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ABSTRACT 

Infants interpret third-person sequential actions as goal directed by 6 months of age, 

around 9 months of age they start to perform sequential actions to accomplish higher order 

goals. The present study employed an innovative pupillometric and oculomotor paradigm to 

study how infants represent first-person sequential actions. We aimed to contrast chaining-, 

concurrent- and integrated models of sequential-action representation. 9- and 12- month olds 

were taught action sequences consisting of two elementary actions. Thereafter the secondary 

action was selectively activated to assess any interactions with the primary action. Results 

suggest that concurrent models best capture the representations formed.  

(98 words) 
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INTRODUCTION 

Infants are active, goal-directed agents. As demonstrated in numerous studies, they are 

able to perform a multitude of goal-directed actions, ranging from shaking rattles to enjoy 

themselves to grasping moving objects (e.g., McCarty, Clifton, Ashmead, Lee, & Goubet, 2001). 

Interestingly, some of these actions are sequential in nature, such as reaching for a rattle in order 

to shake it — a rather simple sequence, that nevertheless comprises of two dissociable 

components that differ in function and motor demands. Piaget (1936) and others (Claxton, Keen, 

& McCarty, 2003; Hauf, 2007; Willatts, 1999; Woodward and Sommerville, 2000; Woodward, 

Sommerville, Gerson, Henderson & Buresh, 2009) have stated that true goal-directed (sequential 

) action emerges around 9 months of age when infants begin to be able to organize means-end 

action sequences in the service of overarching goals. Although the goals in such sequences are 

commonly considered “higher-order” in one sense or another, the ontology of the implied 

(probably hierarchical) representational format of sequential action remains open. Until recently, 

most research has focused on infants’ intention reading of others’ sequential actions (e.g., 

Baldwin, Baird, Saylor, & Clark, 2001; Olofson & Baldwin, 2011; Woodward & Sommerville, 

2000; Biro, Verschoor and Coenen, 2011;, Verschoor and Biro, 2012), thus complicating the 

matter by entering interpretation into the equation. Only recently research has started to focus on 

the representational format of simple first-person action in infants and even less is known about 

the representational format of sequential action in infants. The purpose of the current study is to 

explore such representational formats. 

There are three obvious prerequisites for infants to represent sequential action: that they 

can represent their actions, that they can represent sequential information, and that they can 

combine those abilities to represent sequential action. Let us turn to the first prerequisite, can 
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infants represent their own action and what is the ontology of such representations? There is 

ample evidence that simple actions are represented in terms of their effects. James (1890) in his 

ideomotor theory states that elementary actions are learned on the fly through sensorimotor 

exploration; an automatic and unintentional mechanism creates bidirectional associations 

between perceived effects and the action producing them (Hommel, 2009; Hommel, Müsseler, 

Aschersleben, & Prinz, 2001). These associations bring the actions under voluntary control, the 

agent can now activate the action by “thinking of” (i.e., endogenously activating the 

representation of) the corresponding effect. The theory can thus account for learning new actions 

and new goals and proposes that actions are represented in terms of their effects. This idea is 

typically tested in a two-stage paradigm. Experimenters first let participants perform voluntary 

actions that lead to specific effects. After acquisition, they test if exogenously cueing an effect 

also cues the action that previously caused it (Elsner & Hommel, 2001; Greenwald, 1970). This 

approach resulted in many demonstrations of bidirectional action-effect acquisition for a wide 

range of actions and effects in children (Eenshuistra, Weidema & Hommel, 2004; Kray, 

Eenshuistra, Kerstner, Weidema & Hommel, 2006) and adults, suggesting the mechanism 

responsible to be fast-acting (Dutzi & Hommel, 2009), automatic (Elsner & Hommel, 2001; 

Band, Steenbergen, Ridderinkhof, Falkenstein & Hommel, 2009), implicit (Elsner & Hommel, 

2001; Verschoor, Spapé, Biro & Hommel, in press), and modulated by the same factors that 

influence instrumental learning (Elsner & Hommel, 2004) (for a review on action-effect learning 

see: Hommel & Elsner, 2009). Furthermore, action-effects have also been found to be important 

for action evaluation (Band, Steenbergen, Ridderinkhof, Falkenstein & Hommel, 2009; 

Verschoor et al., in press).  
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Infant research, on the other hand, has until recently mainly been restricted to the 

importance of action effects for third-person action interpretation instead of first-person action 

(e.g., Hauf, 2007; Kiraly, Jovanovic, Prinz, Aschersleben, & Gergely, 2003; Paulus, 2012; 

Woodward, 1998; Biro, Verschoor, Coalter and Leslie, under review). Evidence from this field 

cannot be considered as direct evidence for bidirectional action-effect acquisition. However, in 

the light of the upsurge of theories that stress similar representational formats for first person 

experience and observed action (e.g. Fabbri-Destro & Rizzolatti, 2008; Hommel et al. , 2001; 

Meltzoff, 2007; Tomasello, 1999), and that conceptualize action understanding as inverse 

planning (Melzoff, 2006; Baker, Saxe & Tenenbaum, 2009), these findings can be seen as 

corroborative. Indeed action-effects have been implicated as instrumental for action 

understanding in 7 months-olds (e.g.; Biro & Leslie, 2007; Paulus, Hunnius, & Bekkering, 2012; 

for a review, see: Hauf, 2007; Kiraly, Jovanovic, Prinz, Aschersleben, & Gergely, 2003) and 

imitation in 9-months-olds (Hauf & Aschersleben, 2008; Klein, Hauf & Aschersleben, 2006; for 

a review, see: Elsner 2007; Meltzoff, 2006). Lately, more direct evidence regarding infant 

action-effect learning was obtained from first-person paradigms more similar to that of Elsner & 

Hommel (2001). A recent study from our lab showed that although 7- and 12-month olds used 

action effects for action evaluation, only the 12-month olds showed evidence of reversing 

bidirectional associations for action control (Verschoor et al., in press). By eight months, infants 

show stronger motor resonance when listening to previously self-produced action-related sounds 

than when hearing other sounds, suggesting that they represent actions in terms of their effects 

(Paulus, Hinnius, Elk & Beckering, 2011). The youngest age group thus far that showed 

evidence for using action-effects for action control were nine-month olds (Verschoor et al., 

2010). Comparable results were found in 12-month olds (Verschoor et al., in press) and 18-
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month olds (Verschoor, Weidema, Biro & Hommel, 2010). It thus seems safe to conclude that, 

by the time infants reach 7 months of age, they can represent and monitor own- and others 

action, and do so in terms of action effects. By the time they reach 9-12 months of age they can 

actively use these action effects for action control.  

