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Abstract

The south west coast of India has been showingeadgtincrease in shellfish
cultivation both for local consumption and fishexyport, over recent yearBerna viridis
and Crassostrea madrasenseae two species of bivalve molluscs which grow oms
selected regions of southern Karnataka, closedcciy of Mangalore. In the early 1980s,
shellfish consumers in the region were affectedirigxication from Paralytic Shellfish
Poison present in local bivalves (clams and oystersulting in hospitalisation of many,
including one fatality. Since then, there have beenfurther reports of serious shellfish
intoxication and there is little awareness of theks from natural toxins and no routine
monitoring programme in place to protect shellfebnsumers. This study presents the
findings from the first ever systematic assessméttie presence of marine toxins in mussels
and oysters grown in four different shellfish hatweg areas in the region. Shellfish were
collected and subjected to analysis for ASP, PSPligophilic toxins, as well as a suite of
non-EU regulated toxins such as tetrodotoxin atecssd cyclic imines. Results revealed the
presence of low levels of PSP toxins in oystersufhout the study period. Overall, total
toxicities reached a maximum of 10% of the EU ratpry limit of 800 ug STX eqg/kg. Toxin
profiles were similar to those reported from théQ @utbreak. No evidence was found for
significant levels of ASP and lipophilic toxinstta@ugh some cyclic imines were detected,
including gymnodimine. The results indicated ttreg tisk to shellfish consumers during this
specific study period would have been low. Howewath historical evidence for extremely
high levels of PSP toxins in molluscs, there istrang) need for routine surveillance of
shellfish production areas for marine toxins, irdesr to mitigate against human health
impacts resulting from unexpected harmful algabhis, with potentially devastating socio-
economic consequences.

Keywords
Shellfish, India, Lipophilic toxins, Paralytic Skedh Poisoning, Amnesic Shellfish
Poisoning, LC-FLD, LC-UV, LC-MS/MS
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1. Introduction

Marine biotoxins comprise various groups of nalyratcurring compounds present
in Harmful Algal Blooms (HAB), a natural phenomentaused by the overgrowth of marine
phytoplankton (Viscianet al, 2016). Through filter feeding behaviour, bivalvellascs can
accumulate toxins from harmful algae (Landsber@22Mallegraef, 2003; Llewellyet al,
2006; Deed=t al., 2008). Some groups of toxins are known to causeadmusickness after
being consumed (Meaet al, 1999; Erdneret al, 2008). ASP is caused by domoic acid
(DA), a cyclic tricarboxylic amino acid, and potetiy other toxic DA isomers. Following
human consumption of DA-contaminated shellfish, gioms can be gastrointestinal and/or
neurological, leading potentially to fatalities ffdey et al, 2004). In comparison, Paralytic
Shellfish Toxins (PST) comprise a family of morarh50, mostly hydrophilic, structural
analogues of the tetrahydropurine saxitoxin (Wiesel, 2010). Following ingestion by
humans, these highly potent neurotoxins can indyoeptoms such as nausea, humbness,
breathing difficulties, paralysis, and at high eglowconcentrations, death (EFSA, 2009a).
Tetrodotoxin (TTX) produces a near-identical tosesponse in mammals as saxitoxin and its
presence has recently been proven in Asian (Kodamah, 1993; McNabtet al, 2014) and
European bivalve molluscs (Turnet al, 2015a, Vlamiset al, 2015). Lipophilic toxins
(LTs) include compounds such as the DSP toxinsdaikaacid (OA), dinophysis toxin-1 and
-2 (DTX1 and DTX2), including their ester derivads/(often termed DTX3), the azaspiracids
(AZAs), yessotoxins (YTXSs), pectenotoxins (PTXsgdannumber of cyclic imines including
the spirolides (SPXs) and gymnodimine (GYM) (McNaital, 2005). The acute effects of
DSP and AZP are less severe than the effects fisfh &hd ASP, with no known fatalities
resulting from intoxication following ingestion any of the regulated lipophilic toxins
(Blancoet al, 2005). A range of toxicological effects have hoerebeen reported, including
tumour promotion and carcinogenicity, so seriouagierm health effects cannot be
discounted following exposure to DSP toxins (Valesiaset al, 2013). Cyclic imines are
known to be fast acting toxins following directention into mice, but there is no evidence
for acute oral toxicity to date in humans (EFSA1@OHes<=t al, 2013).

