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Abstract 41 

Storage of carbon dioxide in geological formations involves changes in wettability to the host 42 

formation during injection and ultimately the formation of inorganic carbonates through 43 

mineral trapping. Sequestration locations will be at high pressure and high temperature, 44 

thus providing a challenging environment for in-situ study. However, infrared spectroscopy 45 

(FTIR) with the use of photons is not limited in temperature or pressure and therefore is 46 

applicable to study chemical changes to minerals occurring during carbon sequestration. 47 

Through the commission of a high pressure/high temperature in-situ FTIR cell and the 48 

subsequent spectroscopic following of carbonation reactions in synthesised silicate mineral 49 

analogues, we document fundamental chemical changes occurring at the nanoscale during 50 

carbon storage. Speciation, coordination of carbonate ions to the surface of silicate mineral 51 

analogues and changes in surface hydroxyl coverage are observed and discussed, in the 52 

context of CO2 injection and dissolution/mineralisation reactions of reservoir silicate 53 

minerals. 54 
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 62 

1. Introduction 63 

Capture and geological storage of carbon dioxide (CCS) is typically envisaged for depleted oil 64 

and gas reservoirs or saline aquifers (Bachu, 2008; IPCC, 2013). These subsurface formations 65 

are ideally suited as they are below depths of 800 m ensuring the presence of scCO2, which 66 

is advantageous due to efficient pore filling of the high density fluid. Furthermore these 67 

locations are widely distributed and have a highly connected large pore volume (Benson and 68 

Cole, 2008; Haszeldine, 2006). A large volume of potential storage, successful trapping of 69 

hydrocarbons, experience with CO2 injection for enhanced oil recovery (EOR) and successful 70 

monitoring and verification in numerous injection projects gives increased confidence in 71 

storage security and safety in these locations (Jenkins et al., 2015) However, careful 72 

consideration must be given to the tectonics of the reservoir, hydrodynamics of the 73 

formation brine and mineralogical aspects when evaluating a potential geological formation 74 

(Bachu, 2000). 75 

 76 

There are four carbon dioxide trapping mechanisms in geological burial sites, different in the 77 

physics, times scales, storage capacity and security: stratigraphic trapping from low 78 

permeability caprock; solubility trapping at the CO2/brine interface; residual trapping by 79 

capillary forces during plume migration and finally mineral trapping involving the 80 

precipitation of solid carbonates (Boot-Handford et al., 2014). In-situ mineral carbonation to 81 

form solid carbonates offers the ultimately secure storage mechanism. It is of fundamental 82 

importance to understand the chemical reactions occurring during mineralisation to discover 83 

the ultimate state and the effect it may have on the mobility of the subsequently injected 84 

supercritical fluid (Cardoso and Andres, 2014). During injection of CO2 there will be four 85 

chemically distinct regions containing decreasing amounts of CO2 and increasing amounts of 86 

water/formation brine, as distance to the injection well increases. The mutual solubility of 87 

CO2 and water is well known (Spycher et al., 2003). Dry scCO2 will exist near the injection site 88 

(Pruess and Müller, 2009) before the scCO2 plume containing water (wet scCO2) is present. 89 

At the edge of the plume significant amounts of CO2 will be dissolved in the formation brine 90 

with CO2 concentration decreasing until brine with minimal amounts of dissolved CO2 is 91 

found (Zhang and Bachu, 2011). It is of importance to study wet scCO2 as it is known to react 92 

extensively with both steel pipelines and silicate minerals, with the theoretical potential to 93 

aid in “self-sealing” of fractured caprocks through mineralisation with the water carried by 94 

the migrating scCO2 itself (McGrail et al., 2009). Furthermore given the increased buoyancy 95 

and diffusivity relative to brine, wet scCO2 might dominate the caprock-reservoir interface 96 

during injection (Loring et al., 2011). 97 

 98 

Typically the approach to understand carbonation involves ex-situ measurements to quantify 99 

carbonate conversion over longer time periods, relevant to the slow reaction kinetics of the 100 

overall process (Sanna et al., 2014), particularly mineral dissolution. However, carbonate 101 

formation on reactive cations located on the surface should occur on much shorter 102 

timescales and it is known that changes in surface area due to chemical reaction are critical 103 

to understand permeability in storage formations (Bolourinejad et al., 2014; Bourg et al., 104 

2015). In-situ spectroscopic techniques provide a tool to follow chemical reactions at the 105 
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molecular scale, assuming suitable integration with high pressure and high temperature 106 

reaction cells. 107 

 108 

In-situ infrared spectroscopy has been applied previously to study the interaction of CO2 109 

with alkaline cations at high pressure in clays (Krukowski et al., 2015; Loring et al., 2014, 110 

