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Radial frequency (RF) patterns are used to assess how the visual system processes shape. They are
thought to be detected globally. This is supported by studies that have found summation for RF patterns
to be greater than what is possible if the parts were being independently detected and performance only
then improved with an increasing number of cycles by probability summation between them. However,
the model of probability summation employed in these previous studies was based on High Threshold
Theory (HTT), rather than Signal Detection Theory (SDT). We conducted rating scale experiments to
investigate the receiver operating characteristics. We find these are of the curved form predicted by
SDT, rather than the straight lines predicted by HTT. This means that to test probability summation
we must use a model based on SDT. We conducted a set of summation experiments finding that thresh-
olds decrease as the number of modulated cycles increases at approximately the same rate as previously
found. As this could be consistent with either additive or probability summation, we performed
maximum-likelihood fitting of a set of summation models (Matlab code provided in our
Supplementary material) and assessed the fits using cross validation. We find we are not able to distin-
guish whether the responses to the parts of an RF pattern are combined by additive or probability sum-
mation, because the predictions are too similar. We present similar results for summation between
separate RF patterns, suggesting that the summation process there may be the same as that within a
single RF.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

To a first approximation the visual system can be considered a
series of feedforward stages, where the neurones at each stage
exhibit tuning to progressively more complex stimulus features.
In primary visual cortex (V1) for example, we find cells tuned to
orientation and spatial frequency (Hubel & Wiesel, 1962, 1968).
Beyond V1 the system diverges into the dorsal stream, handling
motion information, and the ventral stream where shape informa-
tion is processed (Goodale & Milner, 1992; Ungerleider & Mishkin,
1982). As we move along the ventral stream the neurones exhibit
tuning to more complex shape information (see Kravitz, Saleem,
Baker, Ungerleider, & Mishkin, 2013 for recent review); these prop-
erties have inspired many models of shape and object processing
(Cadieu et al., 2007; DiCarlo, Zoccolan, & Rust, 2012; Riesenhuber
& Poggio, 2000; Serre, Oliva, & Poggio, 2007; Van Essen,
Anderson, & Felleman, 1992). Neurones in primate V2 and V4
selectively respond to stimuli that combine multiple orientations
such as angles, arcs, circles, hyperbolic gratings, and polar gratings
(Anzai, Peng, & Van Essen, 2007; Gallant, Connor, Rakshit, Lewis, &
Van Essen, 1996; Hegdé & Van Essen, 2007). Shape representation
is believed to be mediated by a population code of cells in primate
V4, which have been shown to exhibit tuning to specific contour
features, e.g. convex and concave curvature maxima relative to
the centre of a shape (Carlson, Rasquinha, Zhang, & Connor,
2011; Pasupathy & Connor, 1999, 2002; Yau, Pasupathy, Brincat,
& Connor, 2013). Further along the ventral stream in inferotempo-
ral cortex we find neurones selective for complex shapes and
objects such as faces (Albright, Desimone, & Gross, 1984; Tanaka,
1996; Tsao & Livingstone, 2008).

As evidence continues to grow for this hierarchy, where pro-
gressively more complex stimulus features are represented along
the ventral stream, the question of how this is achieved arises
(Loffler, 2008; Wilson & Wilkinson, 2015). Radial frequency (RF)
patterns were introduced by Wilkinson, Wilson, and Habak
(1998) to address this question. An RF pattern is defined as a circu-
lar contour with a sinusoidally-modulated radius. Each cycle of the
sinusoid gives a bulge at its peak and an indent at its trough. The
frequency of the modulation determines the number of cycles in
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the pattern (e.g. an RF4 has four peak-and-trough cycles) and the
amplitude describes the magnitude of the distortion from a circle.
Discriminating RF patterns from circles could be accomplished
either by comparing the outputs of local filters matched to parts
of the pattern, or by a global mechanism operating at the scale of
the entire shape (taking those local filters as its input). Wilkinson
et al. (1998) argued that the high sensitivity for the detection of
RF modulations could not be achieved simply by local orientation
or curvature analysis, but requires pooling of local contour infor-
mation into a global representation of the RF shape. Further sup-
port for the global integration of RF shapes at threshold
amplitude comes from a range of subsequent psychophysical stud-
ies (e.g. Bell & Badcock, 2008, 2009; Bell, Badcock, Wilson, &
Wilkinson, 2007; Bell, Gheorghiu, Hess, & Kingdom, 2011; Hess,
Achtman, & Wang, 2001; Hess, Wang, & Dakin, 1999; Jeffrey,
Wang, & Birch, 2002; Loffler, Wilson, & Wilkinson, 2003;
Schmidtmann, Kennedy, Orbach, & Loffler, 2012; Wang & Hess,
2005). For amplitudes above threshold, global integration receives
support from studies of RF shape aftereffects (Bell, Hancock,
Kingdom, & Peirce, 2010; Bell et al., 2011).