The second prerequisite for representing sequential action is the ability to encode 

sequential information. In other research domains, infants have indeed been shown to be 

responsive to sequential information in stimuli streams. For instance, it has been shown that 

neonatal infants are susceptible to sequential grammar information in speech stimuli (Gervain, 

Berent, & Werker, 2012; Teinonen, Fellmann, Näätänen, Alku & Huotilainen, 2009). Infants of 8 

months are susceptible to similar information in artificial sound (Marcus, Fernandes & Johnson, 

2007) and from 3 months of age they are susceptible to spatiotemporal sequences (Wentworth 

Hait & Hood, 2002). Studies like these suggest an early-appearing, domain-general information-

acquisition mechanism for sequential information (Marcovitch & Lewkowicz, 2009). However, 

these studies only show a capacity for passively representing sequential information and do not 

specify the format of the representations.  

Since the first two prerequisites seem to be met, the question remains whether infants can 

combine these abilities to merge simple actions into action sequences. Tentative evidence 

suggests they can: Looking-time studies provide evidence that by 7 months of age infants can 

detect whether a third-person action sequence is efficient given the goal and situational 

constraints (Biro, Verschoor & Coenen, 2011; Csibra, 2008; Gergely & Csibra, 2003; Verschoor 

& Biro, 2012). Similarly, Woodward and Sommerville (2000) found that 12-months-olds can 

relate elementary third-person actions to overarching goals of action sequences. Ballargeon, 

Graber, DeVos & Black (1990) reported that infants as young as 5.5 months of age can judge 
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whether an action sequence is sufficient to acquire an occluded toy or not. Other, more direct 

evidence was found in a study by Claxton et al. (2003), who reported that 10-months-olds adjust 

the kinematics of reaching for an object depending on what they intend to do with it. Taken 

together these studies suggest a rudimentary ability to represent first- and third person sequential 

action. Although Woodward and Sommerville (2000) propose a “causal” relational framework 

for evaluation of sequential action, and others (e.g. Gergely & Csibra, 2003) propose evaluation 

in terms of the efficiency, the studies mentioned above shed little light on the format of the 

sequential representations itself on which such evaluation might work. Understanding the 

ontology of sequential representations is essential in interpreting what it is that infants actually 

evaluate and is thus crucial in interpreting the results of studies in which evaluation of sequential 

action is the subject matter. 

 

REPRESENTING SEQUENTIAL ACTION 

As there is little specific developmental literature on the subject, we will turn to general 

psychological theories of sequential action control. Through the years many influential 

incarnations of sequential action representation have been conceived (de Kleijn, Kachergis, & 

Hommel, 2013). They diverge on several aspects of the representational format stressing 

different mechanisms involved. Although these theories are by no means all inclusive or 

complete, they do posit a useful approximation for understanding sequential actions. Depending 

on exact circumstances relating to practice, content, time pressure and strategy, some models are 

more adept than others at explaining the empirical phenomenon involved. However, all of these 

theories hold that sequential actions consist of elementary actions that are somehow combined 

into a sequence. Furthermore, they agree that sequential actions are (to some extent) planned 
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ahead of execution, as suggested by the observation that the speed to initiate a sequence 

increases with the number of elements it comprises of (e.g., Henry & Rogers, 1960; Rosenbaum, 

1987) or that people spontaneously start reaching movements with awkward hand postures if that 

optimizes the comfort achieved at the end of the action sequence (Rosenbaum et al., 1990).   

Theories regarding sequential action representation can broadly be distinguished into 

three ontological types, which we will refer to as chaining, concurrent, and integrative theories of 

action-sequence representation (see Figure 1). Chaining theories stress that elementary actions 

are selected and combined into sequential ordered representations through association processes. 

During performance, activation cascades down the ordered elementary action representations 

resulting in an orderly performance of the sequence. Concurrent (Hebbian) theories focus on 

competitive processes that account for the orderly sequential production of an action sequence. 

Integrated approaches highlight crosstalk between elementary actions resulting in newly chunked 

elementary actions. 

=== FIGURE 1 === 

Goal

A1 A2

Goal

A1 A2

Goal

A1 A2

A B C
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Figure 1. Models of sequential action. :Schematic representation of activation in A: 

Chaining models of sequential action, activation cascades forward thru the different elementary 

actions, B: Concurrent models of sequential action, all elementary actions are activated 

simultaniously where after competion thru inhibition ensures the correct order of execution, C: 

Integrated models of sequential action, the sequence of actions has been integrated into a new 

elementary action. 

 

The prototype of chaining theories of sequential action is the chaining theory proposed by 

James (1890). It holds that elementary actions can be chained into sequential actions by 

sequentially activating the anticipated effect of each element, thereby performing the subsequent 

actions in sequence via the ideomotor principle (Greenwald, 1970). With practice, the sensory 

effect of each elementary action becomes associated with the next elementary action through 

stimulus-response learning, thereby eliminating the need for sequential activation. The model 

thus effectively reduces sequential actions representation to a combination of ideomotor and 

stimulus-response learning. In terms of our example, this would mean that thru initially 

performing the sequence of reaching and shaking by chance, the infant would learn to 

unidirectionally associate reaching with shaking, thus enabling the chained action sequence. 

Ziessler (1994, 1998) indeed found that action-effects associations play an important role in 

implicit sequence learning. In a serial reaction-time task he systematically varied a sequence of 

locations of the stimuli to respond to. Indeed the action-effect (action-location) relations were 

more important and dissociable from stimulus-response relation learning for performance. 

Although the James’ version of chaining theory is temptingly simple, it has a number of 

important drawbacks resulting in several elaborations on the model to accommodate these. 
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Firstly, Hull (1931) pointed out that in order to be goal-directed and flexible in performance, the 

representation of the last action in the sequence and thus the end state of the action sequence 

should remain active during execution to compare the actual outcome to the expected outcome. 

He thus introduces a mild form of hierarchy into the representation by proposing additional 

activation of an overarching goal representation. This is indeed necessary for the action sequence 

to be driven by a conception of its function. Secondly, in the conception of James (1890) the 

second action of the sequence is cued by the sensory effect of the first action, meaning that 

sequential action would have to rely on sensory feedback. However, empirical evidence suggests 

that feedback mechanisms are too slow to accommodate such a reliance on feedback (e.g. 