2012a; Schaef et al., 2015), mineral carbonation reactions with silicate minerals (Loring et 111 

al., 2012b, 2011; Miller et al., 2013; Murphy et al., 2011, 2010; Thompson et al., 2013) and 112 

carbon storage related fluid mixtures (Danten et al., 2005; Foltran et al., 2015; Oparin et al., 113 

2005, 2004; Wang et al., 2013). An example of the design and construction of an automated 114 

high-pressure titration system with in-situ infrared access and subsequent application to CO2 115 

sorption in clay, carbonation of silicate mineral and determination of water solubility all at 116 

50 °C and 90 bar serves as an excellent introduction to this approach (Thompson et al., 117 

2014). 118 

 119 

Here we report the synthesis and characterisation of silicate mineral analogues, by locating a 120 

reactive cation on the surface of amorphous silica, to facilitate the study of surface 121 

chemistry changes occurring during CO2 storage and carbonate mineralisation. Although the 122 

synthesised material surface is unrealistically reactive as compared to natural subsurface 123 

silicate minerals, it provides the opportunity to study carbonate speciation at realistic 124 

storage conditions and on a timescale amenable to in-situ spectroscopic investigation. 125 

Amorphous silica consists of silicon-oxygen tetrahedra (Zhuravlev, 2000) which are a 126 

constituent motif in many subsurface solids. For example muscovite, commonly known as 127 

mica, consists of  two tetrahedral silicate layers and an intermediate octahedral aluminium 128 

layer, with surface charge balance achieved by K+ (Wan et al., 2014). Clay minerals in general 129 

are composed of silica and/or alumina tetrahedra/octahedra, as are chain, sheet and 130 

framework silicate minerals. These are of interest for mineralisation when considering the 131 

release of reactive cations due to the pH drop associated with CO2 injection (Yang et al., 132 

2014). Sandstone formations, consisting primarily of quartz, feldspars, dolomite, calcite, 133 

siderite and kaolinite contain sources of divalent and monovalent cations available for 134 

mineral trapping (De Silva et al., 2015) forming insoluble and soluble carbonates 135 

respectively. The release of cations is also associated with enhancing solubility trapping. The 136 

dissolution of feldspar is known to aid solubility trapping through increasing the 137 

concentration of soluble carbonates and bicarbonates in solution (Xu et al., 2004). The 138 

increased concentration of potassium in reservoir brine has been used as an indicator of the 139 

dissolution of K-feldspar due to the interaction with CO2 (Horner et al., 2015; Pauwels et al., 140 

2007). Furthermore the solubility of silicate minerals generally are known to be sensitive to 141 

the presence of carbonate ligands and oxalate ligands (Berg and Banwart, 2000; Wigley et 142 

al., 2013), highlighting the importance of understanding the formation of both soluble and 143 

insoluble carbonates at sequestration conditions. 144 

 145 

In this work traditional surface chemistry techniques were applied to study cation 146 

distribution and the formation of surface carbonates in-vacuo. Custom-made high 147 

pressure/high temperature in-situ FTIR apparatus was subsequently used to 148 

spectroscopically follow the carbonation reaction at conditions relevant to geological 149 

storage of CO2, particularly those of wet scCO2 as above. Carbonate formation was 150 
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confirmed with coordination to the surface elucidated, a fundamental level of detail often 151 

included in surface chemistry/catalysis works but less common in the CCS literature. 152 

Changes in surface hydroxyl coverage and the influence of these on the interpretation of the 153 

carbonation results are discussed. 154 

 155 

2. Experimental 156 

 157 

2.1 Methodology 158 

Identification of chemisorbed carbonate species formed during carbon storage is 159 

fundamental for understanding mechanistic details of mineral carbonation. To gain such a 160 

level of detail it is necessary to study carbonate formation at the individual ion level at 161 

realistic process conditions. Therefore a silicate mineral analogue (K-SiO2) was prepared that 162 

located a reactive cation on the surface of amorphous silica (SiO2) through an ion-exchange 163 

procedure with surface hydroxyl groups. A detailed description of the synthesis procedure 164 

can be found in the Supplementary Information. The synthesised material was first 165 

characterised with N2 adsorption/desorption, thermo-gravimetric analysis (TGA), powder X-166 

ray diffraction (XRD) and scanning electron microscopy (SEM) to understand physico-167 

chemical changes occurring during the ion-exchange synthesis and to determine the extent 168 

of metal loading. Detail on the apparatus and experimental procedures can be found in the 169 

Supplementary Information. A comparison was made between amorphous SiO2 and 170 

potassium doped SiO2 to ensure successful cation exchange on the blank silica material. 171 