A subset of these studies used a summation paradigm in which
the number of modulated cycles n in the pattern was varied and
the effect on threshold measured (Bell & Badcock, 2008;
Dickinson, Han, Bell, & Badcock, 2010; Dickinson, McGinty,
Webster, & Badcock, 2012; Hess et al., 1999; Loffler et al., 2003;
Schmidtmann et al., 2012; Tan, Dickinson, & Badcock, 2013). In a
linear system that performs global pooling one expects to see an
inversely proportional relationship between the threshold and
the number of modulated cycles (i.e. doubling the number of mod-
ulated cycles should halve the threshold). This gives a summation
slope of �1 when threshold is plotted against n on log–log axes.
This prediction can be contrasted against that from a system where
there is no global pooling and each cycle of the RF pattern is
detected independently. In that case the improvement in perfor-
mance due to the increasing number of modulated cycles would
be due to probability summation between the mechanisms respon-
sible for detecting each individual cycle (Sachs, Nachmias, &
Robson, 1971). Probability summation is typically modelled under
the assumptions of High Threshold Theory (HTT; see Green &
Swets, 1966). Under HTT the predicted summation slope is �1=b,
where b is the parameter controlling the slope of the psychometric
function obtained from a Weibull fit to the data (Quick, 1974). The
summation slopes and HTT probability summation predictions
from several previous experiments are shown in Table A1. As sum-
mation slopes are typically steeper than that predicted by proba-
bility summation under HTT, the authors of these studies have
rejected this model. Although the empirical summation slopes do
not reach the �1 predicted by the linear summation model (which
under HTT means that the fixed high threshold occurs after the glo-
bal pooling, as opposed to before the global pooling for the proba-
bility summation model), an additive global pooling model can still
account for their data if there is a nonlinearity in the response to
the individual cycles before the global pooling occurs. For example,
a nonlinear transducer where the local response rlocal ¼ As, would
give a predicted summation slope of �1=s.

Although these previous studies have focused on rejecting the
HTT probability summation model, it is now widely accepted that
Signal Detection Theory (SDT) provides the more appropriate
framework to characterise decision processes in psychophysical
experiments (Green & Swets, 1966; Meese & Summers, 2012;
Nachmias, 1981; Tyler & Chen, 2000). This raises the question of
whether probability summation modelled under the assumptions
of SDT can so easily be rejected (Kingdom, Baldwin, &
Schmidtmann, 2015; Tyler & Chen, 2000). Note that under SDT
detection is also affected by uncertainty (Pelli, 1985), which intro-
duces other model forms such as those featuring template-
matching. If the noise affecting the inputs is uncorrelated and the
observer is able to ignore noise from irrelevant inputs (i.e. those
not being stimulated) this will also reduce the measured summa-
tion. In the ideal case where each input is weighted by the
expected magnitude of its stimulation the slope will be �1=2
(Tanner, 1956). In the case where there is both a nonlinear trans-
ducer and an adjustable template their effects on the summation
slope will multiply together to give even shallower summation
slopes, on par with those predicted by HTT probability summation
(Wilson, 1980). It is important to note that the derivation provided
in Wilson (1980) does not describe a probability summation
model; this detail is sometimes overlooked (e.g. Dickinson, Cribb,
Riddell, & Badcock, 2015). Recent studies in the summation of con-
trast over area have rejected previous probability summation
accounts and concluded that a ‘‘noisy energy” model of this form
(where s ¼ 2) provides the best explanation of the results
(Baldwin & Meese, 2015; Meese, 2010; Meese & Summers, 2012).

In this study we first collect receiver operating characteristic
(ROC) data to demonstrate that SDT, rather than HTT, is the correct
theory in the context of RF pattern discrimination. This is simple to
demonstrate as under HTT the ROC should be straight whereas
under SDT it should be curved (Green & Swets, 1966). This finding
makes the predictions of the HTT-based probability summation
model irrelevant to the study of the detection of RF pattern modu-
lation. In the second part we perform additional experiments and
modelling (Matlab code is provided as a Supplementary material)
to investigate whether this rejection of HTT changes our conclu-
sions about how summation occurs within RF patterns. We also
compare summation within an RF pattern against summation
between RF patterns in order to see whether summation within
an RF pattern has any special properties. We find that we are
unable to reject a probability summation model formulated under
SDT. When comparing summation within an RF pattern to summa-
tion between RF patterns we find little difference.
2. Methods

2.1. Equipment

The stimuli were generated in Matlab (Matlab R2013a, Math-
Works) and presented on a gamma-corrected Iiyama Vision Master
Pro 513 CRT monitor with a resolution of 1024 � 768 pixels and a
frame rate of 85 Hz (mean luminance 38 cd/m2) using an Apple
Mac Pro (3.33 GHz). Observers viewed the stimuli at a distance of
1.2 m. At this distance one pixel on the monitor subtended 0.018
degrees of visual angle (deg). Experiments were carried out under
dim room illumination. Routines from the PsychToolbox were used
to present the stimuli (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007).
2.2. Observers

Three observers participated in the complete set of experi-
ments. Two were authors (ASB and GS), and the third was a
psychophysically-experienced observer who was naive to the pur-
poses of the experiment (AR). Two more naive observers were
brought in to collect additional data (YG and TT). All observers
wore their appropriate optical correction for the viewing distance.
Experiments were carried out with the participants’ informed con-
sent in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) and were approved by the
Biomedical B Research Ethics Board of the McGill University Health
Centre.
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2.3. Stimuli

The RF patterns were created by sinusoidally modulating the
radius (r) of a circle

rh ¼ rmean � ½1þmh � A� sinðfhþuÞ�; ð1Þ
where r and h are polar coordinates (with the origin at the centre of
the pattern), rmean is the mean radius, A is the amplitude of the mod-
ulation expressed as a Weber fraction (absolute modulation ampli-
tude divided by the mean radius), f is the modulation frequency
(number of cycles in the pattern) and u is the phase (equivalent
to rotation of the pattern). In order to allow us to measure the
detectability of individual cycles in the RF pattern we define a
masking vectorm, the values of which (mh) within a particular cycle
can either be zero (meaning the cycle will not be modulated) or one
(meaning it will be modulated). In all of our experiments f was fixed
at 4. The popular nomenclature would refer to these as ‘‘RF4” pat-
terns. We also fixed rmean at 0.5 deg, and u at 90�.