Sternberg, Monsell, Knoll & Wright, 1978). Greenwald (1970) consequently suggested that 

instead of the sensory effects, the anticipated action effects of the preceding action should be 

associated to those of the next action, thereby circumventing the criticism. This addition also 

enables the initiation of the sequence by anticipating its end effect. In terms of our example, this 

would mean that through initially performing the sequence of reaching for and shaking the rattle 

by chance, the infant would learn to associate the effect of reaching with the effect of shaking. 

The infant thus only has to activate the representation of the rattling sound which in turn 

activates the effect of reaching, which would then activate the reaching action. This would start 

of the chained action sequence. However the model does not specify how the end effect activates 

the sequence instead of just the elementary action. 

An important criticism of chaining models of sequential action is that they seem to imply 

that the effects of the elementary actions are equally associated with the preceding and 

subsequent action effects, thus making orderly performance of sequences impossible. In other 

words, chaining models of sequential action just assume, but fail to describe how activation 
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moves forward through the sequence. In terms of our example, these models fail to describe why 

the infant reaches first and shakes later, not vice versa. This lack of temporal dynamics in 

chaining models resulted in the emergence of the second ontological class of theories, the 

concurrent activation theories. To tackle the temporal shortcomings, Estes (1972) suggested an 

initial concurrent activation of all elementary actions in the sequence by a superseding goal 

representation. Thereafter, temporal inhibitory processes ensure that activation moves forward 

through the sequence in an orderly manner. To guarantee this forward flow he introduced 

inhibitory links flowing from each element to the next and secondary self-inhibition of 

completed elements to prevent repetition (e.g., Henson, 1998) equivalent to inhibition of return 

in visual attention (Posner & Cohen, 1984; Houghton & Tipper, 1996).  Again, in terms of our 

rattling example, this would mean that by activating the overarching goal of rattling the rattle, 

the infant would activate both the shaking action and the reaching action which would then 

compete thru inhibitory processes until the reaching action is performed first and then the 

shaking action. The concurrent model can thus additionally account for the empirical finding for 

more prospective- than retrospective-intrusion errors. For instance, in a serial reaction-time tasks 

using over-learned sequences by Li, Lindenberger, Rünger & Frensch (2000), more intrusion 

errors on the current goal were detected when the future goal rather than the past goal was cued, 

suggesting greater availability of intended than completed goals. Similar phenomena are known 

from linguistic research. For example, Dell, Burger, and Svec (1997) found more anticipatory 

than preserveratory errors in practiced speech. Inhibitory mechanisms to ensure serial order were 

successfully modeled by Rumelhart and Norman (1982) in their seminal study on mechanisms 

responsible for motor control in typewriting (for a review see: Houghton & Tipper, 1996). 
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Yet another class of theories on sequential action representation, integrated sequential 

action representation, does not presuppose that action elements remain independent from each 

other when combined into an action sequence. Such theories state that through practice 

elementary actions can be integrated into one common action plan or “chunk”, implying 

considerable crosstalk between the elementary actions (Miller, 1956; Sakai, Hikosaka, & 

Nakamura, 2004). Their main support comes from studies that find reductions in the sequence-

length effect by extensive practice (e.g. Klapp 1995). Chunking of the elementary actions is 

possible by relating the sequence to internal or external context thus creating a unique identifying 

criterion for the associations (Hull, 1931). In terms of our example, the infant incorporates the 

reaching and shaking action into a new elementary action by relating it to internal context (e.g. 

the goal of the action) and/or external context (the situational constraints of the action to be 

performed). This is crucial since it would indeed be very inefficient for all reaching actions to be 

exclusively associated with shaking rattles. Logically the association needs to be context 

dependent and as such, to some extent unique from other associations with reaching. Stöcker & 

Hoffmann (2004) found evidence indicating that action effects can facilitate chunking in a serial 

reaction time task. 

The chaining-, concurrent- and integrated models imply partly different predictions with 

regard to the spreading of activation from one (representation of a) sequence element to another. 

Consider a sequence of two elements, with element A preceding element B. All models imply 

that priming or otherwise activating A might spread activation to B, but they differ regarding 

their predictions in case that B is primed/activated. James’ (1890) chaining model would not 

predict that priming B might lead to the activation of A, since the sequence is assumed to be 

represented by unidirectional stimulus-response bindings (AB). Greenwald’s (1970) version, 
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instead, would predict the spreading of activation from B to A, as sequences are represented 

through associations formed between the effects of the elementary actions. Conversely, 

concurrent activation models would predict that activating B leads to the inhibition of A, as 

activation is allowed to spread in a forward direction only, while “backward” connections are 

inhibitory. Finally, integrated models would predict that activating one element would activate 

the representation of the entire sequence, including A. The aim of the present study was to pit 

these different predictions against each other. 

EXPERIMENTAL APPROACH 

To tackle our question regarding sequential-action representation, we modified a recently 

developed gaze-contingent paradigm to assess ideomotor action-effect learning in infants 

(Verschoor et al., in press). This eye-tracking paradigm overcomes problems that arise due to 

underdeveloped motor abilities in infants (Verschoor et al., in press; Wang et al., 2012) and 

enabled us to administer a paradigm to infants conceptually identical to the original Elsner and 

Hommel (2001) paradigm. The paradigm uses eye movements as actions, which is appropriate 

since infants can accurately control their eye movements from at least 4 months of age (Scerif et 

al., 2005) and these can be considered voluntary goal-directed actions (Gredebäck & Melinder, 

2010; Falck-Ytter, Gredebäck, & von Hofsten, 2006; Perra & Gattis, 2010; Senju & Csibra, 

2008;). An additional advantage of our paradigm is the concurrent recording of Task-Evoked 

Pupillary Responses (TEPRs) which is relatively new in developmental research (Falck-Ytter, 

2008; Jackson & Sirois, 2009; Laeng, Sirois & Gredebäck, 2012; Verschoor et al., in press). 

Larger dilations indicate motivational phenomena such as increased arousal (Bradley, Miccoli, 

Escrig & Lang, 2008; Laeng & Falkenberg, 2007), attention allocation (e.g. Hess & Polt, 1960), 

cognitive load (Kahneman & Beatty, 1966), and mental effort (Kahneman, 1973; Hess & Polt, 
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1964). Whatever the exact interpretation of the measure, using it enables us to contrast 

acquisition contingent vs. non-contingent responses since all interpretations suggested that 

dilations should be larger for actions that require more processing (Verschoor et al., in press). In 

the Verschoor et al., (in press) paradigm 7-, 12-month olds and adults were to make eye-

movements towards a visual stimulus appearing at the left or right of a fixation point, where the 

two directions produced different auditory effects. In the following test phase, participants were 

presented with the effect tones and could freely choose to make a saccade to the left or right of 

two simultaneously presented visual stimuli. We found evidence for the acquisition of 

bidirectional associations in all age groups. Latencies for responses incongruent with the 

previously experienced action-effect mapping were increased in 12-month olds and adults only, 

while pupillary responses were enhanced in incongruent conditions for all age groups—

suggesting that even the 7-month olds picked up action-effect knowledge.  

