 15 21–71%; 2 5 72–100% of normal growth

under the same conditions except in the absence of stress).

Each screen was performed in duplicate. A strain was

defined as sensitive to a stress if it reproducibly displayed a

> 80% decrease in growth with the stress, relative to no-

stress control plate with matching carbon source and

temperature.
The screening output was validated by retesting the

stress sensitivities of a selection of mutants using drop

tests. To achieve this, strains were grown overnight in YPD

at 308C, subcultured into fresh YPD, and then grown at

308C up to an OD600 of 1. Cells were then serially diluted,

plated on to GYNB or LacYNB media containing the rele-

vant stress, and then grown at the appropriate temperature.

Data analysis and network visualization

The screening data generated by Proteus in Excel format

were used to generate Venn Diagrams using Venny open

source software (http://omictools.com/venny-s6319.html),

and the output from these analyses was used to create fil-

tered excel files that were subsequently analyzed through

Cytoscape V3 (www.cytoscape.org/cy3.html) to construct

biological networks. The analyses of GO terms was per-

formed through the Term Finder tool of the Candida

Genome Database (www.candidagenome.org). Significant

differences of the input cluster in comparison to the back-

ground gene database were considered if the e-value was

< 0.001. Promoter analyses were performed via PatMatch

in the Candida Genome Database. Positive hits contained

at least one identical match to the consensus sequence of

interest within the 50-region of annotated C. albicans genes.

Graphs were constructed and statistical analyses per-

formed using GraphPad Prism 6 software.

Gene expression

Total RNA was isolated from exponentially growing C. albi-

cans cells using the YeaStarTM RNA Kit (Zymo Research,

Irvine, U.S.A) according to the manufacturer’s instructions.

The RNA was treated with DNase I (Invitrogen, Paisley,

UK) in the presence of RNase inhibitor (Rnase OUT: Invi-

trogen), and then the levels of specific transcripts subjected

to qRT-PCR using published procedures (Leach et al.,
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2012a). The primers are described in Supporting Informa-

tion Table S2.
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