Pellets of the potassium doped SiO2 were first studied under high-vacuum conditions with 172 

transmission in-situ FTIR capabilities, where control of the surface chemistry and surface 173 

cleaning through high temperature pre-treatment was relatively simple. The sample was 174 

exposed to minute quantities of CO2 allowing spectroscopic identification of the initial stages 175 

of carbonate formation. Carbonate coordination to the reactive cation was also established. 176 

To ensure similarity between K-SiO2 as prepared and that studied following the high 177 

temperature pre-treatment in-vacuo, physico-chemical characterisation was conducted on a 178 

portion of potassium doped silica calcined at a temperature above that of the pre-treatment 179 

condition (K-SiO2-450). In subsequent experiments potassium doped SiO2 was exposed to 180 

wet scCO2 at conditions relevant for geological sequestration, with high pressure/high 181 

temperature transmission in-situ FTIR investigation. As the reaction proceeds rapidly in 182 

these conditions due to the highly reactive synthesised surface, automated spectral 183 

acquisition was employed. Similarities in carbonate speciation in the two different pressure 184 

regimes were investigated. Finally the effect of temperature on the carbonate and water 185 

content was explored. 186 

 187 

 188 

2.2 High pressure/high temperature in-situ FTIR spectroscopy 189 

A high pressure/high temperature FTIR apparatus (Figure 1) was commissioned in-house 190 

from a custom Inconel 600 transmission FTIR cell with an internal volume of 23 mL, water-191 

cooled optical grade CaF2 windows, high performance O-rings (Kalrez®) and gaskets (AgCu), 192 

adapted from a previous design (Anderson et al., 1991; Gallei and Schadow, 1974). The 193 

internal optical path length of the cell was reduced to <1 mm by inclusion of a CaF2 spacer. 194 
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 195 

Figure 1 - Schematic of high pressure/high temperature in-situ FT-IR spectroscopy apparatus. 196 

Liquid CO2 (BOC, 99.98%) was first collected in a gas sampling cylinder liquid CO2 reservoir, 197 

followed by expansion through high pressure 316-type stainless steel Swagelok® tubing, 198 

fittings and valves into the FTIR cell. Pressure and temperature within the liquid CO2 199 

reservoir were monitored by a high accuracy pressure transducer (PR1) (Omega®, 0 – 25 200 

MPa, ± 0.05%) and a surface-mounted Class A Pt100 resistance temperature detector RTD 201 

(TR1). Temperature and pressure within the FTIR cell were monitored and controlled by a K-202 

type thermocouple (TR2) positioned directly above the sample, a temperature controller 203 

(TC1) (Eurotherm Controls, 818), two 500 W, 240 V cartridge heaters and pressure 204 

transducer (PR3) (RS Components, 0 – 25 MPa, ±0.25 %), respectively. The cell is operational 205 

to 20 MPa and 500 °C and also includes the possibility to control temperature via a 206 

circulating water bath (Haake K20), evacuate the entire apparatus (V1) (Edwards, E2M2 207 

Rotary Vane Dual Stage) and pressurise gas mixtures through a combination of gas blender 208 

(Signal, Series 850), mechanical pump (P2) (ASF, 8050 D) and pneumatic gas booster (P1) 209 

(MAXIMATOR, DLE 75-50). 210 

 211 

Self-supporting pellets of ca. 40 mg of K-SiO2 were prepared in a 23 mm diameter press at 2 212 

tons (Specac 15.011 Manual Hydraulic Press). Pellets were < 1mm thick and prior to loading 213 

in the FTIR cell were cut in half to allow additional discrete monitoring of the fluid phase. 214 
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Spectra were recorded with an FTIR spectrometer (PerkinElmer Spectrum 100) equipped 215 

with automated collection software (PerkinElmer Timebase) and a liquid nitrogen-cooled 216 

MCT detector. A background spectrum was recorded in the absence of CO2 and sample, and 217 

was subtracted from all subsequent spectra. At this point, the spectrometer was moved into 218 

position to allow the beam to pass through the transmission window and sample. 219 

Automated spectral acquisition was initiated followed by expansion of CO2 from the liquid 220 

CO2 reservoir into the FTIR cell. All spectra including background were recorded at 4 cm-1 221 

resolution with a minimum of 32 accumulated scans per spectrum across a range of 4500 – 222 

500 cm-1. Automated spectral acquisition software was set to record a spectrum every 36 223 

seconds, which were subsequently subtracted from the first recorded spectrum of the 224 

sample disc in air at the experimental temperature. 225 

 226 

3 Results & Discussion 227 

3.2 Synthesis & characterisation of mineral analogues 228 

pH was monitored continuously during the ion-exchange synthesis procedure (Figure S1, 229 

Supplementary Information). The first point was the pH of the dopant solution alone (pH 230 

