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Abstract 

Motion is represented by low-level signals, such as size-expansion in vision or loudness 

changes in the auditory modality. The visual and auditory signals from the same object or 

event may be integrated and facilitate detection. We explored behavioural and 

electrophysiological correlates of congruent and incongruent audio-visual depth motion in 

conditions where auditory level changes, visual expansion, and visual disparity cues were 

manipulated. In Experiment 1 participants discriminated auditory motion direction whilst 

viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more 

accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., 

difference between incongruent and congruent conditions) was larger for visual 3D cues 

compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during 

presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants 
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detected an infrequent deviant sound. Our main finding was that audio-visual congruity was 

affected by retinal disparity at an early processing stage (135 – 160 ms) over occipito-parietal 

scalp. Topographic analyses suggested that similar brain networks were activated for the 2D 

and 3D congruity effects, but that cortical responses were stronger in the 3D condition.  

Differences between congruent and incongruent conditions were observed between 140 – 200 

ms, 220 – 280 ms, and 350 – 500 ms after stimulus onset.  

 

Introduction 

Approaching (or ‘looming’) objects, which often necessitate immediate action to avoid 

collision or escape predation, can be represented in both the visual and auditory modalities. 

Vision and hearing use different mechanisms to detect motion in the depth plane; vision relies 

on cues such as retinal expansion and binocular disparity, whereas the auditory system 

utilises intensity changes (Bach, Neuhoff, Perrig, & Seifritz, 2009; Regan & Gray, 2000). It is 

well known that the integration of sensory cues is governed by several basic principles, 

including the requirement for spatial and temporal congruence (Stein & Meredith, 1993; 

Meyer et al., 2005). These basic principles are also evident at a behavioural level; for 

example (Meyer and Wuerger, 2001). Cappe, Thut, Romei, and Murray (2009) showed that 

reaction times to looming objects are reduced by combining information from the visual and 

auditory modalities.  

For unimodal visual and auditory stimuli, there is a specific processing bias that causes 

looming cues to be perceived as more salient than receding cues (e.g. Bach et al., 2009; 

Franconeri & Simons, 2003). This bias has been explained in evolutionary terms, with clear 

adaptive advantages for the processing of looming stimuli associated with collision avoidance 

and escape from predation (Franconeri & Simons, 2003). The processing bias for looming 
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signals has also been demonstrated for multisensory cues, where multisensory motion 

detection was faster and more accurate for congruent, multisensory looming cues, compared 

to receding, incongruent or unimodal signals (Cappe, Thut, Romei, & Murray, 2009). 

Moreover, Harrison (2012) reported that the looming bias extended to the phenomenon of 

dynamic visual capture, in that the visual ‘capture’ of auditory motion direction was stronger 

for looming than receding stimuli, as measured by the accuracy of motion direction 

discrimination for tones.  

Typically, experiments investigating motion in the depth plane have used linearly expanding 

geometric objects to induce the perception of visual motion in depth (e.g. Cappe, Thut, 

Romei & Murray, 2009; Harrison, 2012).  It is an open question whether binocular disparity 

cues also convey reliable information about motion in depth. González, Allison, Ono, and 

Vinnikov (2010) argue that changes in relative disparity and vergence, elicited by changing 

disparity, are effective cues to motion in depth, while Erkelens and Collewijn (1985) and 

Regan, Erkelins, and Collewijn (1986) argue that vergence changes alone do not induce a 

sensation of motion in depth. Ogawa and Macaluso (2013) found that the addition of stereo 

(3D) depth cues did not influence discrimination of audio motion consistent with arguments 

for the limited importance of binocular disparity in collision avoidance (Regan & Gray, 

2000). Despite this, in the same study (Ogawa & Macaluso, 2013), fMRI revealed enhanced 

activation in region V3 as well as increased connectivity to auditory cortex for audio-

congruent, stereo-looming motion, consistent with depth cues being used in audio-visual 

motion integration. This is consistent with recent neuroimaging data providing evidence for 

the integration of binocular disparity and relative motion cues in the dorsal visual area V3B 

(Ban, Preston, Meeson, & Welchman, 2012).  

In light of these inconsistencies, the impact of disparity on dynamic visual capture merits 

further investigation, in particular in relation to the timing of neural activation in response to 
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audio-visual 3D cues. Event-related potentials (ERPs) are ideal measures to assess the timing 

of neural processes, given their temporal resolution on the scale of milliseconds, and the 

latencies of neural correlates of multisensory mechanisms have been investigated in 

numerous ERP studies.  

In the current ERP study, we compare bimodal signals that differ in terms of their directional 

congruity: that is signals that both travel in the same direction (congruent condition), or in 

opposite directions (incongruent condition) to investigate the specific neural mechanisms 

involved in the multisensory processing of dynamic depth cues.  

Enhanced negative EEG amplitudes have been reported for congruent AV stimuli occurring 

at latencies of around 250ms over temporal and fronto-central regions (Bonath et al., 2007; 

Busse, Roberts, Crist, & Weissman, 2005; Proctor & Meyer, 2011). Selective responses for 

incongruent audio-visual stimuli have also been reported at latencies beyond 300 ms (e.g., 

Zimmer, Itthipanyanan, Grent-’t-Jong, & Woldorff, 2010; Proctor & Meyer, 2011), and may 

reflect an N400-like effect (Kutas & Hillyard, 1989; Diaconescu, Alain, & McIntosh, 2011; 

Szűcs & Soltész, 2007). 

The above studies have generally used stationary cues; less is known about the timing of 

neural processing involved in the multisensory perception of dynamic cues, and in particular 

about the timing of neural processes related to the processing of audio-visual motion in depth. 

Cappe, Thelen, Romei, Thut, & Murray (2012) investigated the timing of neural responses to 

audio-visual depth motion cues using ERPs, and found interactions starting around 75 ms for 

audio-visual looming conditions. However, Cappe et al. (2012) used only two-dimensional 

cues and so did not assess the effect of stereo disparity in their study.   

The current research aims to investigate behavioural responses (Experiment 1) and the time-

course of neural activity (Experiment 2) related to the perception of audio-visual motion in 
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depth, and in particular whether the perception of audio-visual motion in depth is affected by 

stereo disparity of the visual signals. Both experiments compare congruent (i.e., both signals 

moving in the same direction) and incongruent (i.e., signals moving in opposite directions) 

audio-visual cues.  