In order to create stimuli which were bandpass in terms of their
spatial frequency content, we generated them by using the radial
fourth-derivative of a Gaussian to define the luminance profile of
a cross-section across the edge of the pattern, after Wilkinson
et al. (1998). We first transform the polar coordinates (r, in degrees
of visual angle, and h) of each location to give the pattern our
desired peak spatial frequency (x) and modulating radius (rh, as
defined in Eq. (1))

Fðr; hÞ ¼ pxðr � rhÞffiffiffi
2

p ð2Þ

and then use that to set the luminance l at each location in the
image

lðr; hÞ ¼ c � 1� 4� Fðr; hÞ2 þ 4
3
� Fðr; hÞ4

� �
� exp½�Fðr; hÞ2�; ð3Þ

where c is the luminance contrast. The spatial frequency used in our
experiments was 8 c/deg, and the bandwidth (full width at half
magnitude) was 1.24 octaves (Wilkinson et al., 1998).

For the two main conditions observers were presented with
either a single RF pattern at fixation (Fig. 1a) or a quad of RF pat-
terns surrounding fixation (Fig. 1b). In the Single RF pattern condi-
tion we could modulate any combination of these four cycles
(a) Single RF condition

(b) Quad RF condition

1 cycle 2 cycles 3 cycles 4 cycles

1 cycle 4 cycles

Fig. 1. Examples of the RF stimuli used in our experiments.
(positioned left, right, superior and inferior relative to fixation) in
order to test sensitivity to just one cycle being modulated and to
see how this changed as the number of modulated cycles
increased. For the Quad RF condition the individual patterns were
placed to the left, right, superior and inferior to fixation (indicated
in this condition by a white circle with a diameter of 0.126 deg),
and modulations were applied to the single innermost cycle of
each RF pattern. The eccentricity of the centres of the Quad RF pat-
terns was 1.8 deg. This meant that the modulations our observers
were detecting in the Quad RF condition were slightly more eccen-
tric than in the Single RF condition (1.3 deg vs. 0.5 deg). In all our
experiments the stimulus duration was 300 ms and the inter-
stimulus interval was also 300 ms.
2.4. Receiver operating characteristics

We collected receiver operating characteristics (ROCs) using a
rating scale experiment. For each observer we first conducted a
two-interval forced-choice pilot experiment with stimuli that
had a single cycle modulated. This was to determine the
modulation level that could be discriminated from a circle 75% of
the time. We tested four blocks using the method of constant stim-
uli (6 levels, 20 trials per level), with the modulated cycle being in
a different location in each block (left, right, superior and inferior).
The data were combined across location and then fit with a Quick
psychometric function to give a 75% threshold value. For our rating
scale tasks we randomly interleaved 100 trials where there was no
modulation and 100 trials where the modulation was set to this
threshold value. We later ran an additional experiment where all
four cycles were modulated. For this condition we used the results
from our summation experiment (below) to find modulation
amplitudes that would be slightly above threshold. The stimulus
condition (Quad vs. Single RF, and the location of the modulation)
was kept constant within a testing block. On each trial the observer
responded using a four-level scale. They were asked to rate how
confident they were that the modulation was present, where 1
was ‘‘confident present”, 2 was ‘‘probably present”, 3 was
‘‘probably absent”, and 4 was ‘‘confident absent”.

The ratings were converted into points on the ROC plot by
cumulatively binning the responses (1, 1–2, 1–3) and calculating
PðhitÞ, the probability of responding that the modulation is present
when it is shown, against Pðfalse alarmÞ, the probability of
responding that it is present when it is not shown, for each bin.
The rating experiments were repeated twice by each observer for
each condition, and nonparametric bootstrapping (1000) was per-
formed to generate six bivariate distributions of PðhitÞ and
Pðfalse alarmÞ values for each plot. Each bootstrap sample was
generated by randomly sampling (with replacement) 100
responses from the set of test trials and 100 responses from the
set of null trials in each repetition, to create a simulated dataset
that could be processed like our empirical data.

Note that no training was conducted on this task before data
collection began. Discriminating the circles from the RF patterns
in a single interval task proved to be challenging at first, as one
has to maintain a template of the expected modulated stimulus.
We provided the observers with an example stimulus indicating
the modulated location at the beginning of each block, but they
were required to keep track of the stimulus they were detecting
after this point (one observer found the task impossible for one
of the modulated locations in each condition, see Supplementary
material Figs. S1a and S2d). As a result of this, each observer pro-
duced some inconsistent results at the beginning of testing as they
were learning the task. Where observers were very inconsistent
between testing blocks (determined by non-overlapping 95% con-
fidence intervals on the d0 values obtained by the SDT ROC fit) a
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further repetition was conducted, and the inconsistent data were
not used when producing the plots that illustrate our ROC curves.
This happened a few times for each observer in our initial experi-
ment (4 repetitions for AR, 4 for ASB, and 2 for GS). These data were
however still used in our statistical tests to avoid any bias. They are
the ringed data points in Fig. 5, where it can be seen that the
rejected points do not favour the HTT model. For the subsequent
experiments where all four cycles were modulated the observers
performed consistently and no data were rejected.

The ROC plots PðhitÞ against Pðfalse alarmÞ. The possible beha-
viour in response to a single stimulus intensity is described by a
line on the ROC plot. Under both HTT and SDT the lines pass
through the point (1, 1), representing the situation where the
observer responds that the modulation was present on every trial.
The major distinction between HTT and SDT is what happens as
Pðfalse alarmÞ reaches zero on the left hand side of the ROC plot.
Under HTT false alarms are due to the observer guessing
incorrectly, and because guess rates do not depend on the intensity
of the stimulus they can be factored out in yes/no tasks (this
was shown not to be the case empirically for contrast detection
by Nachmias, 1981). Between PðfalsealarmÞ ¼ 0 and
PðfalsealarmÞ ¼ 1 the prediction is that the two points are joined
by a straight line as the HTT observer varies their guess rate from
0 to 1. The slope of the line is determined by the stimulus intensity;
as it increases the line becomes shallower and the hit rate that the
observer can achieve in the absence of guessing increases. Under
HTT the responses in rating scale experiments are determined by
the observer adopting different guess rates for each point on the
scale. Differences between the two repetitions we conducted
would be due to variations in those guess rates.