11.7) before a rapid decrease was seen 30 seconds after contact with amorphous silica. As 231 

silica pHpzc = 4.1, (Schwarz et al., 1984) immersion in the above solution leads to 232 

deprotonation of surface hydroxyl groups by modification of the equilibrium in Figure 2a. 233 

Such deprotonation allows both non-specific and specific adsorptive interactions with 234 

cations in solution; at low cation concentrations ion pairs are formed (Si-O- : K+
(aq)) before full 235 

cation-exchange occurs at higher concentrations to form  (Si-OK) as shown in Figure 2b. 236 

 237 

a) 238 

 239 

b) 240 

 241 

c) 242 
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 243 

Figure 2 – (a) – pH dependant protonation-deprotonation equilibrium of silica surface hydroxyl groups. (b) – 244 
Partially deprotonated silica surface ion pairing at low cation solution concentration and full cation-exchange 245 
at high cation concentration. (c) – Breakdown of silica network due to protonation and subsequent reaction 246 
with water. 247 

As the synthesis solution was 1.0 (mol K+)·l-1 the specific cation-exchange interactions 248 

dominate and the maximum uptake as determined previously was achieved (Iordan et al., 249 

1998). A similar dependence on pH is observed for sodium adsorption on silica, with weak 250 

interactions present at low pH and stronger adsorption possible through cation-exchange at 251 

high pH (Smit et al., 1978). After the initial rapid decrease the measurement was stable at 252 

ca. pH 10.9 for the duration of the mixing, indicating that the cation-exchange equilibrium 253 

and saturation population have been achieved, as both concentration and pH conditions as 254 

discussed above had been satisfied. 255 

 256 

Surface area and porosity data is presented in Table 1 with the associated isotherms and 257 

pore distribution plots given in Figure S2, Supplementary Information. There was a clear 258 

drop in both surface area and pore volume after potassium doping and subsequent 259 

treatment at 450 °C. Isotherms conform to IUPAC Type IV classification, with Type H1 260 

hysteresis loops present in all, indicating the presence of mesopores further evidenced in 261 

the pore size distribution plot (Figure S2, Supplementary Information). Excluded for brevity, 262 

the silica surface area after an identical treatment in Ultra-Pure Type I water was 252 m2·g-1 263 

indicating that the decrease in surface area during synthesis was due to phenomena 264 

associated with the cation-exchange procedure and not from physical agglomeration of silica 265 

particles. 266 

Table 1 – Physical characteristics as determined by N2 adsorption-desorption of fresh and potassium doped 267 
silicas as prepared and after treatment at 450 °C in air. 268 

Sample Surface Area / m2·g-1 Pore Volume / cm3·g-1 

SiO2 257 1.72 

K-SiO2 69 0.46 

K-SiO2-450 51 0.38 
 269 

The pore size distribution plots (Figure S2b) indicate that upon cation-exchange there was a 270 

general decrease in pore volume, accompanied by a subtle shift to a lower average pore 271 

width. Considering this fact alongside the high pH synthesis conditions, it is likely that the 272 

pore network has been partially dissolved. At high pH when the surface is negatively charged 273 

due to ionisation (Figure 2a), Si-O bonds are polarised and weakened, enhancing dissolution 274 

and consequently destroying the porous network (Brady and Walther, 1989). It has also 275 

been observed that the presence of cations enhances the rate of silica dissolution (Plettinck 276 

et al., 1994) and that there is a dissolution rate dependence on the particular alkali metal 277 
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cation, with sodium and potassium hydroxides or chlorides showing the greatest 278 

enhancement (Wijnen et al., 1990). At alkaline pH the effect is particularly strong for quartz 279 

dissolution in the presence of sodium, 200 times faster than in pure water (Rimstidt, 2015). 280 

It is known that protonation of silica increases the Si-O bond distance, in turn weakening the 281 

silica network and increasing reactivity with water. This reaction leads to the breaking of the 282 

silica network as shown  in Figure 2c (Brown et al., 2014). If one substitutes the proton for 283 

the adsorption of potassium, it is reasonable to assume at least a similar effect. 284 

 285 

An alternative scenario to explain this observation would be pore-blockage by the formation 286 

of a secondary oxide or hydroxide phase on the silica surface. Without evidence of the 287 

formation of a crystalline phase in X-ray diffractograms (Figure S3, Supplementary 288 