In Experiment 1 participants discriminated looming from receding apparent auditory motion 

signals while simultaneously observing task-irrelevant, directionally congruent and 

incongruent, looming and receding, 2D (visual expansion) and 3D (visual expansion and 

disparity/vergence cues) visual stimuli. We predicted that auditory motion discrimination 

would be faster and more accurate for congruent rather than incongruent AV conditions and 

that this effect would be mediated by motion depth direction and the presence of disparity 

cues. Specifically, it was expected that responses associated with looming visual cues would 

be faster and more accurate than receding. For disparity, assuming a stronger signal as 

evidenced by enhanced activation for congruent 3D cues (Ogawa & Macaluso, 2013), it was 

expected that increased speed and accuracy would be associated with 3D relative to 

expanding 2D visual signals. 

Experiment 2 aimed to explore the timing of crossmodal neural mechanisms related to the 

perception of audio-visual motion in depth, and in particular how stereo disparity modulated 

the ERP responses. An oddball task was employed where participants detected an infrequent 

deviant sound.  Only ERPs to the frequent signals were analysed, so that the 

electrophysiological results would not be confounded by motor-related neural activity. We 

expected to observe early (i.e., < 200 ms) effects of directional congruence and stereo 

disparity over posterior scalp, and at later stages of processing, enhanced negativity for 

incongruent compared to congruent stimuli reflecting conflict between opposing motion 

directions.  
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 Experiment 1: Behavioural Responses  

Methods 

Participants  

Thirteen participants took part in this experiment (4 male; mean age = 26.9 years; SD = 7.3). 

All were staff or students at the University of Liverpool. All participants reported normal or 

corrected-to-normal vision and normal hearing. All had a stereo acuity threshold better than 

100 arcsec, with mean acuity at 45.38 (SD = 11.26) arcsec; comparable to population normal 

means (Kim, Yang, Kin, Lee & Hwang, 2011), as measured by a Stereo Fly test, SO-001 

(Stereo-Optical, 2007). 

Stimuli, materials and apparatus 

Visual Stimuli 

A selection of nine easily recognisable images of objects was taken from a database of 209 

stimulus images, courtesy of Michael J. Tarr, http://www.tarrlab.org/. Images were similar in 

size, resolution (450 x 450 pixels) and orientation (30 degree x-axis rotation) and were 

inserted onto a blue-white textured background (‘hockey-ice.jpg’, from 

www.psdgraphics.com). 
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Fig. 1. Schematic illustrating the eight conditions of both experiments. Congruence was 

manipulated by presenting directionally matched or mismatched audio-visual combinations. 

All size and intensity changes were at 15%, started from 100 cm viewing distance and 

changed over 500ms.  

Apparent depth motion was induced by changing the size of objects by 15%. Motion always 

started at 100 cm viewing distance (the plane of the monitor) and was linear over a duration 

of 500 ms. Stereo disparity was generated by interleaving horizontally alternative pixels at 

disparities corresponding to viewing distance changes of 15% from the start point (1000 mm) 

for 3D stereo. The background image had a constant disparity of 52mm (infinity). For the 2D 

condition the ‘left and right image’ was identical. At the signal onset visual images extended 
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over 20 deg (horizontal) and 11 deg (vertical) visual angle while the monitor extended over 

28.5 deg (horizontal) and 15.8 deg (vertical) visual angle. 

Auditory Stimuli 

The amplitude of broadband (white) noise signals was modulated to correspond to the size 

change of visual stimuli (15%). The size change used in all experiments was selected on the 

basis of a preliminary threshold detection experiment: 23 participants completed a 2-forced 

choice discrimination task for looming and receding broadband noise, corresponding to 

distance changes of between 5% and 40%. A 15% intensity change reflected average 

accuracy scores of approximately 75% for looming and 65% for receding signals. 

Audio-visual stimuli 

AV pairings, overlaid using video editing software, were quasi-randomly interleaved in a 

block of 216 trials (27 per condition); all clips were 0.5s duration.  A fixation frame of 3.5s 

preceded trials, which began with an animation of 0.5s in which a blue cross of 110 x 90 

pixels loomed or receded by 15%, then held stationary for 3s at 1000mm in order to 

normalise vergence eye movements (Figure 2). The cross was blue on the same ‘hockey-ice’ 

background as objects. A practice block was constructed containing twelve AV trials and 

fixation animations.
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Fig. 2. Schematic illustrating vergence normalisation for a visual receding to looming trial. 

Times in rectangular parenthesis represent jittered lengths used in Experiment 2.  

 

Apparatus 

Dichotic AV movies were presented in a darkened sound-proof booth, on a 23 inch passive 

3D monitor (LG D2342P) at 1.0 m viewing distance. Auditory signals, peak amplitude 

70dB(A) at the listener’s position, were  played through loudspeakers placed directly 

underneath the monitor. Plastic polarising glasses were worn throughout.  

Audio Training Task 

An audio training task was completed prior to the main experiment to familiarise participants 

to audio depth-motion discrimination. This involved a two-forced choice task, with feedback, 

for discrimination of looming and receding sounds. The training was run in Psychopy 

(Version 1.73; see Peirce, 2007), on a laptop computer, with sounds received via headset, 

peaking at 70 dB(A).  

Results 

Reaction times and accuracy scores were analysed separately in 2 (trial-block) x 2 (visual 

motion) x 2 (congruence) x 2 (disparity) repeated measures analyses of variance (ANOVAs). 

Overall trial-block results will be described first to assess practice effects, followed by results 

for response latencies and then accuracy. Responses across conditions in block two were 

significantly faster (1084.21 [±115.47 SD] ms) than block one (1178.47 [±104.48 SD] ms; 

F(1, 12) = 4.961, p = 0.05). There was no difference in accuracy between block one (67.45 

[±3.50 SE]) and block two (66.99 [±3.30 SE]), (F(1,12) = .02, p = .69), see tables 1 and 2 for 

detailed descriptive and inferential statistics.  
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Response latencies in congruent trials were significantly shorter (1055.47 [±105.83 SE] ms) 

than incongruent (1207.22 [±113.41 SE] ms) trials, (F(1, 12) = 16.18, p = 0.002). No 

significant interactions were observed, counter to predictions for response times relating to 

modulation of congruence by either motion or disparity cues.  