Pseudo-nitzschiaspp. are the causative organisms for productiorDAf leading
potentially to ASP (Batesgt al, 1989; Lundholmet al, 1994). Paralytic shellfish toxins
(PST) are produced by several species of phytomankncluding Alexandrium spp.,
Gymnodinium catenaturand Pyrodinium bahamensévan Dolah, 2000)Phytoplankton
responsible for DSP includ®rorocentrum lima and a range ofDinophysis species
(Yasumotoeet al, 1980; Mortoret al, 2009; Reguerat al, 2014). Yessotoxins are known to
be produced byProtoceratium reticulatunand Lingulodinium polyedrun{Visciano et al,
2016) Azaspiracids, the most recently discovered of #wulated marine toxin classes, are
now known to be produced by the dinoflagellataadinium spinosurfKrock et al, 2009a;
Tillmann et al, 2009) together with a number of other specie&zzdinium(Tillmann et al,
2010, 2011). Algal imines such as gymnodimine, giorins and spirolides have been
isolated from dinoflagellatesGymnodinium sp., Vulcanodinium rugosumand A.
ostenfeldi/peruvianumespectively (Hwet al.,2001, Moestrut al, 2009; Seket al, 1995).
As opposed to all the dinoflagellate sources faséntoxins, TTX and a number of related
analogues (TTXs) are shown to be produced by aerahgnarine bacterial species. Genera
proposed includ®ibrio, Bacillus, Aeromonas, Alteromonas, and PeendnagYasumotoet
al., 1988; Wuet al, 2005; Nogouchet al, 2006, 2008; Wangt al, 2008; Chawet al, 2011,
Turneret al, 2015a), although links to occurrenceRvbrocentrum cordatum/minimutrave
been recently hypothesised (Vlareisal, 2015).

Along the coast of India there have been reportshef occurrence of several
phytoplankton species. These include PSP toxinymiod species such @dexandriumspp.,
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including A. tamarense, A. minutuamdA. catenella andGymnodinum catenaturAmong
identified DSP toxin producers welRinophysisspecies, such d3.caudata, D.acuta anb.
acuminata.DA producers were represented herePlsgudonitzchigpp. A PSP outbreak has
been reported previously from the Mangalore reg@b®W India, which resulted in human
intoxication including one fatality (Karunasagsral, 1984; Karunasagat al, 1990; Segar
et al, 1989). Two other PSP outbreaks have also beeasrtegpfollowing consumption of
toxic bivalves, with one in 1981 from Kalpakkam,an&€hennai, on the east Indian coast
involving a low number of people (unpublished datajl a second in September 1998 from
Vizhijam, near Trivandrum, when over 500 peopleaveospitalised and at least five deaths
were reported (Karunasagetral, 1998). To date there have been no reported cawes of
ASP or DSP intoxication in humans anywhere in Indith an absence of any routine
regulatory monitoring programme for shellfish toxim India, there is a scarcity of data
describing the prevalence of marine toxin occureancshellfish.

The objectives of this study were therefore to sssbe presence of domoic acid,
paralytic shellfish toxins, tetrodotoxin and lipaphtoxins in mussels and oysters harvested
in the marine waters of Mangalore, SW India. Theeasment included the analysis of
shellfish species harvested over a period of 13thsoinom four different shellfish harvesting
beds in the Mangalore region. The detection of lydrophilic or lipophilic biotoxins would
provide links to toxic phytoplankton previously ocefed in Indian waters together with
evidence for the potential risk to shellfish consusnfrom a wide range of natural shellfish
toxins.