Information) this seems unlikely. However a disordered non-crystalline secondary phase 289 

would occupy a greater volume than the ordered crystalline equivalent which could explain 290 

the loss in porosity and surface area and thus cannot be ruled out entirely. A further smaller 291 

decrease in surface area and pore volume was apparent after treatment in air at 450 °C, 292 

which was possibly due to the onset of cristobalite or tridymite formation, enhanced at 293 

lower temperature in the presence of potassium (Iordan et al., 1998). Alternatively this 294 

could be due to the formation of crystalline potassium carbonate on the surface. The 295 

observation that the pore volume at around 500 Å was largely maintained at the expense of 296 

that at 200 Å during this transition would support the idea of formation of cristobalite or 297 

tridymite, as the initial loss of the smallest and consequently most unstable pores would be 298 

expected during crystallisation. 299 

 300 

X-ray diffractograms are shown in Figure S3, Supplementary Information for both parent and 301 

potassium-doped silicas. The broad peak between 16 and 28° 2θ is indicative of amorphous 302 

silica and shows that after cation-exchange this amorphous nature is retained. Additional 303 

peaks at 30.1 and 31.2° 2θ were observed in the K-SiO2-450 pattern but are not assignable to 304 

either K2CO3, quartz or cristobalite. They could be explained by a crystalline silica species e.g. 305 

tridymite (ICDD 42-1401) but as intensity of the signal was so low, it is likely arising from a 306 

very small amount of poorly crystalline material diluted in a large amount of amorphous 307 

silica. A conclusive identification was not possible and assertion of a positive identification 308 

would be misleading. 309 

 310 

SEM images of K-SiO2 (Figures 3a and b) and K-SiO2-450 (Figures 3c and d) indicated the 311 

presence of amorphous silica aggregates throughout ranging from <1 to 30 µm, in 312 

agreement with the amorphous nature determined by XRD. EDX elemental maps of 313 

potassium within K-SiO2 (Figure 4a) and K-SiO2-450 (Figure 4c) collected from regions shown 314 

in Figure 4b and Figure 4d, respectively, showed that potassium was generally well dispersed 315 

within the sample, at different length scales, as-prepared and after treatment at high 316 

temperature. The cation loading appeared to be consistent across the surface, without the 317 

formation of concentrated regions of potassium indicative of a segregated secondary phase, 318 

consistent with the lack of K2CO3 observed in XRD. The results of the semi-quantitative EDX 319 

analysis (Table 2) indicated that potassium doping was significant with a level of 6.93 ± 0.03 320 

wt% reached during synthesis and maintained after heat treatment. This was in excellent 321 
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agreement with the original publication which determined a loading of 6.9 wt% K+ using a 322 

1.01 (mol K+)·l-1 solution of K2CO3 (Iordan et al., 1998). 323 

 324 

Considering the Kiselev-Zhuravlev value of 4.6 (least-squares) or 4.9 OH·nm-2 (arithmetical 325 

mean), which gives the number of hydroxyl groups per unit surface area when the degree of 326 

hydroxylation is at a maximum, one can determine a surface coverage of potassium by also 327 

using the surface area and potassium loading determined by EDX (Zhuravlev, 2000). Using 328 

the surface area of the water treated sample (252 m2·g-1) a surface coverage of 92.1 or 329 

86.4% was determined by using the least-squares and arithmetical mean respectively. Detail 330 

of the calculation is given in the Supplementary Information. It is important to consider the 331 

limitations of a model that uses maximum hydroxylation when the cation-exchange 332 

procedure relies on extensive dihydroxylation. However, as the silica used for synthesis was 333 

not dried or heat treated before exposure to the dopant solution, the conclusions 334 

surrounding coverage are valid. 335 

 336 

 337 

Figure 3 – SEM images of K-SiO2 at (a) 5000x and (b) framed section in (a) at 15000x magnification as prepared 338 
and at (c) 5000x and (d) 15000x magnification after treatment at 450 °C in air. Aggregates of amorphous silica 339 
are visible in all images. 340 
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 341 

 342 

Figure 4 – (a) EDX map of potassium dispersion within K-SiO2 as prepared, (b) site for map (a) of powder K-SiO2 343 
at 30000x magnification, (c) EDX map of potassium dispersion with K-SiO2-450, (d) site for map (c) of pelletised 344 
K-SiO2 at 5000x magnification. Potassium is well dispersed throughout the samples, before and after heat 345 
treatment and at both length scales. 346 

Table 2 – Data obtained from EDX analysis of fresh and potassium doped silicas as prepared and after 347 
treatment at 450 °C in air. Values reported with standard deviation on average of multiple points. 348 