Under SDT on the other hand it is impossible to eliminate false
alarms without also reducing the hit rate to zero. The ROC is
described by a line between (0, 0) and (1, 1) which curves inward
toward the top-left corner of the graph, since PðhitÞ is generally
greater than PðfalsealarmÞ. The degree of curvature is determined
by the stimulus intensity which results in a particular signal-to-
noise ratio (d0). Each position along the line between (0, 0) and
(1, 1) is the combination of values expected for a particular
response criterion. The criterion is the magnitude of the internal
response that the observer requires before classifying an interval
as ‘‘signal present”. Significantly this criterion can be exceeded
on trials where the modulation was not present, as a consequence
of the internal noise in the observer’s visual system. In a rating
scale experiment the observer assigns different criterion values
to the different points on the scale, and differences between the
two repetitions can be attributed to changes in those criteria.
(c) (d)

Fig. 2. ROC plots showing the relationship between hit and false alarm rates for the
four different modulation locations in the Single RF condition for observer ASB. Data
from the two repetitions are shown by the two marker symbols, with the
distribution of nonparametric bootstrap samples shown by the colour-map. The
median fit from the HTT model is shown by the dashed line. The median SDT fit is
shown by the solid line. The area outside the 95% confidence interval on the SDT fit
is shaded. Each graph also gives both the modulation amplitude A, as a Weber
fraction and the resulting d0 calculated from the SDT fit to the data.
2.5. Summation within and between RF patterns

A two-interval forced-choice ‘‘method of constant stimuli”
design was used to obtain psychometric functions for the summa-
tion experiment. Observers indicated which of the two intervals
had the stimulus with the RF modulation. We tested 36 trials at
9 modulation amplitudes. For the blocked condition the modulated
cycle or cycles were the same for all trials within a block. For the
interleaved condition we randomly interleaved all 15 possible
stimuli within a block, testing each condition 3 times. By testing
12 of these blocks for the interleaved condition we reach the same
number of trials per stimulus as was tested in the blocked condi-
tion. Psychometric functions for each condition were then fitted
with a cumulative normal function using Palamedes (Prins &
Kingdom, 2009). Parametric bootstrapping was performed (500
samples) to generate populations of threshold (a) and psychomet-
ric slope (equivalent Weilbull b) parameters for each observer. We
fixed the psychometric slopes to be constant for particular number
of modulated cycles for each observer, but allowed the thresholds
to vary when those modulated cycles were in different locations.
We combined data across observers by taking the mean of these
bootstrap populations and then reported the median and confi-
dence intervals of the resulting distributions.
3. Results and modelling

3.1. ROC curves

The ROCs from one observer (ASB) for the Single and Quad RF
conditions are shown in Figs. 2 and 3 respectively (similar figures
for the other observers are provided in the Supplementary
materials Figs. S1–S4). The empirical data are shown by the black
markers, with the coloured regions showing the distribution of
non-parametric bootstrap samples (indicating the error associated
with those black marker points). In all cases the data form a curved
line between the points (0, 0) and (1, 1) that is inflected toward the
top-left of the plot. This is the expected behaviour under the SDT
framework, with the appropriate model shown by the solid black
line. The dashed black line shows the best-fitting prediction from
the HTT model. It is immediately clear that this provides a poorer
account of the empirical data. The points from the two repetitions
of the experiment (squares and diamonds) do not overlap, falling
on distinct points along the ROC curve. This indicates that the cri-
teria associated with the response categories varied between rep-
etitions, while the sensitivity remained roughly constant. At the
request of a reviewer, we also obtained ROC data for each observer
where all four cycles were modulated (Fig. 4). These also demon-
strate the curved form that we expect under SDT.

We performed two-tailed sign tests in Matlab (Matlab R2013a,
MathWorks) to compare the deviances of the fits from the two
models (shown in Fig. 5) on a block-by-block basis (fitting the data
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Fig. 3. ROCs plot of the Quad RF condition for observer ASB. See Fig. 2 caption for
further details.

Fig. 5. Scatter plot showing the deviances for the fits to each repetition of the ROC
data from the HTT and SDT models. All points above the y = x line (the scales on our
axes had to be unequal in order to clearly present the data) were better fit by the
SDT model. Data that were not included in the ROC plots (see Section 2) are
indicated by the black circles. These were still included in the statistical analysis.
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from each repetition separately). Deviances for the SDT and HTT
model fits were each calculated as twice the difference between
the log-likelihood from that model and the log-likelihood from
the saturated model. In the Single RF condition the SDT model pro-
vided a significantly better fit for ASB (P = 0.002), AR (P = 0.002),
and GS (P = 0.006). This was also true in the Quad RF condition
where the SDT model provided a better fit for ASB (P = 0.001), AR
(P = 0.012), and GS (P = 0.002). We can therefore assert that the
detection of RF patterns does not comply with the HTT framework.
This means that the Quick pooling function (Quick, 1974) typically
used to model probability summation under HTT does not apply to
Fig. 4. ROC plots for detecting the RF stimuli when all four cycles were modulated. The th
experiments for a single RF pattern and the bottom row a quad of RF patterns (with the
RF patterns. Instead one must use an SDT probability summation
model such as the one we provide below.