2. Materials and methods
2.1 Samples

The southern Karnataka coastline consists of ldreggches of wide sandy beaches
with a few rocky outcrops bisected by several majeers originating from the western
Ghats. Where these discharge into the Arabian 8eg form a network of estuaries,
wetlands, mudflats and mangroves, often sheltereah the ocean itself behind sandspits
(Sowmya and Jayappa, 2016). At several places dhengoast, rich natural bedsmfviridis
occur in the intertidal and subtidal rocky areass{®umar and Krishnamoorthy, 2010;
Sasikumar and Krishnakumar, 2011; Sasikumtaill, 2011). Oysters are less abundant,
being present in only some of the major estuaneasa(Rao and Rao, 1985). 110 samples of
shellfish tissue were analysed during this studynsesting of both green musseBefna
viridis) and Indian backwater oystefSrassostrea madrasenkid he four marine monitoring
sites incorporated in the study were Gangoli, Mulasthana and Someshwiiglre 1). At
Gangoli, mussels were collected from the Panchagaatigestuary and at Someshwar from
the open coast. Oysters were collected from theulad (Sasthana) and Nandini (Mulki)
estuarine areas. Shellfish were collected using#mee methods twice a month over the 13-
month study periodT{able S1). Typically, 25-50 individuals were collected feach sample.
The samples were transported to the laboratorh@fCiepartment of Fishery Microbiology,
College of Fisheries, Mangalore and were frozeti| tequired for sample processing.

2.2Reagents and chemicals

Certified reference toxins for PST, DA and LTs webtained from the Institute of
Biotoxin Metrology at the National Research CountiCanada (NRCC, Halifax, Nova
Scotia, Canada). TTX CRM was obtained from Cifgag, Spain). Microcystins and
nodularin were obtained from Enzo Life Sciencestex UK. All reagents for preparation of
LC-MS/MS mobile phases were LC-MS grade, and these for LC-UV were HPLC grade
or better. Trifluoroacetic acid®99% purity), glacial acetic acid99% purity), formic acid
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(>99% purity) and 25% ammonia (MHwvere all LC-MS grade and purchased from Sigma-
Aldrich (Poole, Dorset, UK).

2.3 Shéllfish extraction

For each sample, a suitable number of individuaésewshucked to generate a
minimum of 100 g shellfish tissue. Shellfish meatsvwhomogenized and sub-samples taken
for each of the extraction methods. For each batdamples extracted, a procedural blank
consisting of deionised water was prepared. Exdnaetre stored (-28C) until shipped in one
batch to the Cefas laboratory for toxin analysistr&cts were received after three days of
transportation in good condition with temperaturesntained < 0°C.

PSP and TTX extraction was conducted using thédnadeof Turneret al. (2015c).
5+0.01g of each sample was extracted in 5 mL ofat@ic acid in polypropylene centrifuge
tubes. The tissues and solvents were vortexed Gos ®efore adding capped tubes to a
boiling water bath for 5 ming 10 s. Samples were subsequently cooled by planicgld
running water for a minimum of 5 mins. After codintubes were vortexed (90 s) and
centrifuged for 10 minutes at 4500 rpm, prior teal@ing the supernatant into a 15 mL tube.

LT extraction was conducted using a scaled-dowsieerof EURL (2015). 1+0.01g
of each homogenised shellfish tissue sample wasdattda 15 mL centrifuge tube. 4.5 mL
of 100% methanol was transferred to the homogeaatethe tubes capped before vortex
mixing for 3 min. Extracts were centrifuged at 45pfn for 8 min at 20°C. The supernatant
was decanted into a new 15 mL tube for each saexiact and PB, before adding a second
4.5 mL aliquot of 100% methanol to the tube contgjrthe pellet. The shellfish solvent mix
was again vortex-mixed, centrifuged and the supams from both extraction steps
combined before diluting to a total volume of 10.mL

ASP extraction was conducted using a method basedab of Quilliamet al, 1995.
2+0.01 g of each homogenised shellfish tissue samphs weighed into a 15 mL
polypropylene centrifuge tube. 4 mL of 50/50 (wigthanol/water was pipetted into sample
tubes and vortexed for 2 min. Extracts were thertrdaged (3500 rpm) for 20 min at 20°C.
The supernatant for each shellfish sample and PB tnansferred into separate 15 mL
polypropylene tubes. A further 4 mL aliquot of 50/&/v) methanol/water was added to the
shellfish pellet tube, vortexed and centrifugedpbe decanting into the tube containing the
first supernatant. The supernatant was diluted titad volume of 10 mL with 50/50 (v/v)
methanol/water and gently shaken until thoroughibyerah.