Table 1. Mean and standard error (SE) of motion discrimination accuracy (% correct) and 

reaction times (ms) for looming and receding, 2D and 3D, congruent and incongruent 

conditions.  

 

 

 

 

 

 

 Condition Mean % correct  

(±SE) 

Mean RT (ms) (±SE) 

C
o
n
g
ru

en
t 

Looming 2D (VLAL) 82.48 (2.36) 1037 (114.6) 

Looming 3D (VLAL) 82.69 (2.33) 1063 (104.8) 

Receding 2D (VRAR) 84.76 (2.78) 1064 (110.3) 

Receding 3D (VRAR) 80.62 (2.74) 1057 (101.9) 

In
co

n
g
ru

en
t 

Visual Looming 2D (VLAR) 49.58 (4.99) 1168 (108.6) 

Visual Looming 3D (VLAR) 47.01 (5.23) 1214 (114.4) 

Visual Receding 2D (VRAL) 59.54 (5.52)  1202 (115.6) 

Visual Receding 3D (VRAL) 56.55 (5.57) 1245 (123.5) 
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Accuracy of motion discrimination was significantly higher for congruent (82.63 [±2.26 SE] 

%) relative to incongruent (53.17% [±5.07 SE] conditions (F(1, 12) = 47.05, p < 0.001). The 

effect of congruence on accuracy was modulated by motion direction (F(1,12) = 4.56, p = 

0.05). Simple effects of congruence on accuracy were significant for both looming (F(1,12) = 

43.05, p < 0.0001) and receding visual motion (F(1,12) = 15.85, p = 0.002).  We subtracted 

accuracy rates in incongruent conditions from accuracy rates in congruent conditions to 

obtain a measure of the congruency effect. We found marginally significant enhanced 

accuracy for congruent (35.33 % [±5.38 SE]) over incongruent (20.87 % [±5.24 SE]) 

conditions in looming relative to receding motion conditions (t(12) = 2.14, p = 0.054).  

The effect of congruence on accuracy was also found to be modulated by disparity of the 

visual stimuli (F(1,12) = 13.37, p = 0.003). Both 2D and 3D were associated with significant 

simple effects of congruence (2D: F(1,12) = 40.19, p < 0.001 and 3D: F(1,12 = 50.73, p < 

0.001) but there was a significantly larger congruency effect (congruent minus incongruent) 

for 3D (30.91 % [±4.34 SE]) relative to 2D (25.28 % [±3.99 SE]) conditions (t(12) = 3.66, p = 

0.003).  

Table 2: summary inferential statistics for reaction time and accuracy ANOVA analyses 

Value 
 

Reaction Times Accuracy 

F(1,12) Sig. F(1,12) Sig. 

trial_block  (1 vs 2) 4.951 .046 .164 .692 

visual_motion (looming vs receding) 1.766 .209 1.835 .200 

Congruence (congruent vs incongruent) 16.186 .002 47.052 .000 
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Disparity (2D vs 3D) 3.689 .079 .001 .972 

trial_block * visual_motion 1.578 .233 .740 .407 

trial_block * congruence .038 .848 6.787 .023 

visual_motion * congruence .633 .442 4.560 .054 

trial_block * visual_motion * congruence .260 .619 .047 .831 

trial_block * disparity .231 .639 1.187 .297 

visual_motion * disparity .252 .625 .021 .886 

trial_block * visual_motion * disparity 1.587 .232 7.634 .017 

congruence * disparity .230 .640 13.369 .003 

trial_block * congruence * disparity .615 .448 .475 .504 

visual_motion * congruence * disparity .392 .543 .073 .791 

trial_block * visual_motion * congruence * disparity .122 .733 3.217 .098 

 

Experiment 2: Event-related potentials 

 

Methods 

Participants 

Fourteen participants took part in this study (3 male, mean age 24 years 5 months ±SD 4 

years, 4 months). Data from one participant was unusable due to equipment failure and two 

further participants were excluded due to excessive electrode impedances.   

Stimuli, materials and apparatus 

Visual stimuli 

All images were identical to those used in Experiment 1.  

Auditory stimuli 
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For the eight experimental conditions auditory tones were identical to those in Experiment 1 

(see Figure 1). Deviant trials were broadband noises with an intensity change of either ± 65% 

as opposed to the 15% change used in all other trials. All other parameters (e.g. duration, 

frequency range) were the same. 

 

Audio-visual stimuli 

The movie sequence was identical to Experiment 1 with two exceptions. First, audio clips in 

approximately 11% of trials were substituted with the deviant looming or receding sound. 

Second, fixation frame durations were quasi-randomly jittered at lengths of 2.6, 2.8, 3.1 and 

3.4 s to limit anticipatory ERPs (the normalising vergence animation was maintained at 0.5 

s). A practice movie with 12 trials including two deviant trials was created. 

 

Procedure 

Participants were required to press a button on a response pad when they identified the 

deviant sound. All participants received an initial training session of 12 trials to ensure they 

understood the task and could identify the deviant stimuli. The main experiment was then run 

as three blocks of 216 trials.  

EEG data acquisition 

EEG data was recorded from 64 electrodes using a BioSemi Active Two system (BioSemi, 

Amsterdam, Netherlands). Electrodes were placed according to the extended 10–20 system 

(Nuwer et al., 1998). Four additional leads were placed above and below the left eye and on 

the outer canthi of the left and right eyes, to record the vertical and horizontal 

electrooculogram (VEOG and HEOG, respectively). EEG signals from all channels were 
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acquired with respect to the common mode sense (CMS) electrode at a sampling rate of 

512Hz.  

 ERP Analysis 

The continuous EEG was divided into epochs offline, starting 100 ms prior to stimulus onset 

and ending 600 ms post-stimulus onset. The averages were digitally filtered (second-order 

zero-phase-lag bandpass filter, 1 – 25 Hz). ERP amplitudes were aligned to a 100 ms pre-

stimulus baseline period. ERPs were averaged according to audio-visual stimulus condition to 

produce eight ERPs per participant (see Figure 1).  

EEG artefacts were rejected using the SCADS procedure with standard parameters 

(Junghöfer, Elbert, Tucker, & Rockstroh, 2000). This procedure initially detects artefacts for 

individual channels, then recomputes the data against the average reference and then detects 

global artefacts. Epochs that contained more than 10 unreliable sensors were excluded from 

analysis on the basis of the distribution of their amplitude, standard deviation and gradient. 