Since this paradigm works well with infants, and other research groups have also 

successfully demonstrated saccade-effect learning in adults (Huestegge & Kreutzfeldt, 2012; 

Herwig & Horstmann, 2011), we decided to adjust the paradigm and present participants with 

action sequences during acquisition. We adapted our gaze-contingent paradigm (Verschoor et al., 

in press) to teach infants two contrasting, sequential actions, each consisting of two 

perpendicular eye movements—each having a specific auditory effect. The sequences were 

taught in a free choice acquisition phase. Thereafter we cued one of the end effects of the 

sequences (i.e., we presented the auditory effect of one of the final sequence elements) and 

presented participants with the choice to perform one of the two first action components—a left- 

or right-ward saccade. If infants represent sequential action as sequences at all, cueing the effect 

of the second element should affect the activation of the first element. Hence, finding such an 
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effect (whether facilitatory or inhibitory) would provide evidence for the cognitive representation 

of sequential action as a true action sequence in infants. Moreover, the direction of the effect 

would speak to the internal structure of that representation: While chaining and integrative 

models would lead one to expect facilitation of the first element, concurrent activation models 

would rather predict the opposite, that is, a negative priming effect.  

METHODS 

Subjects 

Two groups of infants were tested: 14 9-month-olds (mean: 8.94 months, SD= .37, SE=.9, 

5 female) and 16 12-month-olds (mean: 11.99 months, SD= .42, SE=.10, 9 female). They were 

recruited through the municipality and they received small gifts as reward. An informed consent 

and a questionnaire regarding their general health and development were obtained from all 

caretakers. The infants were all healthy full-term and without pre- or perinatal complications. 

Another four 9- and seven 12-month-olds were excluded for not meeting the criterion for the 

minimal amount of test trials. 

Test environment and apparatus 

During the experiment the infant sat in a specially designed, stimulus-poor curtained 

booth on the lap of his/her caretaker, who was seated in a chair in front of the eye-tracker 

apparatus. The distance between eyes and apparatus was approximately 70 centimeters (the 

screen’s viewing angle was 34.1° by 21.8°). The behavior of the infants was monitored and 

controlled online by the experimenter from a separate control room by means of a camera 

located above the apparatus. A 17 inch TFT-screen (1280 x 1024 pixels), equipped with an 

integrated Tobii T120 eye-tracker operating at 60 Hz, was used for visual and auditory data 

presentation, and for data collection. The Tobii T120 has an average accuracy of .5 visual 
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degrees and allows for a reasonable amount of free head movement by the subject 

(30x22x30cm). It recorded gaze direction and pupil-size. Stimulus presentation was controlled 

by a PC running E-prime® software (Schneider, Eschman & Zuccolotto, 2002).  

Procedure 

Infants were tested in the laboratory at a time of day when they were likely to be alert and 

in good mood. Instructions were given to the caretakers prior to the experiment. The caretakers 

were instructed not to move the chair after calibration and gently hold the infant in order to 

maintain eye-tracker alignment and to entertain the infant during the 1-min interruption between 

calibration and the experiment. The eye-tracker was calibrated using a 9-point calibration 

consisting of a small animated dancing infant accompanied by music. The calibration was 

accepted with a minimum of eight points acquired successfully. The experimenter could play an 

attention-grabbing sound during the experiment to regain attention. If the attention grabbing 

sound did not work caretakers were encouraged to direct the infant’s attention to the middle of 

the screen by pointing to it. Lighting conditions were kept constant during testing and across 

subjects. Furthermore the luminance levels were controlled for by presenting the stimuli in a 

random fashion. After completion of the test-phase, further information on the research and an 

explanation of the experiment was provided. 

Acquisition phase 

The experiment began with an acquisition-phase of 36 trials (see Figure 2). If during the 

acquisition phase the subject showed declining attention to the screen or was otherwise distracted 

the acquisition phase could be shortened (minimum amount of acquisition trials was set at 24). In 

each trial participants could freely choose to perform one of two saccade sequences. Each 

saccade sequence consisted of two distinct actions, first one to the left or right whereafter an up- 
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or downward action followed (depending on the mapping assigned). Each saccade was followed 

by an effect-sound which was consistently designated to left-, right-, up- and downward response 

areas (RA’s) during the entire acquisition phase.  

The background color of the screen was grey. A trial started with the presentation of a 

brightly colored dot with a superimposed line drawing  (4.3° by 4.3°) being displayed at the 

center of the screen that served as start signal and fixation point. To keep infants interested, the 

color of the dot changed randomly from trial to trial (selected from eight bright colors) and the 

superimposed line drawing was randomly selected (without replacement) from a selection of 50 

drawings (Snodgrass & Vanderwart, 1980). The dot disappeared after the subject fixated for an 

interval that varied from trial to trial (to remove any bias or habituation that might be caused by 

fixed intervals between trials) between 150 and 350 ms. Immediately after the dot disappeared, 

photographs of two different faces (randomly selected without replacement from 100 grayscale 

pictures from the “Nottingham scans” emotional faces database, http://pics.psych.stir.ac.uk, 

displaying emotionally neutral faces of 50 men and 50 women from a frontal perspective) 

appearing left and right from the dot. The faces served as response locations. Faces were chosen 

to elicit spontaneous saccades as they are known to attract attention in infants (Goren, Sarty & 

Wu, 1975; Johnson, Dziurawiec, Ellis & Morton, 1991). The 5.3° by 5.3° pictures appeared at 

9.7°, center to center, to the left and right of the center of the screen. To avoid perseverance to 

either left or right across acquisition trials the images immediately started to pulsate. One of the 

faces started shrinking to 4.1° while the other started growing to 6.5° (which picture started 

shrinking was randomized); one cycle from intermediate size to small, to intermediate, to large 

and back to intermediate again, took 2 s.  

http://pics.psych.stir.ac.uk/
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When a saccade towards one of the two face locations was detected, the face at the other 

location disappeared and the targeted face stopped pulsating. Depending on the targeted side, one 

of two distinct 200 ms effect-sounds (“tring” or “piew”) was presented (with the mapping being 

balanced across participants). RA’s were defined as the maximum size of the pulsating images: 

6.5° by 6.5°. A saccadic response was defined as eye movement into the left or right response 

area, which corresponded to a minimal 4.3° eye-movement. Immediately after the first effect had 

sounded the current face disappeared where after it reappeared 7.8° above or below (depending 

on the mapping) that location in the same dimension and continuing to pulsate. This face served 

as a RA again (defined again as the maximum size of the pulsating image). Upon detection of a 

gaze at that location one of two distinct 200 ms effect-sounds (“high note” or “low note”) was 

presented (with the mapping being balanced across participants). The minimal saccade was 1.3°. 