2.4 Clean-up and analysis

SPE clean-up of acetic acid extracts prior to aialipr PST and TTX was performed
following the method of Boundst al, (2015). SPE eluents were vortex-mixed and diluted
3:1with acetonitrile in polypropylene LCMS-graddé@sampler vials, before placing into the
autosampler (set at +X0) for analysis using an Acquity I-Class UPLC sgstpupled to a
Waters Xevo TQ-S tandem mass spectrometer (Wadenschester, UK). UPLC was
conducted using a 1.7 um, 2.1x150 mm Waters Acdghitd Amide UPLC column in
conjunction with a Waters VanGuard BEH Amide gueadridge, held at +6C.
Chromatographic and MS/MS parameters used werdlgxhose detailed by the validated
method of Turneet al, 2015c Table 1). Samples were run together with six-point externa
calibration solutions prepared from CRM stocks. i€y equivalence factors (TEFs) and
relative response factors (RRFs) for PST were tdeseribed by Turnest al, 2015c Table
2). For TTX analysis the modified method of Turetrl, (2017a) was followed, with
detection conducted using six-level calibratiomd&ads prepared from TTX stock solution.
Method performance characteristics are those regdny Turneet al, 2015c and Turnest
al., 2017a.
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Methanolic extracts for each sample was thawedifiaced through a 0.2 um nylon
syringe filter and an aliquot taken for LC-MS/MSa#ysis of LT. A second 1.0 mL aliquot of
the raw extract was transferred into a 2 mL scrapped vial for alkaline hydrolysis, by
adding 125 pL of 2.5 M NaOH. After vortex mixintgtvial was heated to 76 £°€ for 40
min, cooled to room temperature before the addioh25 pL of 2.5 M HCI. The hydrolysed
extract was then ready for LC-MS/MS analysis, usingAcquity Ultra Performance Liquid
Chromatography (UPLC) system coupled to a Water X&) tandem mass spectrometer.
UPLC was performed using a Waters BEH C18 colundmx(2.1 mm, 1.7 um) with a
VanGuard BEH C18 (5 x 2.1 mm, 1.7 um) guard cag#idrhe analytical method used was
as described by Turner and Goya, 20L&b{e 1). Toxin concentrations were quantified
against six-point external calibrations preparednfiNRCC standards. Concentrations of free
toxins were determined in non-hydrolysed extraett) hydrolysed extracts used for
assessment of total OA-group toxins (free plusriisté toxins). LTs were confirmed as
being detected when both the quantitative and figraMRM transitions were present at the
expected toxin retention time, with a concentratibove the method limit of quantitation,
taken in this study as 4 pg/kg per toxin.

The 50/50 (v/v) methanol/water extracts were fdtethrough 0.2 pm syringe nylon
membrane filters into glass autosampler vials. Glatographic separation for ASP analysis
was conducted using a Phenomenex (Manchester, iéték PFP 5.0 um 4.6 x 150 mm
HPLC column. LC-UV analysis was performed usinglégi 1100/1200 modules (Agilent,
Manchester, UK): quaternary pump, vacuum degassgosampler, column over and UV-
diode array detector (242 nm). Samples were rungaide external calibration standards for
detection and quantitation purposes, with a metl@@ equivalent to 0.2 mg domoic acid
per kg shellfish tissue.

3. Results
3.1 PSP and TTX toxins
3.1.1Total PST and TTX

PST were detected in all four shellfish harvestamgas during the study, in both
mussel and oyster samples. The highest concemisatiere quantified in oysters from Mulki
and Sasthana, with values reaching > 75 pg STXgegykboth sites, with a maximum
concentration of 82 ug STX eqg/kg in oysters fronstBana, collected in December 2015.
Significantly lower total PST concentrations wetgamned in the mussels collected from
both Gangoli and Someshwar, with the highest canagon ~ 8 pg STX eg/kg in the
mussels collected from Gangoli during December 2®idure 2 illustrates the temporal
variability in total PST quantified in both speciasross the four sites. At both oyster sites,
very low (< 5ug STX eqg/kg) levels of PST were preésd between December 2014 and
March 2015. Subsequently from the end of March 20a®%ards, at both sites, a sudden
increase in PSP toxicity was found, with toxins a@mng in the flesh consistently until the
end of the study period in January 2016. Much lolseels were quantified in the mussels
from the two other sites, with the highest concarmins determined in shellfish harvested
during early 2015. No TTX was detected in any & smples from any of the four shellfish
harvesting areas.