For the remaining epochs data from artefact-contaminated sensors was replaced by a 

statistically weighted spherical interpolation using all channels. With respect to the spatial 

distribution of the approximated electrodes, it was ensured that the rejected channels were not 

localised within one region of the scalp, because this would make interpolation for this area 

invalid. The standard deviation of the spherical splines used for approximation was computed 

for each epoch, and epochs containing outliers in this distribution were rejected. Across all 

participants and all conditions the procedure rejected an average of 30.1 % epochs as 

contaminated. 

Statistical Analysis of ERPs 
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Fig. 3. Global field power (GFP) for grand averaged waveforms, averaged across all stimulus 

conditions. Analysis windows for repeated measures ANOVA are marked in grey.  

In the first phase of analysis, ERPs were analysed during four time windows corresponding to 

the major peaks of the global field power (GFP) distribution (Figure 3), which also coincide 

with time-points previously identified as relevant in the review above. In each time window, 

amplitudes were averaged in two clusters composed of adjacent electrodes. Bilateral electrode 

clusters were selected to cover the area of maximal amplitude, as revealed by topographical 

mapping.  
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Fig. 4. Top view of electrode positions showing the 64 EEG channels with the 

four clusters used in the analysis highlighted.  

The first major peak of the GFP occurred around 110ms post-stimulus onset and activity was 

maximal over bilateral occipito-parietal cortex, which closely corresponds to the latency and 

scalp topography of the visual P1 component (e.g., Di Russo, Martinez, Sereno, Pitzalis, & 

Hillyard, 2002). Amplitudes were calculated between 80 – 140 ms at left (electrodes: PO3, 

PO7, P3, P5) and right (electrodes: PO4, PO8, P4, P6) occipito-parietal clusters (see Figure 4). 

The second GFP peak occurred at around 170 ms post-stimulus, and was maximal over bilateral 

occipito-parietal electrodes, corresponding to the visual N1 component (e.g., Clark, Fan, & 

Hillyard, 1995; Vogel & Luck, 2000). Amplitudes were derived between 140 – 200 ms at the 

same occipito-parietal electrodes clusters as described for the visual P1 component. Between 

220 – 280 ms (the third peak in the GFP, with a peak latency of around 250 ms), analysis 
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focussed on frontal cortex (left cluster: electrodes FC3, F1, F3, F5, AF3, FP1; right cluster: 

FC4, F2, F4, F6, AF4, FP2), where the voltages were greatest. Peak amplitudes within each of 

the three time windows were analysed using repeated measures ANOVAs with the factors 

‘disparity’ (2D, 3D), ‘congruence’ (congruent, incongruent), ‘visual motion direction’ 

(looming, receding), and ‘scalp laterality’ (left, right). For the fourth GFP peak at around 400 

ms, ERPs were analysed at frontal electrodes during a longer time window between 350 – 500 

ms, as the GFP wave exhibited a flatter profile at this latency. Mean amplitudes within this 

time window were analysed using a repeated measures ANOVA with the same four factors as 

for the first three peaks.  

Effects of retinal disparity on audio-visual motion congruity  

In this analysis phase, a more exploratory approach was adopted to investigate ERP waveforms 

and topographies in relation to effects of retinal disparity on the audio-visual motion congruity 

effect.  

Firstly, a mass univariate analysis approach (e.g., Groppe, Urbach, & Kutas, 2011) was 

employed where all 64 electrodes were included in the statistical analysis for the full 500 ms 

following stimulus onset, to give a complete representation of differences between conditions 

with no a-priori assumptions about effect locations or latencies. This approach has been widely 

used in the literature on multisensory processing (see e.g., Besle et al., 2004; Giard & Peronnet, 

1999; Meyer, Harrison, & Wuerger, 2013; Molholm et al., 2002; Vroomen & Stekelenburg, 

2009). Specifically, we compared the congruity effect difference wave for 2D versus 3D 

presentation: 

 D = (VLAR + VRAL) – (VLAL + VRAR) 

where V and A are visual and auditory motion in the looming (L) and receding (R) direction.      
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It is important to note that both sides of the difference wave contain exactly the same stimuli 

(VL , AL , VR , and AR ) and that only the directional congruence between the signals was 

manipulated.  We corrected for Type 1 error due to multiple comparisons by using the 

Guthrie and Buchwald (1991) procedure, where significance was defined as at least 12 

consecutive time-points at a p < .05 level, at more than one adjacent electrode location.  

Global topographic ERP analysis of retinal disparity and audio-visual motion congruity 

In addition to the traditional ERP analysis we also performed analyses on two global 

variables, that is, the global field power (GFP) and the global dissimilarity (DISS) (Lehmann 

& Skrandies, 1980; Murray, Brunet, & Michel, 2008).  The global topographic ERP pattern 

analyses represent a data-driven approach that aimed to assess response strength and 

topographic differences between the congruity effects for 2D and 3D viewing conditions.  

Electric field strength analysis 

 To investigate the strength of the cortical response of the congruity effect in the 2D and 3D 

conditions we used the reference-independent Global Field Power (GFP, Lehmann & 

Skrandies, 1980; also see Fig. 3) measure. GFP is a measure of the scalp electric field 

strength, calculated as the standard deviation across all electrodes at a particular time point 

(Murray et al., 2008),  and can be used to assess differences in the electric field strength of 

the EEG signal between conditions (Lehmann & Skrandies, 1980). To test for differences in 

electrical field strength between the 2D and 3D congruity conditions at successive time-

points, a non-parametric randomization test was conducted on the GFP between the 2D and 

3D congruity conditions (Koenig, Kottlow, Stein, Melie-García, 2011). The GFP was the 

dependent variable in the randomization-based analysis, calculated from the mean ERPs of 

the 2D and 3D congruity effects for each participant. To control for multiple comparisons in 

the randomization-based analysis (and in the TANOVA analysis reported below), we 
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considered as significant an alpha level of p less than 0.05 at at least three consecutive time 

points (c.f., Maurer, Rossion, & McCandliss, 2008). The joint probability of p < 0.05 at three 

successive time points (0.05 × 0.05 × 0.05) exceeds the Bonferroni corrected threshold of p < 

0.05 across the 307 time points tested in the randomization test (0.05/307). 