One final point of interest from the ROC curves is the consider-
able variation in sensitivity between the different modulation loca-
tions. In Fig. 2 we show that with the same modulation amplitude
in the Single RF condition we get a 40% difference between the
lowest (modulation right) and highest (modulation superior) d0

values measured. For the Quad RF condition (Fig. 3) this variation
was even greater (a 73% difference in d0 between the right and
superior modulation locations). This may reflect variations in sen-
sitivity across the visual field for shape discrimination
(Schmidtmann, Logan, Kennedy, Gordon, & Loffler, 2015). For ASB
they would not be consistent with different sensitivities to the dif-
ferent rotations of our RF4 stimulus because when the modulation
is shown to the right of fixation in the Quad RF stimulus it is equiv-
alent to a translation of the left-modulated single RF stimulus
(Fig. 1). This can be contrasted against the results for AR in the
ree columns show results from different observers, with the top row containing the
innermost cycles modulated). See Fig. 2 caption for other details.
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single RF left (Fig. S1a) and the Quad RF right conditions (Fig. S2d)
where it seems that it is a particular rotation of the stimulus that
they have difficulty detecting.
3.2. Summation results

The summation results averaged across our three principal
observers are shown in Fig. 6. Panels (a, b) shows how thresholds
change as the number of modulated cycles in the stimulus
increases, (c, d) show how the psychometric slopes are affected.
As expected (Kingdom et al., 2015; Tyler & Chen, 2000) the sum-
mation slopes for the interleaved condition are steeper than for
the blocked condition. What is surprising though is that there
seems to be very little summation at all in the blocked condition.
This can be seen in the slopes of the lines fit to the data. For the Sin-
gle RF condition there is a small decline in threshold as the number
of modulated cycles increases (the median value of the log–log
slope of the fit to 1000 bootstrapped thresholds was �0.18), and
for the Quad RF condition there is no improvement at all (slope
of 0.06). In our experiments it seems that the observers in the
blocked condition simply chose a single cycle of the RF stimulus
to monitor for the purpose of making the 2AFC decision, regardless
of how many cycles were in fact being modulated. Because the
observers did not exhibit summation behaviour in this condition,
we will exclude it from our modelling.

For the interleaved data we find threshold vs. n slopes of
approximately �0.53 for the Single RF condition and �0.60 for
the Quad RF condition. These are in the same range as those found
in previous experiments that tested summation within a single RF
(Table A1). The similarity of the slope between our Single and Quad
RF conditions indicates that any special quality attributed to sum-
mation within an RF pattern (e.g. that the component cycles are
additively combined in a higher level mechanism) could also apply
to summation between RF patterns. In fact, the summation slopes
Fig. 6. Summation results averaged across our three principal observers. The top
row shows thresholds (as Weber fractions) as a function of the number of
modulated cycles in the pattern for the Single and Quad RF conditions. The bottom
row shows the psychometric slopes. The data from each condition are fitted with
straight lines, the slopes of which are reported in the legends. The dashed grey lines
in panels a, b have a slope of �1.
we find may be consistent with either additive or probability sum-
mation under SDT. We shall address this in our modelling below.
The only clear difference we do see between the Single and Quad
RF conditions is that in the Single RF condition the thresholds for
the blocked condition are higher than for the interleaved condition,
whereas for the Quad RF condition they are generally lower. The
Single RF results are consistent with the explanation we offer
above for the lack of summation in the blocked condition, however
those for the Quad RF condition are more difficult to interpret. Our
best explanation is that there is some ‘‘cost” associated with inte-
grating the local outputs over a larger area in the interleaved con-
dition, and that this elevates the thresholds to be higher than those
for the blocked condition (where we suggest that the observer is
only making use of a single local output).

One key prediction from the SDT probability summation model
is that – under conditions where the threshold vs. n summation
slopes are steep – the psychometric function slopes should become
more shallow as the number of modulated cycles increases due to a
reduction in extrinsic uncertainty (Pelli, 1985). Such an effect is not
immediately apparent from the data shown in Fig. 6c, d. There is a
slight negative slope however in the Single RF interleaved condi-
tion (�0.23), which is comparable to the value we would predict
from our SDT probability summation model (Kingdom et al.,
2015). Overall though, our analysis of the data from the interleaved
conditions does not provide particularly strong evidence in favour
of either the additive or the probability summation models. We
shall address this by developing additive and probability summa-
tion models and fitting those to our data.

3.3. Summation modelling

The summation models that we used are outlined briefly here.
Further information and Matlab code can be found in our Supple-
mentary material. For additive summation we calculate d0 by sum-
ming over each i of n mechanisms

d0 ¼
Pn

i¼1ðgiAiÞsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1r2

i

q ð4Þ

where gi is the input gain at each location, Ai is the amplitude of the
modulation, and ri is the internal noise. In the additive summation
model having different values for the internal noise at different loca-
tions does not affect performance, so we fix these to be constant
across location. The resulting parameter has a directly inverse effect
to the gain, so we fix all of our internal noise r ¼ 1 and implicitly fit
any internal noise effects with our gain parameter. We test four ver-
sions of the additive summation model which are distinguished by
whether they feature linear (s ¼ 1) or nonlinear (s is free) transduc-
tion (T0 vs. T1) and by whether the gain is fixed across locations or
whether it is different for each location (G1 vs. G4). This nomencla-
ture is summarised in the first four rows of Table 1. The d0 value can
be converted topredictedpercent-correct using the standardmethod

PðcÞ ¼ 0:5þ Us
d0ffiffiffi
2

p
� �

� 0:5
� �

� ð1� 2kÞ ð5Þ

where Us is the standard cumulative normal distribution function
and k is the lapse rate.

For the probability summation model we used a modified ver-
sion of the equation derived in Kingdom et al. (2015). For this we
must define a general version of the cumulative normal distribu-
tion function Uðt;l;rÞ where t is the value for which the probabil-
ity is calculated (used as a dummy variable in the integration in
our equations), l is the mean of the normal distribution, and r is
its standard deviation. We also define the probability density
function /ðt;l;rÞ in the same way. For detection within a single
mechanism (no summation occurring) we calculate



Table 1
Explanation of the acronyms used to refer to the different forms of our models.