Sample Si / wt% O / wt% K+ / wt% 

SiO2 43.99 ± 0.45 56.01 ± 0.45  

K-SiO2 39.01 ± 0.28 54.06 ± 0.32 6.93 ± 0.03 

K-SiO2-450 36.79 ± 0.12 53.82 ± 0.16 7.41 ± 0.04 

 349 

Carbon dioxide is routinely used in surface chemistry studies to probe the nature of Lewis 350 

acid sites through electronic σ-donation via the oxygen lone-pair or Lewis base sites through 351 

reactive adsorption to form carbonate, bicarbonate or formate species, respectively (Busca 352 

and Lorenzelli, 1982). Characteristic absorption bands are used to differentiate surface 353 

complexes. Therefore regarding the in-vacuo FTIR investigation, the formation of surface 354 

carbonates (as opposed to bulk carbonates) on K-SiO2 surface was evidenced (Figure 5) by 355 

growth of bands due to vibrations in the range 1750 – 1275 cm-1 as a function of CO2 356 

pressure. This was an initial indication that the loading of potassium had been successful and 357 

implied that it was located on the surface, consistent with the sub-monolayer coverage 358 

calculations above. Based on changes in intensity during outgassing (not shown for brevity), 359 

peaks at 1633/1345 cm-1 and 1663/1401 cm-1 were assigned as associated pairs. Upon 360 
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coordination to a surface, carbonate ion symmetry is lowered and consequently the 361 

degenerate ν3 asymmetric carbon-oxygen stretch at 1415 cm-1 is split into pairs. As first 362 

proposed by (Nakamoto et al., 1957), the magnitude of the splitting indicates whether the 363 

surface species is ionic (< 50 cm-1), monodentate (100 cm-1), bidentate (300 cm-1) or bridged 364 

(≥ 400 cm-1). The bands in Figure 5 had a Δν3 of ca. 288 and 262 cm-1, respectively which 365 

implied a bidentate coordination to the potassium cation. 366 
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 367 

Figure 5 – Evolution of bands assigned to bidentate carbonates on K-SiO2 at 1750 – 1275 cm-1 as a function of 368 
CO2 pressure from 0.025 – 20.8 mbar. Spectra were recorded at room temperature and are plotted as 369 
difference spectra relative to K-SiO2 after treatment in-vacuo at 400 °C.  370 

3.3 High pressure in-situ FTIR spectroscopy 371 

Figure 6 shows typical FTIR spectra of CO2 at conditions relevant to this work, in both the 372 

liquid and supercritical state. Broad bands at ca. 3700 cm-1 and 2350 cm-1 were assigned to a 373 

band due to a combination mode (ν1 + ν3) and the asymmetric stretch respectively. The 374 

narrow band around 2075 cm-1 was attributable to a combination of symmetric bend and 375 

symmetric stretch. Weak bands visible in the liquid CO2 spectrum included a band due to a 376 

combination mode at 3012 cm-1 from the symmetric bend and asymmetric stretch, a band at 377 

1949 cm-1 from symmetric bend and symmetric stretch combination and a peak at 1610 cm-1 378 

attributed to the OH bending vibration of water. Bands at 1388 and 1282 cm-1 which are 379 

enhanced by Fermi resonance were suppressed during the transition from liquid to 380 

supercritical CO2. These served as a good example of the general loss in intensity of many of 381 

the bands observed during this transition, with the most intense broad bands at 3700 and 382 

2350 cm-1 narrowing also. Two bending modes of CO2 at 666 cm-1 were not visible due to the 383 

cut-off of the optical windows. Band assignments for CO2 are given in (Yagi et al., 1993) and 384 

for carbonates from (Busca and Lorenzelli, 1982) 385 
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 386 

Figure 6 – FT-IR spectra of liquid carbon dioxide (black) at 19 °C and supercritical carbon dioxide (blue) at 50 °C 387 
after isochoric heating. The intensities of most of the vibrational bands decrease upon transition from liquid to 388 
supercritical phase, or in the case of the most intense bands, narrow slightly. 389 

Immediately upon immersion in scCO2 at 50 °C and 4.92 MPa, K-SiO2 formed bidentate 390 

carbonates (Figure 7) comparable with those formed in-vacuo (Figure 5).  Plotted as 391 

difference spectra relative to K-SiO2 at 50 °C in air before expansion of liquid CO2 into the 392 

cell, the black (before venting) spectrum was recorded 10 minutes after expansion into the 393 

cell. The blue spectrum (after venting) was recorded following 48 h immersion under the 394 

conditions above and subsequent venting of the scCO2, indicating that the formed 395 

carbonates remained stable in the absence of the fluid phase scCO2. In order to investigate 396 

the evolution of the carbonate bands, automatic acquisition software was employed to 397 

record spectra immediately following expansion into the high pressure cell. It was observed 398 

(Figure 8) that at 50 °C and 5.29 MPa the development of bidentate carbonate was rapid 399 

with bands at 1750 – 1300 cm-1 showing uniform growth against time. In both sets of spectra 400 

(Figure 7 and Figure 8) it was observed that Δν3 was consistent with the results in-vacuo and 401 

thus it was assumed that the relationships between pairs of degenerate bands were 402 

unchanged. If a position of 1680 cm-1 is taken for the highest frequency band (Figure 7 and 403 