GFP latency analysis 

To test for latency shifts in the strength of the cortical response as indexed by the GFP, peak 

latencies were analysed on GFP values over all electrodes (Hauk & Pulvermuller, 2005). 

Peak latencies were determined in each condition for each subject, and the peak latency was 

defined as the time point at which the GFP reached a maximum within the 100 – 160 ms time 

window. These values were compared for 2D and 3D congruency effects using a two-tailed 

paired t-test.  

Electric field topography analysis 

Here we tested for topographic differences of the scalp field map between the 2D and 3D 

congruity effects, independent of the strength of the response (i.e., independent of the GFP). 

Topographic differences independent of GFP can be quantified using a measure known as 

global dissimilarity (DISS) (Lehmann & Skrandies, 1980; Murray, Brunet, & Michel, 2008). 

After first normalized the ERP data by GFP at each time point, the square root of the mean of 

the squared differences between the normalized scalp fields at each time point was 

statistically analysed by a so-called topographic ANOVA (TANOVA) randomization test 

(Murray, Brunet, & Michel, 2008). The topographic maps of single participants were 

randomly reassigned to either the 2D or 3D congruity effect condition, and the global 

dissimilarity (DISS) index for the randomly permutated data was compared at each time point 

with the global dissimilarity index of the actual conditions. A randomisation test with 2000 
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runs was conducted using customised scripts in MATLAB, and corrections for multiple 

comparisons were the same as described above for the GFP randomisation test.  

 

Results 

Behavioural: Deviant trial detection task 

For the EEG experiment an irrelevant ‘oddball’ task was employed to promote attention to 

the experimental stimuli while minimising manual responses. The task involved detection of 

a deviant looming or receding sound, quasi-randomly interspersed across trials. Participants 

correctly identified 77% of the target signals (chance performance level = 11%), while false 

positives responses were given in only 0.06% of trials. The data confirms that participants 

attended to the stimuli and that the task difficulty was acceptable.  

 ERPs 

Grand averaged waveforms showed a typical series of components for audio-visual 

potentials, consisting of a summation of visual and auditory responses (Meyer, Harrison & 

Wuerger, 2013; Proctor & Meyer, 2012).  

80- 140 ms (Visual P1)  

ERP amplitude was maximal over bilateral occipito-parietal cortex at around 110 ms post-

stimulus, corresponding to the latency and scalp topography of the visual P1 component. 

Peak amplitude between 80 – 140 ms was analysed at left (electrodes: PO3, PO7, P3, P5) and 

right (electrodes: PO4, PO8, P4, P6) occipito-parietal clusters. A four-way repeated measures 

ANOVA with factors Congruency, Motion Direction, Disparity, and Laterality revealed no 

significant main effects or interactions (all ps >.21).  
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140 – 200 ms (Visual N1) 

 

Fig. 5. A) The left occipito-parietal electrode cluster amplitude for the congruent condition 

was more negative than incongruent between 140 – 200 ms. B) Scalp maps show that 

activation at 170 ms is maximal over bilateral extrastriate visual areas. Red lines indicate 

positive amplitude, black lines indicate negative amplitude.  

 

At around 170 ms, ERP amplitude was maximal over bilateral occipito-parietal cortex, 

corresponding to the latency and scalp topography of the visual N1 component (see Figure 5). 
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Between 140 – 200 ms peak amplitudes were calculated at the same occipito-parietal 

electrodes clusters as for the visual P1 component. A four-way repeated measures ANOVA 

revealed a significant interaction between congruency and laterality (F(1,10) = 7.68, p = 

0.020). Post-hoc paired t-tests found a significant difference between congruent and 

incongruent presentation over left occipito-parietal cortex, where congruent amplitudes were 

more negative than incongruent (t (10) = 2.657, p = 0.024; mean amplitude for congruent = -

2.88, SD = 1.68; mean amplitude for incongruent = -2.48, SD = 1.44). There was no 

difference over right occipito-parietal cortex (t (10) = 0.368, p = 0.721). The four-way 

repeated measures ANOVA also revealed a significant main effect of disparity (F(1,10) = 

6.02, p = 0.034) where the amplitude was more negative for 2D compared to 3D presentation. 

220 – 280 ms (N2) 
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Fig.  6. A) The amplitude for the incongruent condition was more negative than for the 

congruent condition over both frontal electrode clusters between 220 – 280 ms. B) At 250 ms 

the greatest activity is over frontal scalp.   

 

At around 250 ms post-stimulus, there was a large negative deflection over frontal leads (see 

Figure 6). Activity at this latency and topography most likely corresponds to the N2 

component, which is thought to be related to conflict monitoring processes (Folstein & Van 
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Petten, 2008). Mean amplitudes between 220 – 280 ms at electrode clusters over left 

(electrodes  FC3, F1, F3, F5, AF3, FP1) and right (electrodes  FC4, F2, F4, F6, AF4, FP2) 

frontal scalp were submitted to a four way repeated measures ANOVA. We observed a main 

effect of congruency (F(1,10) = 6.13, p = .033), where incongruent amplitudes were more 

negative than congruent amplitudes.  

350 – 500 ms (N400) 
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Fig.  7. A) The amplitude for incongruent is more negative than congruent between 350 – 500 

ms over both frontal electrode clusters. B) At 400 ms the greatest activity is over right frontal 

scalp 

 

Between around 350 – 500 ms post-stimulus there was a negative deflection which was 

maximal over frontal electrodes. Left and right frontal electrode clusters comprising the same 

electrodes as for the N2 component described above were subjected to a four way repeated-

measures ANOVA, which  revealed a significant main effect of congruence (F(1,10) = 15.50, 

p = 0.003), where incongruent amplitudes were more negative than congruent amplitudes (see 

Figure 7). This main effect was moderated by a marginally significant three-way interaction 

between congruency, looming and laterality (F (1,10) = 4.49, p = 0.06). A simple interaction 

effects analysis was conducted using a two-way ANOVA with factors congruency and region 

at each level of the factor looming, and this revealed a significant interaction between 

congruency and region for looming signals (F(1,10) = 5.91, p = 0.03), and post-hoc paired t-

tests showed that  amplitudes were more negative (t(10) = 2.277, p = 0.046) in the 

incongruent (mean = -.79, SD = .99) compared to congruent (mean = -0.40, SD = .61) 

condition for the frontal right region, but not for the frontal left region (t(10) = 0.14, p = 

0.888). There were no main effects or interactions for receding signals (all ps > .3). 