3.1.2 PST profiles

Oyster samples from Mulki and Sasthana were foun@¢adntain a range of PST
analogues, including C1&2, GTX2&3, GTX1&4, dcSTX,T® and GTX5. No C3&4,
dcGTX2&3, dcGTX1&4, NEO, dcNEO or doSTX was detecte any of the shellfish
samples. In terms of toxicity equivalents, the pesf were dominated by GTX1 (mean
proportion ~60%), followed by GTX4, GTX2, GTX3 addSTX around the same proportion
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(mean ~ 10-15%). The N-sulfocarbamoyl analogueg&2Cdnd GTX5 were present at lower
relative levels, with mean proportions around 4-@8gure 3 illustrates the mean toxin

profiles from November 2014 to January 2016 in ensstfrom each of the two harvesting
areas. The results indicate the near identicalilpsoft both sites. Due to the overall low
toxicity in the mussel samples, the toxin profilgeportions were not determined. However,
toxins detected included dcSTX, STX, GTX2, C1 ar’i Botably GTX1, the dominant PST
congener in the oyster samples, was not detected.

3.2 Lipophilic toxins

Analysis of methanolic extracts of mussels andtezgsshowed a near complete
absence of regulated lipophilic marine toxins fritna four study areas. No MRM peaks were
identified for any of the OA-group toxins, AZAs aid Xs. Esterified OA-group toxins were
absent in the hydrolysed extracts. The only LT idiel was PTX2, present at very low
concentrations (0.4 pg/kg) in one oyster samplmfidulki harvested in Jan 2015. No other
shellfish samples from this study contained PTX2my other pectenotoxins.

The 3 cyclic imines (Cls) analysed in these sampiere SPX1 (13-desMeC
spirolide), SPXG (20-Me SPXG spirolide) and GYM ifgyodimine). Of these three, SPX1
and GYM were identified, with 42 samples (~38%)tadming detectable levels of SPX1 and
all 110 containing GYM. Concentrations of SPX1 wiene ranging from 1.7-2.0 pg/kg.
Figure 4 summarises the GYM concentrations in both shelljsécies throughout the year-
long study, with the higher levels found in oyst@rsomparison to mussels. Concentrations
in oysters ranged between 9.0 and 40.2 pg/kg, elebvated values between Nov 2014 to Jan
2015 (mean 24.4 ug/kg). Mussels contained GYMwaetcand more consistent
concentrations throughout the study (4.7-9.5 pgtkegan = 6.8 pug/kg).

3.3ASP

Out of the 100 bivalve mollusc samples analysethisistudy, only two showed trace
levels of DA. One mussel sample from Gangoli, addd in Nov 2014 showed DA at 0.16
mg/kg, and an oyster sample harvested from Mulkteb 2015 presented a similar level of
0.18 mg/kg. Both results were below method LOQ alode to the LOD (0.2 mg/kg). No
other samples showed chromatographic peaks ingécatiDA.

4. Discussion

In relation to the PST regulatory action limit diBug STX eqg/kg, the maximum
concentrations of PST determined in this study u@re The highest concentrations of
toxins quantified reach approximately 10% of acliamit, thereby representing a low overall
risk to shellfish consumers based on the data g&tein this study. The recent work of
Turneret al, (2016), showed evidence for low PST uptake (marn31 ug STX eg/kg) in
mussels in mesocosms contain&igxandrium minuturat 100,000 cells/L held at conditions
(temperature Z& and 32C; salinity 35 PSU and 31 PSU) similar to the emwmental
conditions recorded in Mangalore during this st(igble S1). The highest concentrations
were determined in oysters from Mulki and Sasthanapmparison to the mussels from
Gangoli and Someshwar. Without any of the sitesasnmg both shellfish species, however,
it is not clear whether the significant differencesorded are due to the differences in toxin
uptake rates between the species, or relate mdhe twonditions at individual sites. Previous
reports of PSP in shellfish from this region show&P toxicity rising to 1200 pg STX eq/
kg in oystersCrassostrea cucullajeand 3400 ug STX eq/ kg in clamddretrix casta
(Karunasagaet al, 1984). Several PSP intoxications in humans wepented including one
fatality. Cooked clams obtained from the homesfigficéed people and clams collected from
the natural bed were analysed by MBA and foundtdain PSP at a level of 3370 ug STX



300 eqg/kg (Karunasagat al, 1984). Since then, there have been no furthentepf PSP