Figure 8), Δν3 value for the 1615/1372 cm-1 band pair in (Figure 7) was 243 cm-1 and the 404 

1680/1403 cm-1 band pair was 277 cm-1. In Figure 8 the Δν3 value for the 1601/1373 cm-1 405 

band pair was 228 cm-1 and the 1680/1417 cm-1 band pair was 263 cm-1. Thus in both the low 406 

pressure and high pressure regimes, the species formed upon exposure to scCO2 are 407 

bidentate carbonates for K-SiO2. 408 

These findings are comparable with those of (Loring et al., 2011) who studied the 409 

carbonation of forsterite (Mg2SiO4) in scCO2 at 50 °C and 180 atm, evidencing the growth of a 410 

magnesium carbonate precipitate through an increase in ν3 C-O stretching modes at 1480 411 

and 1425 cm-1. A similar conclusion was drawn in the case of the inosilicate mineral 412 

wollastonite (CaSiO3) where features due to carbonate at 1410 cm-1 with a broad shoulder at 413 

1460 cm-1 indicated the formation of potentially hydrated metastable amorphous calcium 414 

carbonate phase (Miller et al., 2013). The shoulder appeared to decrease with increasing 415 
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water saturation of the scCO2 phase, indicating a change in the speciation of the surface 416 

carbonate. It is pertinent to highlight in these two former studies bulk carbonate formation 417 

was evidenced, whereas in the current study we show surface carbonate formation. The 418 

importance of water was also highlighted, by a lack of reaction in anhydrous scCO2 (Miller et 419 

al., 2013). This issue is overcome in the present study by both trace amounts of water in the 420 

liquid CO2 and those remaining post-synthesis. Zhuravlev defined the removal of physisorbed 421 

water from amorphous silica as being complete at 190±10 °C, with subsequent weight loss 422 

due to the removal of surface hydroxyl groups (Zhuravlev, 1993, 1989). From the TGA 423 

measurements (Figure S4, Supplementary Information), the water content of K-SiO2 was 424 

established as 3.57% (Table S1, Supplementary Information), by taking the numerical 425 

average of weight loss at 190±10 °C for the triplicate measurements. scCO2 is highly efficient 426 

at extracting water from amorphous silica (Tripp and Combes, 1998) and therefore the water 427 

content of the silica is critical in determining the water content of fluid phase, and as above, 428 

the applicability to various stages of CO2 injection. Considering the ca. 20 mg discs used in 429 

the HP/HT in-situ FTIR experiments and the quantity of scCO2 present determined from the 430 

volume and experimental thermodynamic conditions (Span and Wagner, 1996), the amount 431 

of water present in the scCO2 was calculated and confirmed we are operating in a wet CO2 432 

regime. Detail of the calculation is given in the Supplementary Information. Furthermore the 433 

supercritical line for water-CO2 mixtures is severely depressed in terms of pressure as 434 

compared to pure CO2 (Jager et al., 2013). Considering the pressures reported for the HP/HT 435 

in-situ FTIR experiments and that the quantity of water present can only be increased by 436 

trace (<20 ppm v/v) water present in the liquid CO2 as purchased, this is further evidence 437 

that we are operating within a wet CO2 regime. Greater detail on the importance of the 438 

presence of water on carbonation reactions is found in (Thompson et al., 2013) where the 439 

bicarbonate anion present in the thin water film on the surface of silicate minerals is shown 440 

by in-situ FTIR. This is a key reaction intermediate, highlighting the advantages of FTIR in 441 

elucidating reaction mechanism in wet CO2 (Thompson et al., 2013). 442 
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Figure 7 –Bands due to  bidentate carbonate at 1750 – 1275 cm-1 following scCO2 exposure at 50°C and 4.92 444 
MPa (black) and after venting of scCO2 following 48 hours immersion under above conditions (blue), plotted as 445 
difference spectra relative to K-SiO2 at 50 °C in air. 446 
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Figure 8 – Evolution of bands due to bidentate carbonate at 1750 – 1275 cm-1 during the first 5 minutes of 448 
reaction upon scCO2 exposure at 50°C and 5.29 MPa. The temporal acquisition software recorded each 449 
spectrum at an interval of 36 seconds and spectra are plotted as difference spectra relative to K-SiO2 at 50 °C in 450 
air. 451 

As carbon storage is envisaged for geological formations, the influence of depth (and thus 452 

temperature) is important. It has been shown (Hur et al., 2013) that cation type and the 453 

presence of water is important in determining carbonate formation as above. It was also 454 

shown that upon moving from liquid to supercritical CO2 the carbonate formation reaction at 455 

the internal surfaces became possible due to the lower viscosity and higher diffusivity 456 

achieved in the supercritical regime. Carbonates formed on calcium exchanged 457 

montmorillonite but not in sodium exchanged clay, with the speciation of carbonates as 458 
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determined by FTIR changing depending on the phase of CO2 present. Thus the influence of 459 

temperature on the carbonation of K-SiO2 was investigated (Figure 9a) at 50 °C and 5.84 MPa 460 