Reaction Times (RTs) were defined as the time it took from the disappearance of the central dot 

until a saccade into the secondary RA was detected. The maximum allowable RT was defined as 

2000 ms; if the subject did not respond within this time the same trial was repeated. After each 

trial, an inter-trial-interval of 500 ms was presented.  

Test phase 

The acquisition phase was followed directly by a test phase of 32 trials (see Figure 2). 

The minimum amount of test trials to enter analysis was 22. A test trial started with a similar dot 

as in the acquisition phase, again serving as a start- and fixation-stimulus. However, after the 

subjects fixated (fixation time identical to acquisition), the dot stayed on the screen for another 

200 ms during which of the effect-sounds that was previously triggered by one of the two 

secondary eye-movements, was played. Upon the end of the sound the dot immediately 

disappeared. Then two identical 5.3° by 5.3° images of the same face (again randomly selected 
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without replacement from Nottingham scans’ emotional faces database) appeared 9.7° to the left 

and right of the screen centre serving as RA. The two images were identical to minimize 

influence on the subject’s gaze preference. To further reduce influence on the choice the faces 

now pulsated in synchrony, meaning that they either both grew or shrank (randomized and with 

the same motion parameters as in the acquisition trials). Again, the images were expected to 

evoke a saccade and the question of interest was whether the direction of this saccade would be 

biased by the tone.  

In previous studies (that all used single-component actions), the definition of congruency 

was straightforward: If participants were exposed to two action-effect mappings in the 

acquisition phase, which responses A and B were followed by action effects 1 and 2 (A1; 

B2), performing action A in response to (or as a result of being primed by) action effect 1 in 

the test phase (1A) would be considered congruent, while performing the same action in 

response to (or as a result of being primed by) action effect 2 (2A) would be considered 

incongruent. Introducing actions that each consist of two components renders the definition 

somewhat more complicated. Our participants were exposed to two pairs of actions and action 

effects in the acquisition: A1+C3 and B2+D4. In the test phase, we presented the action 

effect of one of the second components (3 or 4) and we tested whether this would affect 

processes related to one of the two first components. Hereby, the pairings of effect 3 and 

component A (3A) or of effect 4 and component B (4B) were considered congruent and the 

pairings of effect 3 and component B (3B) or of effect 4 and component A (4A) 

incongruent. Except for absence of the effect after the saccade, the remaining procedure was as 

in the acquisition phase. 

=== FIGURE 2 === 
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Test phaseAcquisition phase Test phaseAcquisition phase

 

 

Figure 2. Acquisition trial.: Each trial starts with an intertrial interval of 500 ms. T1: A 

fixation dot is displayed at screen center. T2: After successful fixation, faces appear at either side 

of the screen where they started to pulsate. T3:  Depending on the saccade target, the face at the 

other side disappears and an effect sound is played for 200 ms. T4: Depending on which side was 

chosen the face moves up or down. Test trial. Each trial starts with an intertrial interval of 500 

ms. T1: A fixation dot is displayed at screen center. After succesful fixation one of the previous 

action effects is played. T2: The dot diasppears whereafter the same face appears on both sides. 

T3: The participant freely chooses where to saccade. 

 

Data acquisition 

E-prime® was used to collect RTs, the number of left and right responses, and the 

number of congruent and incongruent responses during test. Furthermore, the E-gaze data files 

produced by E-prime® were imported into BrainVision Analyzer software (Version 1.05, 

BrainProducts, Germany) to analyze gaze position and pupillary data. Pupil sizes of both eyes 
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were averaged as to create more stable data. Artifacts and blinks as detected by the eye-tracker 

were corrected by using a linear interpolation algorithm where after a 10 Hz low-pass filter, 

commonly used for pupil dilation data (e.g., Hupe, Lamirel & Lorenceau, 2009) was applied. To 

ensure there were no erroneous pupil data we then rejected artifacts using the parameters of a 

minimal pupil size of 1mm and a maximum of 5mm, furthermore the maximum allowed change 

of pupil-size was defined as .03mm in 17ms. Eye gaze data were recorded in pixel coordinates 

and filtered using a 10 Hz low-pass filter. 

Given that the acquisition of action-effect associations is sensitive to the same factors as 

stimulus-response learning (Elsner & Hommel, 2004), the Number of completed Acquisition 

Trials (NOCAT) was taken as an individual measure for how well action-effect associations 

were learned. The Mean Acquisition RT (MART) was taken as an individual measure for general 

speed and activity. Both NOCAT and MART variable were used as covariates in the analyses 

when appropriate. 

RESULTS AND DISCUSSION 

Acquisition phase 

First we tested for age group differences in a number of dependent variables collected 

during the acquisition phase to ensure that the learning experiences of the two age groups were 

comparable (see also Table 1). All ANOVA’s were performed with age group as a between-

subjects factor. There were no effects for the percentage of completed acquisition trials (p>.5), 

mean RT (p>.5), or with respect to the percentage of right-vs.-left responses (p>.2) or upward- 

vs. downward responses (p>.2). The only two reliable effects were obtained for RTs. For one, 

horizontal response location interacted with age group, F(1,25) = 6.25, p = .019, η2p = .20. 

Separate analyses showed no main effect in the 9-months-olds (RT-left = 999ms, RT-right = 
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1046ms) and a tendency toward faster right-ward responses in the 12-months-olds, F(1,12) = 

3.84, p = .074, η2p = .24 (RT-right = 982ms, RT-left = 1089ms). For another, vertical response 

location interacted with age group, F(1,25) = 4.63, p = .04, η2p = .16. Separate analyses showed 

no main effect in the 9-months-olds (RT-up = 1008ms, RT-down = 1037ms) and a tendency 

toward faster downward responses in the 12-months-olds, F(1,12) = 3.82, p = .07, η2p = .24 

(RT-up =1089, RT-left = 982ms).  