301 intoxication in local consumers. Other than theorépof low levels of PSP toxicity in

302 molluscs during 1985 and 1986 (Segtal, 1989), there have been no further reports of
303 PST accumulation in bivalve molluscs from this oggialthough the absence of a routine
304  monitoring programme may explain this non-detection

305 The results from this study show the almost unifpnesence of PST in oysters

306 between April and December 2015. Blooms of dinadlkges along the west coast of India
307 are thought by some authors to proliferate betv&sgtember and October, although this
308 may relate in part to the lower number of phytogtan analyses conducted during monsoon
309 season (D’Silvat al, 2012). Other authors, however, have evidenceah@rthnce of

310 diatoms in the water column until December, withafiagellates increasing their overall

311  contribution during February to March (Aspluetal, 2011). Mean toxin profiles in oysters
312 from both shellfish harvesting areas were neamyiatal, with a clear dominance of GTX1,
313 together with the presence of other gonyautoxinBX&5), dcSTX, STX and C1&2. Toxin
314  profiles determined from the 1983 outbreak samgihesved a similar dominance of

315 gonyautoxins (GTX1-4) and C1&2, as well as lowen@entrations of STX and dcSTX. In
316  addition, the results showed the presence of NEDdaGTX2&3, as well as C3&4, toxins
317 not detected in this study (Karunasagiaal, 1990). These differences may relate to the
318 higher overall toxicity levels found in the 1983rgales in comparison to those from the

319  current study. In addition, the analysis of theboeak samples was performed using a post-
320 column oxidation LC-FLD method, so may have bedesi to interferences for some of the
321 toxins present at low concentrations. Finally, ¢heray have been species-related differences
322 inthe toxin profiles as a consequence of bacterighzymatic toxin transformation within
323  tissues (Bricelj and Shumway, 1998; Cembetlal, 1994; Jaimet al, 2007; Oshima, 1995;
324  Sakamotcet al, 2000; Satet al, 2000; Wieset al, 2010; Turneet al, 2012).

325 At the time of the toxin profile identification mutbreak samples, authors used the
326  qualitative toxin profile, in tandem with the fimgjs of cysts morphologically similar fa

327  cohorticula,to postulate thaAlexandriumspecies was the probable causative organism for
328 PSP occurrence (Karunasagaal, 1990). Since then, the long-term monitoring of

329  phytoplankton communities in this region has resdaomplex interactions between

330 hydrographic parameters such as sea surface tetm@s;aainfall, wind speed and water
331  column mixing and phytoplankton occurrence. Newadss, whilst phytoplankton

332 communities have been highly dynamic in the pasades, the presence of the potentially
333  PSP-producing gener@ymnodiniurrhas been found on a regular basis (Gasthad, 2015).
334  G. catenatunitself was reported to occur both in planktonic agst forms in 1996 from

335 waters in the Mangalore region (God#teal, 1996).A. minutumhas also been found by

336 microscopic and polymerase chain reaction (PCRatien methods in field samples from
337  Mangalore during 1999 (Godle¢ al, 2001). Other toxin producing species identifikzhg

338 the west coast includ® minutum, A. tamarenssdA. catenellgShahiet al, 2015).

339  Certainly the absence of PST analogues relat&l tatenatunsuch as C3&4, GTX6 and

340 dcNEO (Vale, 2010; Costt al, 2015) in this study, indicates that the causatinganisms

341 in Mangalore during 2015 are possilexandriumspp.

342 No evidence was found for the presence of TTX ysamples, even during

343 December whek. parahaemolyticuabundance has been shown to be highest in thizregi
344 (Rehnstam-Holnet al, 2014), although significant variability M. parahaemolyticus

345 abundance has been previously recorded even dimeg of stable water column

346 temperature and salinity (Rehnstam-Holm and Go2i0#2). It is noted however that oysters
347  from this study were collected in the shallow stibial zone and mussels were collected by
348 hand divers from deeper water sites. Consequeanihg of the shellfish from this study were
349 present in the intertidal zones, where exposutkddigh temperatures during low tides may
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potentially result in the increase of bacteriaklsy and therefore promote TTX production
(Turner et al., 2017b).