Model Transducer Gain Noise

T0G1S0 Linear (s ¼ 1) Controlled by single g1 Constant (r = 1)
T1G1S0 Nonlinear Controlled by single g1 Constant (r = 1)
T0G4S0 Linear (s ¼ 1) Per location g1 � g4 Constant (r = 1)
T1G4S0 Nonlinear Per location g1 � g4 Constant (r = 1)
T0G1S3 Linear (s ¼ 1) Controlled by single g1 Per location r1 ¼ 1, r2 � r4 vary
T1G1S3 Nonlinear Controlled by single g1 Per location r1 ¼ 1, r2 � r4 vary
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PðcÞ ¼
Z 1

�1
½/ðt; ðgAÞs;rÞ �Uðt;0;rÞ�dt ð6Þ

For every possible response t in the target interval we are calcu-
lating the probability of that response occurring /½t; ðgAÞs;r� and
multiplying that by the probability that the response in the null
interval was lower Uðt; 0;rÞ. If the observer responds simply on
the basis of which interval elicited the larger response then this
should be the probability with which the observer chooses the
correct interval.

The probability summation model involves these same compo-
nents in a more complex arrangement

PðcÞ¼
Xn
i¼1

Z 1

�1
/½t;ðgiAiÞs;ri��

Yn
j¼1
j–i

U½t;ðgjAjÞs;rj��
Yn
j¼1

U½t;0;rj�dt:
ð7Þ

Here we are performing the calculation from Eq. (6) for each i of
n mechanisms in order to find the probability of responding cor-
rectly on the basis of each mechanism’s response. These are then
combined by summing them together. The calculation for each
mechanism is also modified by including a term for the probability
that no other mechanism in the target interval had a greater
response U t; ðgjAjÞs;rj

� �
. For both this term and the term for the

responses in the other interval we must now also multiply the
responses over each j of our n mechanisms, as we need to weight
the probability for a particular response from our target mecha-
nism by the probability that all other mechanisms in either interval
gave a smaller response. Crucially, in this model we do get distinct
effects for having different internal noise in each mechanism vs.
different input gains. We must fix one of the noise standard devi-
ations however, as otherwise they will interact with the gain. Mod-
els with constant internal noise are coded S0 and those with
varying internal noise are coded S3, as shown in the last two rows
of Table 1.

We used a maximum-likelihood procedure to fit these models
to our data. Log-likelihoods for the whole experiment were calcu-
lated over the sum of our k conditions as

log L ¼
X
k

Ck log½PkðcjAk; g;r; sÞ� þ Ik log½1� PkðcjAk; g;r; sÞ�; ð8Þ

where Ck is the number of correct responses for that condition,
and Ik is the number of incorrect responses, and PkðcjAk; g;r; sÞ
is the probability of a correct response for each condition accord-
ing to the model. This probability is calculated based on the vec-
tor of amplitudes Ak of the modulation applied to each
mechanism in that condition, and the current model parameters
g, r (both vectors as there may be different values for each
mechanism), and s. We used fminsearch in Matlab to minimise
the negative log-likelihood, which is equivalent to finding the
maximum likelihood solution.

We approached the question of which model best accounts
for our data as a model selection problem. It is not possible to
use a simple likelihood ratio test because our additive and prob-
ability summation models are two entirely distinct families (i.e.
not nested one within another). We also must compensate in
some way for the number of parameters in each of our models,
as it is expected that within a particular family of nested models
(e.g. our sets of additive and probability summation models) we
should always get a superior fit from the model with the greater
number of parameters, with some of this improvement being
due to overfitting. One tool to compensate for this is a criterion
that incorporates the number of fitted parameters as a penalty
(e.g. the various forms of AIC, see Akaike, 1974; Burnham &
Anderson, 2002). A more intuitive method (the outcome of
which is related to that found using AIC; see Stone, 1977) is
cross-validation, where the data are partitioned and the predic-
tions made based on the fit to one part are evaluated by how
well they predict another part.

In this study we used a ninefold cross-validation method. For
each observer we randomly partitioned their interleaved data into
nine sets. We then performed the fitting nine times. Each time a
different set was chosen as the holdout set for validation, with
the fitting being performed to the combined data from the other
eight sets. We used the model with the parameters obtained by fit-
ting to the rest of the data to make predictions for the holdout data
set to obtain a log-likelihood value. We averaged these values, nor-
malised by the maximum for each observer, and plot them with
their standard errors in Figs. 6 and 7. The fitted parameters for each
model are provided as a Supplementary material, and their
values averaged across observers are provided in Tables B1–B4 of
Appendix B.

The results from the cross-validation for the Single RF condition
are shown for our three main observers and two additional obser-
vers in Fig. 7. The different models are represented on the abscissa
according to the parameters they use (Table 1). Each model also
has one final parameter, the lapse rate k. For the models on the left
side of the graph the signal combination occurs according to addi-
tive summation, on the right side is probability summation. The
details of the fits for each observer are provided in our Supplemen-
tary materials. A summary giving parameters averaged across
observers and combined log-likelihoods and deviances is given in
Appendix B. The deviance is a goodness-of-fit measure that factors
out the entropy of the dataset that the model likelihood is calcu-
lated from. It is calculated as

D ¼ �2� ðlog Ltest � log LsatÞ ð9Þ

where Ltest is the likelihood of the model being evaluated, and Lsat is
the likelihood of the saturated model (Kingdom & Prins, 2016). In
the case of this experiment the ‘‘prediction” used to calculate the
likelihood for the saturated model is that in each condition
(Single/Quad RF, location of modulated cycles, and signal level)
the probability of the observer giving a correct response is the
empirical probability found in the experiment. In this way the
likelihood of the saturated model represents the inherent unpre-
dictability of the dataset. To obtain our deviances in Eq. (9) we
are using the candidate model’s log-likelihood when tested against



Fig. 7. Output of the cross-validation procedure for the Single RF condition. For each version of the model we plot the mean log-likelihood across the cross-validation folds
normalised by subtracting the maximum likelihood for each observer, with its standard error. To the left of the black vertical line we plot the additive summation models, to
the right probability summation models. We mark the single best-fitting model for each observer with a ring. Results from each observer are offset slightly on the x-axis to
make the figure easier to read.