=== TABLE 1 === 

 

AGE GROUP 

SCORES 

Percentage of 

completed 

acquisition 

trials 

Percentage of 

left responses 
RT in ms 

RT 

left 

RT 

right 
RT up 

RT 

down 

9-month-olds 
92.9 

(11) 

42.8  

(38) 

1007  

(81) 

999 

(107) 

1046 

(90) 

1008 

(116) 

1037 

(83) 

12-month-olds 
92.0 

(14) 

38.5 

(40) 

1023  

(83) 

1089 

(167) 

982 

(73) 

982 

(78) 

1089 

(164) 

 

Table 1. Mean scores of acquisition phase (standard deviation in brackets). 

 

Taken altogether, we can conclude that the learning experiences of the two age groups 

were comparable. The interaction of horizontal response location and age might reflect the 

fluctuating emergence of a general right-side preference during the first year (Corbetta & Thelen 

1999; Michel, 1998), which also affects infants’ eye movements (Cohen, 1972). A similar, but 

orthogonal effect may be reflected in our analysis of upward vs. downward RTs. However little 

is known to us about such preferences. Importantly, however, these observations are in no way 

detrimental to our main question since both age groups received approximately the same amount 

training for all combinations of response locations. 
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Test phase 

 All ANOVA’s were performed with age group as a between-subjects factor. There was 

no effect on the percentage of completed test trials (p > .4). We considered four dependent 

variables: Response frequency, reaction time, pupil dilation, and gaze position. Especially the 

first three of these measures have been used to assess action-priming effects before (e.g. 

Verschoor et al., in press), commonly showing shorter reaction times, higher frequencies and 

lesser pupil dilations for responses that are congruent (as compared to incongruent) with the 

previously acquired action-effect association. However, there is strong evidence that these 

measures differ substantially in their sensitivity to congruency effects depending on the age of 

participants and the type of task involved (forced choice vs. free choice and manual vs. 

saccadic). Whereas forced- and free-choice reaction time, and manual-response frequency (e.g., 

Elsner & Hommel, 2001) are reliable indicators in adults, choice errors in forced-choice versions 

of the task are more sensitive to pick up congruency effects in children (Eenshuistra et al., 2004; 

Verschoor, Eenshuistra, Kray, Biro & Hommel, 2012). In infants, reaction time is a sensitive 

measure in free-choice versions of the task (the only version that infants can handle; Verschoor 

et al., 2010; Verschoor et al., in press), while response frequency reliably diagnoses congruency 

effects in older infants (from 18 months of age, only in manual versions of the task; see 

Verschoor et al., 2010). In contrast, pupil dilations (in free choice versions of the task) turned out 

to be highly sensitive to congruency in all age groups, showing lesser dilation (i.e., lesser effort) 

during congruent action. To provide a complete picture we will report findings on all three 

measures (together with findings for gaze direction) in the following. However, given that our 

task and basic setup adopted that of Verschoor et al. (in press), we expected reliable congruency 

effects mainly for reaction times and the pupil dilation measure. 
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Response frequency 

Overall, participants looked more often (64%) to the right than the left side, F(1,28) = 

9.00, p = .02, η2p = .19, but this time the effect did not interact with age. More importantly for 

our purposes, an ANOVA with congruency as within-subjects factor and MART as covariate did 

not reveal any effect, ps > .1. We conclude that, if infants do represent sequential actions at all, 

this does not seem to affect the probability to choose a particular sequence. 

Reaction times 

There were no reliable effects with regard to overall RT, p > .6, left vs. right response 

location, p>.3 (see Table 3), or inter-trial interval, p > .5 (which we analyzed because the test-

phase was self-paced). More importantly for our purpose an ANOVA with congruency as within-

subjects factor revealed a significant effect indicating 29ms-slower responses for trials with 

congruent cues, F(1,28) = 4.15, p = .05, η2p = .13; the interaction with age was not significant, 

p>.3. 

=== TABLE 2 === 

AGEGROUP 

SCORES 

Percentage 

completed 

test trials 

Percentage 

left 

responses 

Percentage 

congruent 

responses 

ITI 

ms 

RT 

ms 

RT 

Congruent 

ms 

RT 

Incongruent 

ms 

9-month-olds 
93.5 

(11) 

43.2 

(38) 

47.5 

(8) 

1637 

(323) 

431 

(90) 

440 

(104) 

424 

(91) 

12-month- 

olds 

96.5 

(10) 

29.0 

(21) 

49.3  

(7) 

1563 

(393) 

447 

(74) 

468 

(83) 

425 

(83) 

 

Table 2. Mean frequency and RT scores of test phase (standard deviation in brackets). 
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The main finding is that facing a cue of the final element of an action sequence interfered 

with executing the first. The fact that we find an effect at all can be considered as evidence that 

infants represented the entire action sequence in some coherent way. Thus it seems that 

repeatedly performing two consecutive actions is sufficient to integrate them into a coherent 

sequence representation even in infants. More specifically, infants apparently represent these 

action sequences in a format that allows for interactions between the codes of their individual 

elements (which excludes abstract or fully symbolic representational formats). Moreover, the 

direction of the effect does not support chaining or integrative theories of sequential action, as 

these would predict facilitation of earlier actions in a sequence by priming later actions. In 

contrast, our finding provides specific support for concurrent activation theories, as only these 

would predict interference.  

=== FIGURE 3 === 
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Figure 3. Mean reaction times (+SE) for 9-month-olds (N=14) and 12-month-olds (N = 

16) in congruent and incongruent test trials. 

 

Pupil dilation  

Pupillary responses were sorted according to congruency of the response and the 

stimulus- and response-locked time functions were averaged (Verschoor et al., in press). 

Segments were created, depending on the analysis, from 2000ms before the presentation of the 

sound or RT to 8000ms after, while allowing for overlapping segments. Following the method 
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used by Bradley et al. (2008), pupil-diameter measurement began after the initial pupil reflex 

caused by the fixation stimulus. Visual inspection showed the light reflex to end around 500ms 

after effect presentation (see Figure 4) (see also Verschoor et al., in press). To accommodate for 

the variable RTs across age groups and conditions, we considered both stimulus-locked and 

response-locked Task-Evoked Pupillary Responses (TEPR’s). Furthermore dilations were 

calculated as the percentage of dilation relative to the baseline to make the data more comparable 

across age groups. The percentage of trials rejected due to erroneous data points (leaving 29 

valid trials on average) did not differ across age groups, p > .8. 