(blue), 70 °C and 5.98 MPa (green) and 90 °C and 6.09 MPa (purple). Due to the design of the 461 

cell, both temperature and pressure are inherently linked and therefore discrimination of 462 

the effect of each parameter was not possible. Initially it appeared that the magnitude of 463 

carbonation decreased with increasing temperature (Figure 9a), but upon investigation 464 

across the spectral region attributable to surface hydroxyl groups (Figure 9b), it can be seen 465 

that in fact the sample was being dried, due to a combination of increased temperature and 466 

the well-known drying effect of scCO2 (Kim et al., 2012; Tripp and Combes, 1998). Upon 467 

removal of water from K-SiO2, the transmission properties of the sample improved and thus 468 

the apparent absorption across the whole spectrum decreased, leading to the false 469 

assumption that the carbonate population was decreasing. 470 

It is interesting to note that there is no change in the carbonate coordination to the surface 471 

as it has been shown previously in forsterite that water concentration directly impacted 472 

carbonate coordination (Loring et al., 2015). Below a threshold value of 76 (µmol H2O)·m-2 473 

carbonate complexes were formed, with bidentate coordination observed at the lowest 474 

water concentrations. Considering the current results where bidentate coordination was 475 

observed throughout the experiment, this would imply that we began with a minimal 476 

amount of adsorbed water (< 76 (µmol H2O)·m-2) and subsequent drying thus had no impact 477 

on the coordination of the adsorbed carbonate species. Considering the water content 478 

determined by TGA, the surface area of K-SiO2 and the average pellet mass, the adsorbed 479 

water present before experiment was 29 (µmol H2O)·m-2, in excellent agreement with the 480 

spectroscopic findings. Detail of the calculation is given in the Supplementary Information. 481 

Generally, considering the small changes in absorption, it is likely that the magnitude of 482 

carbonation was unaffected by the small change in temperature. However it is important to 483 

comment on the changes observed in the hydroxyl group region, as it is known that 484 

wettability directly influences plume migration and residual trapping (Bourg et al., 2015). It is 485 

accepted that changes to the hydrophilicity, particularly at the pore scale, have significant 486 

impact on wettability and thus geological storage of CO2 (Chen et al., 2015) and these results 487 

suggested that to study them at high pressure and high temperature, in-situ FTIR may be a 488 

suitable tool. Indeed inaccessible hydroxyl groups on silica are accessible in scCO2 (McCool 489 

and Tripp, 2005) and therefore CO2 is regarded as being highly effective at removing water 490 

from silica (Dickson et al., 2006), consistent with our observations. 491 
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Figure 9 – (a) Changes in carbonate band intensity (1750 – 1275 cm-1) at 50 °C and 5.84 MPa (blue), 70 °C and 494 
5.98 MPa (green) and 90 °C and 6.09 MPa (purple). (b) Changes in OH region during same experiment showing 495 
drying of K-SiO2 with increased temperature and pressure, 50 °C and 5.84 MPa (blue), 70 °C and 5.98 MPa 496 
(green) and 90 °C and 6.09 MPa (purple). 497 

4 Conclusions 498 

In this paper, it was shown that through the preparation of cation-doped silica, one can 499 

produce a model system that facilitates fundamental understanding associated with 500 

chemical changes to host mineralogy during carbon sequestration. An investigation of 501 

surface chemistry changes occurring during exposure to scCO2 has been performed in a 502 

custom high pressure/high temperature FTIR cell and was shown to be comparable with 503 

more conventional surface chemistry high vacuum FTIR methods. The carbonation of 504 

potassium doped silica, as a simple model system for the surface of silicate minerals, was 505 

possible in pressure and temperature conditions relevant to geological sequestration of 506 

carbon dioxide, with potential implications for mineral dissolution. In all cases the 507 
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carbonation reaction produced bidentate carbonates on the surface of potassium doped 508 

silica indicating sufficient reactivity for the mineralisation of scCO2. As the surface of a 509 

mineral or the interfacial region between scCO2 and mineral will be the initial point of 510 

contact during EOR or CCS, it is of fundamental importance to understand the nature of 511 

reaction products. Furthermore the nature of the ligand is known to influence the 512 

dissolution rate of minerals during CCS and therefore obtaining carbonate speciation/cation 513 

coordination is of importance. Further work is ongoing to determine the role of cation and 514 

the presence of water on the speciation of formed carbonates. In general it has been shown 515 

that FTIR can be used to understand EOR and CCS processes in challenging environments. 516 
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