Table B1
Table showing the mean parameters across observers and combined log likelihoods
and mean deviances obtained by fitting the additive summation model to the Single
RF data. The codes defining each model are explained in Table 1.

Model s g1 g2 g3 g4 k (%) R(log L) �D

T0G1S0 103.2 0.93 �953.4 110.5
T1G1S0 1.63 93.7 1.17 �942.4 106.1
T0G4S0 108.4 106.2 105.2 98.3 0.90 �952.9 110.3
T1G4S0 1.70 98.0 96.8 93.9 88.1 1.18 �941.9 105.9

Table B3
Table showing the mean parameters across observers and combined log likelihoods
and mean deviances obtained from a maximum-likelihood fit of the additive
summation model to the Quad RF data.

Model s g1 g2 g3 g4 k (%) R(log L) �D

T0G1S0 53.0 0.88 �708.3 124.7
T1G1S0 1.31 49.8 1.08 �706.3 123.4
T0G4S0 47.9 74.6 44.7 52.8 0.92 �706.3 123.4
T1G4S0 1.38 45.1 71.2 40.8 47.0 1.17 �704.0 121.9
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the holdout dataset and subtracting the likelihood of the saturated
model calculated for that dataset.

Of the five observers, three of them (ASB, AR, and YG) behave in
a way that is most-likely explained by probability summation (see
the ringed ‘‘best fit” markers). The other two (GS and TT) behave in
a way that is more compatible with the additive summationmodel.
The worst performing models tend to be the additive summation
models with a linear transducer, but otherwise there is not a great
difference between them. From Tables B1 and B2 we can see that
the best-fitting transducer values are higher for the additive than
the probability summation models (1.7 vs. 1.4). This is to be
expected, as an additive summation model with a steeper trans-
ducer behaves similar to a probability summation model with a
shallower transducer. From our results we are not able to conclude
Table B2
Table showing the mean parameters across observers and combined log likelihoods and m
model to the Single RF data.

Model s g1 g2 g3 g4

T0G1S0 106.2
T1G1S0 1.23 99.1
T0G4S0 113.4 110.5 106.1 98.2
T1G4S0 1.38 106.9 99.1 102.3 85.5
T0G1S3 180.7
T1G1S3 1.28 783.5
whether the parts of an RF pattern are combined to improve per-
formance by additive or by probability summation. Importantly
however, this means that we are not able to reject the probability
summation account.

For the Quad RF condition (Fig. 8) all three of the tested obser-
vers come out in favour of the probability summation model. Sim-
ilar to the Single RF condition, the transducers for the best-fitting
additive summation model are more steep than those for the
best-fitting probability summation model (1.4 vs. linear). Once
again however there is only a small difference between the quality
of the fits from the different models. Even in this case where the
modulations are being combined between separate RF patterns,
we are not able to confidently state that detection occurs under
probability summation rather than additive summation.
ean deviances obtained from a maximum-likelihood fit of the probability summation

r1 r2 r3 k (%) R(log L) �D

1.01 �944.1 106.8
1.09 �942.0 106.0
1.02 �943.3 106.5
1.18 �941.0 105.6

1.4 1.4 1.8 0.88 �943.5 106.6
4.9 5.0 14.6 0.95 �941.9 105.9



Table B4
Table showing the mean parameters across observers and combined log likelihoods and mean deviances obtained from a maximum-likelihood fit of the probability summation
model to the Quad RF data.

Model s g1 g2 g3 g4 r1 r2 r3 k (%) R(log L) �D

T0G1S0 53.1 0.91 �705.6 122.9
T1G1S0 1.01 52.9 0.92 �705.7 123.0
T0G4S0 49.1 76.8 43.9 50.2 1.01 �702.7 121.0
T1G4S0 1.10 47.8 74.9 42.6 48.1 1.07 �702.8 121.0
T0G1S3 73.3 0.8 1.2 1.4 0.80 �704.5 122.2
T1G1S3 1.04 72.7 0.8 1.1 1.4 0.81 �704.6 122.3

Fig. 8. Output of the cross-validation procedure for the Quad RF condition. For more details see Fig. 7 caption.
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4. Discussion

By measuring the receiver operating characteristics for detect-
ing RF pattern modulations we have demonstrated that SDT is
the correct framework to use when modelling the results from
experiments that use RF pattern stimuli. This means that compar-
isons made against previous probability summation models based
on HTT must be re-examined. In our summation experiments we
find that the summation slopes found using an interleaved design
(with extrinsic uncertainty) are much steeper than those from a
blocked design (without extrinsic uncertainty). In fact, we find
almost no summation in our blocked experiments. We explain this
by suggesting that observers focus on locally detecting just one
cycle of the RF pattern even when multiple cycles are presented,
rather than exploiting their ability to combine information over
multiple cycles. Some previous studies have reported steeper
slopes with a blocked design (Bell & Badcock, 2008; Dickinson
et al., 2010, 2012; Loffler et al., 2003; Schmidtmann et al., 2012;
Tan et al., 2013). One explanation for this discrepancy is that these
studies typically randomised the phase of their RF stimuli within a
block. This introduces uncertainty effects that will steepen the
threshold vs. n slope, as the observer cannot reliably monitor only
the appropriate mechanisms on each trial (making the task more
like the interleaved condition).