The stimulus-locked analysis of pupil dilations for congruent and incongruent responses 

used a 500 ms pre-effect baseline (Beatty & Lucero-Wagoner, 2000). A repeated measures 

ANOVA on pupil dilations with congruency as within subjects factor revealed no a priori effects 

of congruency on baselines (-500 to 0 ms), p’s > .7. TEPRs in adults start from 200 to 300 ms 

after stimulus onset and peak around 1200 ms post-stimulus (Beatty & Lucero-Wagoner, 2000) 

in the range of 500ms to 2000ms (Beatty, 1982). We therefore calculated the mean pupil sizes 

for congruent and incongruent responses as the mean percentage of change from baseline to 500-

2000 ms post effect onset. An ANOVA with MART as covariate revealed that, overall, 

participants exhibited larger relative pupil dilations during congruent responses? F(1,27) = 4.12, 

p = .05, η2p = .13, and this effect was not modulated by age group (p > .7). Since the time 

window was based on adult findings and, thus, underestimates the pupillary reactions of the 

slower infants (Verschoor et al., in press), we reran the analysis with an extended time window 

of 1000-2500 ms post effect onset with the same baseline. Again, pupil dilations were 

significantly larger in congruent trials, F(1,25) = 5.03, p = .03, η2p = .16, and this effect was 

again independent of age, p > .09 (see Figure 4). 
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=== FIGURE 4 === 

 

Figure 4. Relative pupil sizes for congruent and incongruent responses to baseline, 

stimulus-locked. 

 

For the response-locked analysis, we calculated the percentage of dilation from a 700-ms 

time window starting at saccade onset, to the same 500-ms pre-stimulus baseline. An ANOVA 

with MART as covariate yielded a tendency for larger relative dilation in congruent trials, 

F(1,27) = 3.51, p =.07, η2p = .12, while the interaction with age group was again not significant, 

p > .8 (see Figure 5). Adding NOCAT as additional covariate resulted in a significant effect 

(F(1,26) = 5.48, p =.03, η2p = .17), again without an interaction with age group, p > .9. 

=== FIGURE 5 === 
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Figure 5. Relative pupil sizes for congruent and incongruent responses to baseline, 

response locked.   

 

The finding that relative pupil dilations were larger for congruent responses in both 

stimulus-locked and response-locked analyses corresponds nicely to the outcome of the RT 

analysis: Cuing the second component of an action sequence makes the execution of the first 

slower and more effortful. Both findings provide evidence for action-sequence representation in 

infants and fit with the predictions from concurrent-activation theories. 

Gaze position 

Our aim in the test phase was to prime the second element of the two-element sequences 

carried out in the acquisition phase by presenting the corresponding action effect. The three 

previous dependent measures (response frequency, reaction time, and pupil dilation) were taken 

to reflect the impact of this priming on the performance of left- and right-going saccades—the 

two first elements of the action sequences. All three measures thus tap into indirect priming 
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effects, effects induced by the spreading of activation from the primed second element to the 

associated first element. However, priming and activating the second elements of the sequences 

might also affect action planning directly and the effect on action planning could be modulated 

by the choice the participant makes during the trial (congruent vs. incongruent reaction). One of 

the second elements was an upward movement while the other was a downward movement. 

Priming these elements might thus induce a vertical bias: If presenting an action effect of the 

upward movement activated this element, this activation might induce an upward-going 

deviation from the horizontal midline; likewise, priming the downward movement might produce 

a downward-going deviation. But another scenario is possible: Activating the second of two 

elements might spread activation to the first, which then (because only horizontal movements 

were valid in the test phase) inhibits the vertical second element. This might induce the opposite 

bias—downward deviation when priming upward movements, and vice versa. 

To investigate these effects, we analyzed the mean vertical deviation from the horizontal 

midline toward the primed action element as a function of congruency. To do this we collapsed 

all vertical deviations from horizontal midline toward the direction cued to one side and divided 

the data segments into congruent and incongruent from stimulus onset to 650ms  thereafter 

(corresponding roughly to the mean RT plus mean random ITI) and compared these segments to 

a 150ms pre-effect baseline (the minimum fixation time before effect onset).  

There were no a priori effects of congruency on baselines, p > .5. An ANOVA with 

MART as covariate showed that during congruent responses gaze position deviated vertically 

significantly less toward the direction cued by the effect sound, F(1,27) = 4.83, p =.04, η2p = .15 

(effect size = 22 pixels; see Figure 6) than in incongruent responses, and this effect did not vary 

with age, p > .5. However, although we found a difference depending on congruency one cannot 
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distinguish between inhibitory processes or less activation unless the congruent responses (for 

which one may wrongly assume solely inhibition) were to deviate significantly away from the 

cued direction. To test this we conducted a t-test on the congruent responses to see if they 

significantly deviated away from the direction cued. This was not the case, t(29) = -1.64, p > .1 

(we also performed a similar analysis on the segment from 100ms to 200ms since the graph 

shows a mean deviation away from midline in the incongruent reactions but this was far from 

significant (p > .4)). In addition we performed an analysis irrespective of congruency on vertical 

deviation toward the cued direction and found no significant deviation (p > .4). 

=== FIGURE 6 === 

 

Figure 6. Vertical distance from midline toward cued direction of gaze position in pixels 

for congruent and incongruent responses. Time is 0, is the moment the effect starts. 
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Assuming that the vertical drifts reflect the amount of activation of the primed second 

action component, our finding suggests that priming results in inhibition of the primed 

component in congruent trials (as compared to incongruent trials)—inducing a bias away from 

the direction that this component represents. This might be due to competition between the 

activated components in congruent trials, as concurrent models would hold: activating the second 

component of a sequence might prime the associated first component up to a degree that induces 

the forward inhibition of the second. This finding provides further evidence for action-sequence 

representation in infants and fits with the predictions from concurrent-activation theories. 