Effects of retinal disparity on audio-visual motion congruity  

In this analysis step, data-driven approaches were used to investigate ERPs waveforms and 

scalp topographies in relation to retinal disparity cues. The aim of this comparison was to 

evaluate the effect of retinal disparity on the audio-visual motion congruity effect (i.e., 

discrepancy between congruent and incongruent conditions). We contrasted the 2D 

congruency difference wave (i.e., 2D incongruent minus 2D congruent) with the 3D 
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congruency difference wave (i.e., 3D incongruent minus 3D congruent), to assess whether the 

congruity effect was stronger in 3D or 2D.  

Firstly we used a mass-univariate analysis to statistically compare (using paired t-tests at each 

time-point) the 2D and the 3D congruency difference waves (see Fig. 8a & c). The 

comparison clearly showed that the congruency effect was modulated by disparity (2D vs. 

3D) between 135 to 160 ms after stimulus onset, over right occipito-parietal scalp (see Fig. 

8b & d). The congruity effect was stronger in 3D presentation than 2D presentation, and the 

results indicate that retinal disparity cues affected the congruity effect at a perceptual stage of 

processing.  
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Fig. 8. Results of the ERP and topographic analyses of the 2D versus 3D congruity effects. 

(a) Significant p-values for all 64 electrodes showing differences in congruency effects (i.e., 

incongruent minus congruent) between 2D and 3D presentation. Bold lines indicate periods 

of significant p-values after correction for multiple comparisons (Guthrie & Buchwald, 

1991). Significant differences between 2D and 3D presentation emerged between 135 – 160 

ms after stimulus onset. Electrode locations are plotted on the y-axis, and time following 

stimulus onset on the x-axis. (b) A scalp plot of the locations of the significant differences in 

congruity effect between 2D and 3D at 150 ms, showing that the congruity effects differed 

over right occipito-parietal scalp. (c) Plot of the 2D (dashed line) and 3D (solid line) 

congruency difference waves, showing that the congruity effect was stronger in 3D than 2D 

between 135 – 160 ms post-stimulus. (d) Scalp plot of the 3D – 2D congruity effect at 150 ms. 

(e) Cortical response strength as indexed by global field power (GFP) is plotted for the 2D 

(dashed line) and 3D (solid line) congruency difference waveforms. (f) Statistical results of 

the time point-by time point randomisation test for GFP differences between 2D and 3D 

congruity effects. Significant differences were observed between 142 – 158 ms after stimulus 

onset. g) Results of the TANOVA analysis, which indicated an absence of topographic 

differences between 2D and 3D congruity effects.   

 

Next we conducted a global topographic ERP analysis to assess the effects of retinal disparity 

on the audio-visual motion congruity effect in relation to cortical response strength and scalp 

distribution. The effects of 2D and 3D presentation on the cortical strength of the congruity 

effects as measured by the GFP were analysed using a statistical randomization test (Koenig, 

Kottlow, Stein, Melie-García, 2011) for latencies between 0 – 500 ms after stimulus onset. 

The difference between 2D and 3D response strength (GFP) reached significance between 
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142 – 158 ms (see Fig. 8f), where response strength was greater for 3D compared to 2D 

presentation.  

A time-point by time-point TANOVA (Murray, Brunet, & Michel, 2008) was conducted to 

evaluate whether there were systematic differences in scalp topography, independent of 

response magnitude, between 2D and 3D congruity conditions. Results of the randomisation 

test are presented in Fig. 8g, where it can be seen that there was no evidence of statistically 

significant topographic differences between 2D and 3D congruity effects. GFP differences in 

the absence of topographic modulations are most parsimoniously interpreted as differential 

activation strength of a common brain network (Murray et al., 2008). 

Lastly, we tested whether the modulation of response strength (as represented by GFP) 

between 2D and 3D congruity effects was related to latency differences in GFP peaks 

between 100 – 160 ms (see Fig. 8e). We found no evidence of GFP latency shifts (t(10) = 

0.766, p = .462; 2D peak latency: mean = 131.89 ms, SD = 22.44; 3D peak latency: mean = 

140.41 ms, SD = 19.85). 

General discussion  

We investigated the effect of the directional congruence of audio-visual stimuli on the 

perception of motion in depth, and the modulation of this effect by motion direction and the 

retinal disparity of the visual cues. In Experiment 1, we found enhanced speed and accuracy 

for auditory motion detection in congruent relative to incongruent audio-visual trials. 

Importantly, response accuracy was mediated by visual motion direction and stereo disparity. 

In Experiment 2, we used ERPs to assess the time-course of differences between congruent 

and incongruent audio-visual motion directions. Our main finding from Experiment 2 was 

that the congruity effect (difference between incongruent and congruent conditions) was 

affected by retinal disparity at an early processing stage (135 – 160 ms), where 3D 
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presentation showed an enhanced congruity effect compared to 2D presentation. Global 

topographic analyses sshow that the cortical response strength was enhanced in the 3D 

compared to the 2D congruity effect, but that the scalp topographies did not differ between 

these conditions. Differences between directionally congruent and incongruent audio-visual 

stimuli also emerged between 140 – 200 ms, 220 – 280 ms, and 350 – 500 ms, reflecting a 

series of stages when neural processing related to audio-visual motion in the depth plane is 

accomplished. 

Together, the results of Experiment 1 are in line with studies showing visual modulation of 

audio motion in depth perception (Harrison, 2012; Jain et al., 2008). Similarly, enhanced 

behavioural responses for looming visual stimuli have previously been reported in unimodal 

(Ball & Tronick, 1971; Schiff et al., 1962) and multimodal (Cappé et al., 2009; Harrison, 

2012) paradigms, and have been interpreted to be a result of the adaptive salience of 

approaching objects. The reaction times we observed were significantly slower than those 

reported by Cappe et al. (2009) who reported response times for the detection of (any) 

looming motion in congruent audio-visual signals between 400 and 500ms. Brooks et al. 

(2007), similar to our behavioural experiment, asked participants to discriminate the direction 

of biological lateral motion and reported reaction times ranging from 1.2s to 2.2s that were 

strongly modulated by task difficulty and the congruence of audio-visual signals. The 

strongest modulation of response times by congruency were observed in the most difficult 

task settings. Our response times, ranging from 1.05s (congruent)  to 1.2s (incongruent) were 

faster than the those reported by Brooks et al. (2007). 