In the interleaved experiments the strategy that we suggest our
observers adopted for the blocked experiments will not work (as
the observer cannot rely on the modulation being applied to any
one cycle) and so the observer monitors the entire stimulus. The
results from this interleaved condition were closer to those found
in previous studies (Table A1). These slopes can be accounted for
by either an additive or a probability summation model under
SDT (Kingdom et al., 2015). Where these previous studies were
able to reject probability summation this is because they were
using the version of the model derived under HTT (typically the
equation provided by Quick, 1974). Even after performing exten-
sive modelling, the only conclusion we can draw is that once an
SDT probability summation model is applied it is able to behave
very much like the additive summation model. For the data we col-
lected and the analysis we conducted we are not able to reject the
probability summation model. If previous studies that found simi-
lar summation slopes had performed their modelling under SDT
they would have likely been unable able to reject the probability
summation model either. We also find little difference in summa-
tion between our Single and Quad RF stimulus designs, suggesting
that summation between RF patterns may occur in the same way as
summation within an RF. Previous research has also suggested that
the detection of RF patterns may not differ from that of modulated
line stimuli (Mullen, Beaudot, & Ivanov, 2011). Poirier and Wilson
(2006) developed a model that specifically accounted for the detec-
tion of RF pattern modulation. In brief, the model detects an RF
pattern by generating a map of local curvatures and then matching
that map to an RF template. Our results suggest that the process
underlying detection may not be specific to an RF stimulus. It
may be the case that the curvature map alone is sufficient for
detection using only local cues, or that global templates can be
generated for arbitrary shapes (in our case perhaps the shape of



Table A1
Summary of summation slopes measured in RF summation studies compared to the
�1=b slopes predicted by the HTT probability summation model. The slopes marked
with asterisks (⁄) are mean values.

Reference f Summation slope

HTT PS Empirical

Hess et al. (1999) 4 �0.33⁄ �0.52⁄

8 �0.33⁄ �0.44⁄

Loffler et al. (2003) 3 �0.33 �0.86
5 �0.33 �0.69

10 �0.33 �0.64
24 �0.33 �0.31

Bell and Badcock (2008) 5 �0.41 �0.76⁄

6 �0.41 �0.69⁄

Dickinson et al. (2010) 3 �0.43⁄ �0.75⁄

Dickinson et al. (2012) 4 �0.52⁄ �0.80⁄

Schmidtmann et al. (2012) 3 �0.33 �0.65
4 �0.33 �0.53
5 �0.33 �0.61

20 �0.33 �0.40
Tan et al. (2013) 3 �0.53⁄ �0.92⁄
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the region in the centre of our Quad RF display that is bounded by
the inner edges of the four RF patterns).

The findings we report are for RF4 patterns. Steeper summa-
tion slopes that may be incompatible with probability summa-
tion (even under SDT) have been found previously for RF3
patterns (e.g. Loffler et al., 2003). In general summation slopes
become shallower for increasing radial frequencies (Loffler
et al., 2003; Schmidtmann et al., 2012). We would therefore
expect that for higher radial frequencies than the one tested
here the probability summation model would become an
increasingly viable candidate. Although our results suggest that
the detection of RF patterns may not be a global process, it is
important to note that these results indicate what is happening
at threshold. Another source of evidence used to argue that RF
patterns are processed globally comes from adaptation studies
that investigate suprathreshold perception (Anderson, Habak,
Wilkinson, & Wilson, 2007; Bell & Badcock, 2008; Bell,
Gheorghiu, & Kingdom, 2009; Bell et al., 2010). It may be the
case that global RF mechanisms exist but are not more sensitive
than local detection at threshold. If it is the case that RF patterns
are detected locally at threshold by neurotypical observers then
this has implications for studies that use the detection of RF pat-
terns to distinguish between local and global strategies in clini-
cal populations such as in autism (Perreault, Habak, Lepore,
Mottron, & Bertone, 2015).

Our result also has implications for other areas in which data
are tested against a HTT probability summation model. In the
case where the use of a HTT framework is not supported (e.g.
by ROC curves) then one should also consider applying a SDT
probability summation model. We are not the first to suggest this
(Tyler & Chen, 2000), and several studies in contrast detection
have already demonstrated the differences this can make (e.g.
Meese & Summers, 2012). More recent work on the combination
of local orientations into a coherent texture has also shown that
probability summation under SDT may be involved
(Schmidtmann, Jennings, Bell, & Kingdom, 2015). We hope that
the further explanation and Matlab code that we provide in our
Supplementary materials will encourage other researchers to con-
sider applying these models to their results. The similarities
between the predictions possible under the additive and probabil-
ity summation models do present a challenge however. To solve
this, and as a way of answering the outstanding question left
by our study, we suggest that it is possible to design a future
experiment that selectively tests conditions to distinguish
between the additive and probability summation models in the
shortest number of trials. This could be done with entropy-
minimisation, using the same principles on which the Psi method
is based (Kontsevich & Tyler, 1999).
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Appendix A. Summation slopes from previous studies

Table A1 shows a summary of the summation slopes (log
threshold vs. log number of modulated cycles) reported in previous
studies along with the HTT probability summation model
predictions.
Appendix B. Mean parameters from model-fitting

The parameters obtained for each observer from the maximum-
likelihood fitting of our summation models are provided as a
Supplementary material. Presented in this appendix are the mean
parameters averaged across observers, along with the combined
log likelihoods and deviances (D, calculated relative to the likeli-
hood of the saturated model for the holdout data) for each model.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.visres.2016.03.003.
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