 

GENERAL DISCUSSION 

The aim of the current study was to examine whether and how 9- and 12-month old 

infants represent first person sequential actions. We hypothesized that priming an action 

component later in the sequence by cueing its effect should affect the availability of action 

components earlier in the sequence. We indeed found converging effects on two different 

measures indicating that activating the second component of a sequence does have an effect on 

the activation of the first component of that sequence. Additionally we found an effect on gaze 

position indicating that action control inhibits the second component of an action sequence 

whilst preparing the first part of the sequence. These findings can be taken as evidence that 

infants are indeed able to represent first-person sequential actions. Our second major finding is 

that the effect of (priming) the second on the first component is inhibitory in nature, as indicated 

in RT’s and our pupillary measure. This finding is in agreement with the concurrent activation 

approach to sequential action (Estes, 1972) but not with integrative and chaining theories, which 

would have predicted a facilitatory effect instead. 
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Taken together, our observations suggest that cuing the second of two action components 

primes the corresponding action code, which leads to the inhibition of the first action component 

of the sequence. This slows down the initiation of this sequence, as indicated by the RT findings, 

and makes its execution more effortful, as suggested by the pupil data. It also biases action 

control away from the location implied in the second component, as implied by the gaze data, but 

this is insufficient to entirely prevent the corresponding action (as the frequency was unaffected). 

This means that our action prime had an impact on action control without dominating it 

altogether. Very interestingly, we had no evidence for any age effect in the relevant measures, 

suggesting that the underlying mechanisms are in place from rather early on. 

Even though we consider the present findings as a first step towards the understanding of 

sequential-action representation in infants, the details of the suggested scenario are not entirely 

clear yet. Concurrent activation models would suggest that the inhibition we observed is a 

necessary outcome of the priming effect. Concurrent activation induces competition between 

alternative codes which, given the capacity limitations of the cognitive system and/or the 

functional need of action control to focus on one process at a time, induces inhibition in all losers 

of the competition—the winner takes all. This would explain our present findings, but alternative 

versions of this scenario are possible. For instance, it could be that the inhibition of the first 

sequence components was due to temporal differences in the process of activating the individual 

action components on the one hand and of the overarching goal representation on the other. It is 

well documented that initiating more complex sequential actions takes longer than initiating 

simpler actions (Henry & Rogers, 1960; Rosenbaum, 1987). One could thus speculate that cuing 

the second action component activated the underlying representation quickly but it took much 

more time to also activate the overarching goal representation. The eventual activation of this 
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goal representation could have facilitated both components of the sequence (as proponents of 

integration theories might suggest), but that may have taken too long to be picked up by our 

measures. As a consequence, the inhibition that our findings point to may reflect an only initial 

state of an actually more dynamic action-planning process. Another possibility would be that 

cuing an action component that is not yet appropriate (as none of the secondary components was 

a valid action in the test phase) resulted in the inhibition of not only the first component but of 

the entire sequence, perhaps including the goal representation. We cannot exclude that the 

second component of each sequence was also inhibited—although the lack of bias “away” from 

the direction cued by the second component suggests that it was not. 

The current experiment was not set up to distinguish between these more detailed 

scenarios and more research will be necessary to fully understand the dynamics of action 

planning and infants. Nevertheless, our present findings demonstrate that young infants are able 

to construct action plans comprising of more than one element and to do so in a manner that puts 

the available elements into the right order. They also suggest that code competition and mutual 

inhibition are involved in the planning process. It seems essential to develop a more 

comprehensive theory of (the development of) sequential action representation, which would 

need to address how novel components are integrated into a sequential plan, how the sequencing 

is generated, and whether this requires hierarchical representations. We are confident that the 

present paradigm can be helpful in answering some of these questions, especially by introducing 

further modifications of the task (e.g., by cueing the first component and examine what effect 

this would have on the availability of the second). The paradigm might also help to increase our 

insight into general cognitive mechanisms underlying action planning, since saccade-effect 

learning is now well established (Huestegge & Kreutzfeldt, 2012; Herwig & Horstmann, 2011) 
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and as the paradigm provides various measures (frequency-, RT-, pupillary- and gaze position 

measures) that pick up different aspects of the planning process.  
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Figure 1. Models of sequential action. :Schematic representation of activation in A: 

Chaining models of sequential action, activation cascades forward thru the different elementary 

actions, B: Concurrent models of sequential action, all elementary actions are activated 

simultaniously where after competion thru inhibition ensures the correct order of execution, C: 

Integrated models of sequential action, the sequence of actions has been integrated into a new 

elementary action. 
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Figure 2. Acquisition trial.: Each trial starts with an intertrial interval of 500 ms. T1: A 

fixation dot is displayed at screen center. T2: After successful fixation, faces appear at either side 

of the screen where they started to pulsate. T3:  Depending on the saccade target, the face at the 

other side disappears and an effect sound is played for 200 ms. T4: Depending on which side was 

chosen the face moves up or down. Test trial. Each trial starts with an intertrial interval of 500 

ms. T1: A fixation dot is displayed at screen center. After succesful fixation one of the previous 

action effects is played. T2: The dot diasppears whereafter the same face appears on both sides. 

T3: The participant freely chooses where to saccade. 
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Figure 3. Mean reaction times (+SE) for 9-month-olds (N=14) and 12-month-olds (N = 

16) in congruent and incongruent test trials. 
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Figure 4. Relative pupil sizes for congruent and incongruent responses to baseline, 

stimulus-locked. 

 

Figure 5. Relative pupil sizes for congruent and incongruent responses to baseline, 

response locked.   
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Figure 6. Vertical distance from midline toward cued direction of gaze position in pixels 

for congruent and incongruent responses. Time is 0, is the moment the effect starts. 

 

AGE GROUP 

SCORES 

Percentage of 

completed 

acquisition 

trials 

Percentage of 

left responses 
RT in ms 

RT 

left 

RT 

right 
RT up 

RT 

down 

9-month-olds 
92.9 

(11) 

42.8  

(38) 

1007  

(81) 

999 

(107) 

1046 

(90) 

1008 

(116) 

1037 

(83) 

12-month-olds 
92.0 

(14) 

38.5 

(40) 

1023  

(83) 

1089 

(167) 

982 

(73) 

982 

(78) 

1089 

(164) 

 

Table 1. Mean scores of acquisition phase (standard deviation in brackets). 
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AGEGROUP 

SCORES 

Percentage 

completed 

test trials 

Percentage 

left 

responses 

Percentage 

congruent 

responses 

ITI 

ms 

RT 

ms 

RT 

Congruent 

ms 

RT 

Incongruent 

ms 

9-month-olds 
93.5 

(11) 

43.2 

(38) 

47.5 

(8) 

1637 

(323) 

431 

(90) 

440 

(104) 

424 

(91) 

12-month- 

olds 

96.5 

(10) 

29.0 

(21) 

49.3  

(7) 

1563 

(393) 

447 

(74) 

468 

(83) 

425 

(83) 

 

Table 2. Mean frequency and RT scores of test phase (standard deviation in brackets). 

 

 

 