Domoic acid was detected at trace levels only <ndg/mg), showing little evidence
for accumulation of toxins from DA-producing phytapkton in this region. The presence of
organisms such @seudonitzchiap. (Harnstronet al, 2007; Shahet al, 2015) and
Nitzschiasp. (Harnstronet al, 2009; D’Silvaet al, 2012; Shahet al, 2015) has been
previously reported around the west coast of Iddiang period of diatom dominance in the
water column, although the temporal variabilitypioom occurrence has been highlighted
(Shahiet al, 2015) and the toxicity of such species from thgion has never been tested. As
such the risk, until further toxicity assessmerdaaducted, should not be discounted.

The EU-regulated LTs were notable by their nearqgete absence from both mussel
and oyster samples. This was surprising given teegtence of at least six species of the
genusDinophysisin ~40% of water samples around the coast oveng-term monitoring
period, between 1990 and 2010 (Goéhal, 2015). The detection of trace amounts of the
pectenotoxin PTX2 in one sample indicates the m@sefD. acuminatg Kamiyama and
Suzuki, 2009), but such a species is generallyadsociated with production of OA-group
toxins (Tangcet al, 2004; Reguerat al, 2012, 2014). Species identified along the western
coast of India includ®. acuminata, D. caudata, D. miles, D. norvegicatriiposandD.
rotundata(Shahiet al, 2015), with several of these associated with Bfxih production.
Over a 21-year period of assessmBmophysisspp.weredetected in 19 years (~90%), with
variable (moderate to high cell densities) betwgsars. Moreover, cell counts were
positively correlated with sea surface temperat(6&T) during this period. The highest
presence oDinophysispreviously recorded was during 1996-1998, whicmcioied with the
strongest El Nino Southern Oscillation event of 288 century (Godhet al, 2015), during
which elevated SST resulted in a significant insesi@a net phytoplankton abundance. Mean
annual SST values were >80during this period, before decreasing to ‘€28round 2005
and then increasing to ~&Din 2010 (Godhet al, 2015). During this study, SST ranged
from 26.0C to 29.5C, with a mean of 27.8 °C. Therefore, it is likéhat lower cell densities
of Dinophysisspp. were present between 2014 and 2015, althoughated that there is no
phytoplankton data available to our knowledg@ophysisspecies present in the marine
waters around Mangalore have not to date beenredland tested for toxin production
capability. Until proven otherwise, it is to beenfed that th®inophysispresent around
Mangalore may potentially be non-toxic strains.

The consistently low levels of the spirolide SPXafoughout the study samples is of
little if any consequence to human food safetyegithe lack of evidence for oral toxicity
from cyclic imines (Richareét al, 2001; Davidsort al, 2015). Variou®\lexandrium
species have been identified as SPX producersidmgA. ostenfeldiand more recently the
morphologically similar, but usually smallé, peruvianun{Cembellaet al, 2000; Touzeét
al., 2008).A. peruvianunhas been identified along the western coast oal(8hahet al,
2015) although the toxin concentrations determindtis study perhaps indicate that
phytoplankton producers are present at only vasydensities, which in addition may not be
resolved from the presence of otAéexandriumspecies. Gymnodimine has been linked to
neurotoxicity in mice following i.p injection (Dadsonet al, 2015) and has been isolated
from Gymnodinium mikimotdiSekiet al, 1995), later renamed Karenia selliformis
(Haywoodet al, 2004). Production of GYM has also been demoredrat European strains
of A. ostenfeldi{Salgadcet al, 2015). To date GYM has been identified in shaflfirom
Northern and Southern Africa, New Zealand (Kretlal, 2009; Davidsort al, 2015), and
more recently Mexico (Garcia-Mendoetal, 2014).Gymnodiniunspp. have previously
been reported as re-occurring in the water coluhtheostudy areas over the past few
decades (Godhet al, 2015), particularly during the warmer months.déscussed in the
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context of PST results, blooms of dinoflagellatehis region are generally at their
maximum density between September and October {i2'8t al, 2012). GYM

concentrations in oysters, however, showed a maanmand December to January, 2-3
months after the expected peak of phytoplanktonrbk Moreover, the increase in GYM
was not observed during the end of 2015. The higbecentrations of GYM in oysters from
this study in comparison to mussels are interegjingn the general consensus that many
marine toxins accumulate to significantly highars in mussels than many other species of
mollusc (e.g. Bricelj and Shumway, 1998). As whik PST results, the inter-species
differences for GYM may either relate to speciesediic uptake effects or to differences in
the water column during shellfish feeding and taxtake.