Our results for 3D cue presentation contrasts with the behavioural findings of Ogowa and 

Macaluso (2013), and instead supports claims about the involvement of disparity cues in 

collision avoidance (Tresilian, Mon-Williams, & Kelly, 1999). However, differences between 

disparity conditions were relatively small, adding to arguments claiming their relative 
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subordination compared to other cues, such as visual expansion (Yan, Lorv, Li, & Sun, 

2011).  

Experiment 2 used event-related potentials (ERPs) to investigate the timing of neural 

processing associated with the perception of audio-visual motion in depth, while participants 

were engaged in a deviant-trial detection task.  Our analysis focussed on the timing of the 

crossmodal congruity effects i.e., on differences between congruent conditions (where visual 

and auditory signals moved in the same direction) and incongruent conditions (where visual 

and auditory cues moved in opposite directions), and in particular we were interested in the 

influence of effects of retinal disparity on the congruity effects.  

Congruency as a measure of bimodal interaction has been proposed as a method for assessing 

multisensory processes that avoids some potential confounds in the comparison of bimodal 

ERPs (Gondan, Niederhaus, Rösler, & Röder, 2005; Proctor & Meyer, 2011; Meyer, 

Harrison, & Wuerger, 2013). With this method, bimodal stimuli are either congruent or 

incongruent on one dimension (in our case, motion direction), so activity common to both 

conditions (for example, motor activity) is eliminated from the analysis (Calvert & Thesen, 

2004). This method has successfully been used to investigate crossmodal semantic (Meyer, 

Harrison, & Wuerger, 2013) and spatial congruity (Gondan, Niederhaus, Rösler, & Röder, 

2005), as well as multisensory perception of faces (Proctor & Meyer, 2011). 

It provides an alternative to the more commonly used analysis of crossmodal interactions that 

is based on the subtraction method (the so-called ‘additive model’; Besle, Fort, & Giard, 

2004; Giard & Besle, 2010), where ERPs time-locked to unimodal stimuli are subtracted 

from the bimodal responses (e.g. Giard & Perronet, 1999; Cappe et al., 2012). This model has 

been criticised because results may be affected by the unequal subtraction of common 

activity (e.g., anticipatory slow wave potentials and task-irrelevant motor activity) from the 
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AV and (A + V) amplitudes, and artefacts caused by inequivalent attentional demands in the 

unimodal and bimodal conditions (Giard & Besle, 2010; Teder-Sälejärvi, McDonald, 

DiRusso, & Hillyard, 2002). There are various approaches that employ the additive model, 

particularly in fMRI analysis, that are not associated with these confounds (e.g. Werner & 

Noppeney, 2010; Saldern, & Noppeney, 2013). 

Our most noteworthy ERP result was that motion direction congruity was influenced by 

retinal disparity starting at around 135 ms post-stimulus onset, which is a relatively early 

stage of processing. This ERP effect was observed over right occipito-parietal scalp (Figure 

8b & d), where 3D presentation was associated with an increased congruity effect compared 

to 2D presentation, suggesting that retinal disparity facilitated the discrimination of 

directional discrepancy between the cues. Importantly, the 2D versus 3D congruity effect 

cannot be explained by physical differences (other than retinal disparity) between conditions, 

as exactly the same stimuli were present on each side of the difference wave equations. The 

latency of the effect (135 – 160 ms) occurs somewhat prior to the time range of the visual N1 

component (150 – 200 ms) suggesting that the enhanced congruity effect for 3D presentation 

does not reflect a simple enhancement of the visual N1. Global analyses show that the 2D 

versus 3D congruity effect was manifested as an increase in cortical response strength in the 

3D condition but that the scalp topography of the 2D and 3D conditions did not differ. The 

most plausible explanation for this pattern of results, therefore, is that 2D and 3D cues engage 

a similar cortical network (cf. Murray et al., 2008), but that neural activation in the network is 

greater under 3D viewing conditions. The right occipito-parietal scalp topography of the 3D 

congruity effect is consistent with studies showing that disparity cues are integrated at an 

early stage in the dorsal visual stream when the signals are moving (e.g., Howard, 2012). The 

effect of stereo disparity in our study occurred slightly earlier than in a previous study that 

showed differences between mono and stereo cues at around 170 ms over occipito-temporal 
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leads (Pegna, Roberts, & Leek, 2014). Task differences between the two experiments could 

potentially explain the apparent discrepancy; Pegna and colleagues used an object recognition 

task with stationary visual cues, whereas in the current study we used an auditory detection 

task with dynamic cues. These observations suggest that further studies are needed to more 

fully elucidate how the timing of ERPs related to stereo disparity are modulated by task 

requirements and stimulus conditions (e.g., moving versus stationary cues).  

Visual disparity cues are the basis of stereopsis, the perception of depth from differences in 

retinal images in the two eyes. A commonly held view (e.g., Barry, 2009) is that the 

processes underlying stereopsis are generally slow. Rapidly changing disparities, for 

example, are perceptually difficult to track and stereoacuity improves with exposure duration. 

The temporal resolution of the stereoscopic system for stimuli that fluctuate in depth is about 

10 Hz, as compared with 70 Hz for luminance modulation, which has been explained by the 

requirement to cross-correlate temporally filtered inputs from the two eyes  (Kane, Guan, & 

Banks, 2014; Nienborg, Bridge, Parker, & Cumming, 2005).  

In one of the earliest experiments, Langlands (1929), reported increasing stereoacuity with 

exposure durations of up to 3 seconds, while more recently Watt (1987) showed a linear 

relationship between disparity threshold and exposure time up to about 1 sec. Tyler (1991), 

consistently,  measured the disparity required for the detection of depth in a random-dot 

stereogram and found that thresholds were inversely proportional to stimulus duration, such 

that fine disparities  (<1 arcmin) required around 180ms to be detectable.  

Disparity cues, in summary, appear to provide accurate distance information that requires 

time to compute. It has been argued that this characteristic limits the use of stereopsis to 

conscious appreciation of depth or actions that can be planned ahead of time (e.g., Keefe, 
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Hibbard, & Watt, 2011; Schlicht & Schrater, 2007), or slow tasks such as threading a needle 

(Brenner & Smeets, 2006; Sheedy, Bailey, Buri, & Bass, 1986).  

This, however, does not exclude a role of (inaccurate) disparity information in early visual 

processing. The nervous system extracts disparity very quickly, with disparity-selective 

responses evident in cortical neurons around 60 ms after stimulus presentation in macaque 

monkeys, which is similar to other visual features such as orientation (Trotter, Celebrini, 

Stricanne, Thorpe, & Imbert, 1996).  If binocular disparity is processed at early visual 

processing stages and at time-scales that are consistent with other visual features, then there 

is no reason to think that disparity information should not contribute to everyday visual 

function, particularly those that require rapid decisions, perhaps based on inaccurate 

incoming data. 

Caziot et al. (2015) presented experimental data comparing speed–accuracy trade-off 

functions between 2 forced-choice discriminations: one based on stereoscopic depth, the 

other based on luminance.  Both speed-accuracy trade-off functions deviated from chance 

levels of accuracy at the same, early, response time (200 ms) with stereo accuracy increasing, 

on average, more slowly than luminance accuracy after this initial delay. This timescale is 

consistent with electrophysiological data from nonhuman primates that shows involvement of 

primary visual cortex at simultaneously with other visual processing (Gonzalez, Perez, Justo, 

& Bermudez, 2001; Trotter et al., 1996). The task is not unlike our motion judgement task 

where participants could use expansion and disparity cues to judge motion direction. We see 

electrophysiological correlates of disparity information at around 150ms (Fig. 8) which, is 

consistent with the effects reported by Caziot et al. (2015). 
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A temporal dependence of judgement accuracy on the basis of disparity cues may also 

explain why the addition of disparity cues in the behavioural task lead to significant 

improvements in response accuracy but only weakly affected response times.  

In our canonical ERP component analysis, we analysed directional congruity effects for four 

specific ERP components (visual P1, visual N1, N2, N400) evoked by the audio-visual 

stimuli. For the visual P1 component (80 – 140 ms) over occipito-temporal scalp, we found 

no effect of congruity. A number of previous studies have reported multisensory effects at 

latencies around 100 ms for stationary signals (e.g., Besle et al.,2004; Giard & Peronnet, 

1999; Teder-Sälejärvi et al., 2002, 2005), and it may be that multisensory integration for 

moving signals is delayed compared to interactions for stationary cues. On the other hand, 

Cappe and colleagues (2012) found multisensory interactions for looming (ALVL) and 

incongruent ALVR audio-visual motion cues at a similar latency, although their 

topographical analysis suggested that the generators were located more anteriorly, in the 

claustrum/insula and cuneus. A number of key differences between Cappe et al.’s study and 

the current study analysis may explain the apparent discrepancy. In particular, Cappe et al., 

focused on differences between multisensory and unisensory presentation in a motion 

detection task, whereas in the current study only bimodal stimuli were presented, and the task 

was to detect deviant trials. 

At the latency and topography of the visual N1 (140 – 200 ms), we observed more negative 

amplitudes in the congruent conditions than in the incongruent conditions over left occipito-

parietal leads (Figure 5). Modulation of the visual N1 in response to multisensory inputs has 

previously been reported (e.g., Giard & Perronet, 1999) using stationary stimuli, but here we 

show crossmodal modulation of the visual N1 specific to motion in depth. Our data reinforces 

the view that processing in extrastriate visual areas, as reflected by the visual N1 (Di Russo, 

Martinez, Sereno, Pitzalis, & Hillyard, 2002), can be influenced by auditory motion inputs.  It 
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is worth noting that a previous study investigating crossmodal semantic rather than low-level 

congruence did not show congruency effects for the visual N1; instead the congruency effects 

emerged later, presumably as a result of their higher-order (semantic) nature (Meyer et al., 

2013).  

Between 220 – 280 ms post-stimulus onset incongruent ERPs were more negative than 

congruent ERPs over frontal scalp (Figure 6). The prominent negative deflection at this 

latency is likely to be related to the N2 component, which is thought to reflect conflict 

monitoring processes (Folstein & Van Petten, 2008; Yeung, Botvinick, & Cohen, 2004). 

While N2 has been interpreted as a result of response conflict (Yeung, Botvinick, & Cohen, 

2004), the current results are in keeping with previous crossmodal studies  that have shown 

an increased N2 response for visuo-tactile incongruent compared to congruent trials (Forster 

& Pavone, 2008; Longo, Musial, & Haggard, 2012). Indeed, given that a deviant trial 

detection task was used, the current study strongly suggests that the increased N2 for 

incongruent trials reflected perceptual conflict between the auditory and visual pairing, rather 

than processes related to response conflict.   

At around 400ms, we observed more negative amplitudes in the incongruent condition 

compared to the congruent condition for bimodal pairings containing visual looming signals 

(Figure 7). The latency of this effect in our study may well reflect an N400-like effect, which 

is in general agreement with several previous studies showing N400-like enhanced negativity 

for semantically incongruous AV signals (e.g. Meyer, Harrison, & Wuerger, 2013; Proctor & 

Meyer, 2011; Zimmer et al., 2010) and affectively incongruous AV stimuli (Goerlich et al., 

2012). While the N400 is generally associated with incongruences in linguistic stimuli (for a 

review, see Kutas & Federmeier, 2011), the N400 has also been shown to be evoked by non-

linguistic incongruency related to, for example, line drawing and sounds (Cummings, 

Čeponienė, Koyama, Saygin, Townsend, & Dick, 2006; Ganis, Kutas, & Sereno, 1996). 
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Moreover, the linguistic N400 component is usually reported as a centro-parieto deflection 

(Kutas & Federmeier, 2011), whereas the current data indicates a more frontal effect, in line 

with the topography from studies on the non-linguistic N400 (Cummings, Čeponienė, 

Koyama, Saygin, Townsend, & Dick, 2006; Ganis, Kutas, & Sereno, 1996).  

In summary, by investigating behavioural and electrophysiological correlates of audio-visual 

motion in depth, the current studies have demonstrated that the dynamic visual capture effect 

is mediated by both the direction of visual motion and the retinal disparity of the visual cues. 

Motion direction congruency between audio-visual cues appeared as a robust effect in the 

ERP analysis, and the congruity effect was mediated by retinal disparity as early as 135 ms 

after stimulus onset.  
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