Overall the results have indicated a relatively lewel of risk from biotoxins for the
majority of the study period. With maximum total P&ncentrations around 10% of the
current EU regulatory MPL of 800 ng STX eqg/kg, mmgicant concentrations of regulated
lipophilic marine toxins and only trace levels @indoic acid detected, there is good evidence
that the shellfish grown and consumed during 20&Eewelatively free from harmful toxins.
However, with past work showing significant interaaial differences in toxin phytoplankton
production in Mangalore, more analysis on a largenber of samples would be required
over a longer time period to generate a better ngtaeding of risk to shellfish consumers in
this region of India. Given the significant growththe local shellfish industry including
international export, and the socio-economic img#uits brings to the region, it is critical
that routine monitoring of bivalve mollusc productiareas is implemented, to help mitigate
against these potentially life-threatening nattwains.
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Table 1. MRM transitions used for LC-MS/MS detection and quantitation of PST, TTX and LT
analogues, with primary (quantitative) transitions highlighted in bold

Analogue ESI+ Transition ESI- Transition

STX 300.1>204.1,138.0

NEO 316.1>126.1,,220.1

dcSTX 257.1>126.1,222.0

dcNEO 273.1>126.1,225.1

doSTX 241.1>60.0,206.1

TTX 320.1>302.1,162.1

GTX2 394.1>351.1, 333.1
GTX3 396.1>298.1 394.1>333.1

GTX1 410.1>367.1,349.1
GTX4 412.1>314.1 410.1>367.1

GTX5 380.1> 300.1 378.1>122

GTX6 396.1>316.1 394.1>122

dcGTX2 351.1>164.0,333.1
dcGTX3 353.1>255.1 351.1>333.1
dcGTX1 367.1>274.1,349.1
dcGTX4 369.1>271.1 367.1>349.1

C1 474.1>122.0,351.1
c2 396.1>298.1 474.1>122.0

Cc3 412.1>332.1 490.1>410.1

Cc4 412.1>314.1 490.1>,392.1

OA, DTX2 803.5>255.1, 113
DTX1 817.5>255.1, 113
YTX 570.5>467.4, 396.2
Homo YTX 577.5>474.2, 403.2
45 OH YTX 578.5>467.4, 396.2
45 OH homo YTX 585.5>474.2, 403.2
AZA1 842.5>654.4, 362.3

AZA2 856.6>654.4, 362.3

AZA3 828.5>658.4, 362.3

PTX1, PTX11 892.5>821.5,213.1

PTX2 876.3>823.5,213.1

SPX1 692.5>164.1, 444.3

GYM 508.4>136.1, 162.1

20-Me SPX-G* 706.5>164.2
*Only 1 MRM used for identification and quantitation




Table 2. Toxicity equivalent factors (TEFs) used in study.

Toxin TEF
Cc1 0.01
c2 0.1
C3 0.02
C4 0.1
dcGTX2 0.2
dcGTX3 0.4
dcGTX1 0.5¢
dcGTX4 0.5¢
GTX2 0.4
GTX3 0.6
GTX1 1
GTX4 0.7
GTX5 0.1
GTX6 0.1
doSTX 0.05°
dcSTX 1
dcNEO 0.4
STX 1
NEO 1
OA 1
DTX1 1
DTX2 0.6
PTX2 1
AZA1 1
AZA2 1.8
AZA3 1.4
YTX 1
homo YTX 1
45-OH YTX 1
45-OH homo YTX 0.5

1- dcGTX1 and dcGTX4 based on assumed toxicity equivalency factors (Sullivan, 1983)
2-  doSTX toxicity equivalency factor (Turner et al., 2015b)



Figure 1. Map showing location of shellfish harvesting areas and photos of four marine monitoring
points for bivalve molluscs sampled during this study a) Gangoli b) Mulki c) Someshwar d) Sasthana
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Figure 2. Summary of total PST concentrations (ug STX eq/kg) quantified in mussels and oysters from
four shellfish harvesting areas in Mangalore
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Figure 3. PST profiles in oysters from Mulki and Sasthana
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Figure 4. Summary of GYM concentrations (ug/kg) quantified in mussels and oysters from four
shellfish harvesting areas in Mangalore
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