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Abstract 23 

The south west coast of India has been showing a steady increase in shellfish 24 

cultivation both for local consumption and fishery export, over recent years. Perna viridis 25 

and Crassostrea madrasensis are two species of bivalve molluscs which grow in some 26 

selected regions of southern Karnataka, close to the city of Mangalore. In the early 1980s, 27 

shellfish consumers in the region were affected by intoxication from Paralytic Shellfish 28 

Poison present in local bivalves (clams and oysters) resulting in hospitalisation of many, 29 

including one fatality. Since then, there have been no further reports of serious shellfish 30 

intoxication and there is little awareness of the risks from natural toxins and no routine 31 

monitoring programme in place to protect shellfish consumers. This study presents the 32 

findings from the first ever systematic assessment of the presence of marine toxins in mussels 33 

and oysters grown in four different shellfish harvesting areas in the region. Shellfish were 34 

collected and subjected to analysis for ASP, PSP and lipophilic toxins, as well as a suite of 35 

non-EU regulated toxins such as tetrodotoxin and selected cyclic imines. Results revealed the 36 

presence of low levels of PSP toxins in oysters throughout the study period. Overall, total 37 

toxicities reached a maximum of 10% of the EU regulatory limit of 800 µg STX eq/kg. Toxin 38 

profiles were similar to those reported from the 1980 outbreak. No evidence was found for 39 

significant levels of ASP and lipophilic toxins, although some cyclic imines were detected, 40 

including gymnodimine. The results indicated that the risk to shellfish consumers during this 41 

specific study period would have been low. However, with historical evidence for extremely 42 

high levels of PSP toxins in molluscs, there is a strong need for routine surveillance of 43 

shellfish production areas for marine toxins, in order to mitigate against human health 44 

impacts resulting from unexpected harmful algal blooms, with potentially devastating socio-45 

economic consequences. 46 
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1. Introduction 52 

Marine biotoxins comprise various groups of naturally-occurring compounds present 53 

in Harmful Algal Blooms (HAB), a natural phenomenon caused by the overgrowth of marine 54 

phytoplankton (Visciano et al., 2016). Through filter feeding behaviour, bivalve molluscs can 55 

accumulate toxins from harmful algae (Landsberg, 2002; Hallegraef, 2003; Llewellyn et al., 56 

2006; Deeds et al., 2008). Some groups of toxins are known to cause human sickness after 57 

being consumed (Mead et al., 1999; Erdner et al., 2008). ASP is caused by domoic acid 58 

(DA), a cyclic tricarboxylic amino acid, and potentially other toxic DA isomers. Following 59 

human consumption of DA-contaminated shellfish, symptoms can be gastrointestinal and/or 60 

neurological, leading potentially to fatalities (Jeffrey et al., 2004). In comparison, Paralytic 61 

Shellfish Toxins (PST) comprise a family of more than 50, mostly hydrophilic, structural 62 

analogues of the tetrahydropurine saxitoxin (Wiese et al., 2010). Following ingestion by 63 

humans, these highly potent neurotoxins can induce symptoms such as nausea, numbness, 64 

breathing difficulties, paralysis, and at high enough concentrations, death (EFSA, 2009a). 65 

Tetrodotoxin (TTX) produces a near-identical toxic response in mammals as saxitoxin and its 66 

presence has recently been proven in Asian (Kodama et al., 1993; McNabb et al., 2014) and 67 

European bivalve molluscs (Turner et al., 2015a, Vlamis et al., 2015). Lipophilic toxins 68 

(LTs) include compounds such as the DSP toxins: okadaic acid (OA), dinophysis toxin-1 and 69 

-2 (DTX1 and DTX2), including their ester derivatives (often termed DTX3), the azaspiracids 70 

(AZAs), yessotoxins (YTXs), pectenotoxins (PTXs) and a number of cyclic imines including 71 

the spirolides (SPXs) and gymnodimine (GYM) (McNabb et al., 2005). The acute effects of 72 

DSP and AZP are less severe than the effects from PSP and ASP, with no known fatalities 73 

resulting from intoxication following ingestion of any of the regulated lipophilic toxins 74 

(Blanco et al., 2005). A range of toxicological effects have however been reported, including 75 

tumour promotion and carcinogenicity, so serious long-term health effects cannot be 76 

discounted following exposure to DSP toxins (Valdiglesias et al., 2013). Cyclic imines are 77 

known to be fast acting toxins following direct injection into mice, but there is no evidence 78 

for acute oral toxicity to date in humans (EFSA, 2010; Hess et al., 2013).  79 

Pseudo-nitzschia spp. are the causative organisms for production of DA leading 80 

potentially to ASP (Bates et al., 1989; Lundholm et al., 1994). Paralytic shellfish toxins 81 

(PST) are produced by several species of phytoplankton including Alexandrium spp., 82 

Gymnodinium catenatum and Pyrodinium bahamense (van Dolah, 2000). Phytoplankton 83 

responsible for DSP include Prorocentrum lima, and a range of Dinophysis species 84 

(Yasumoto et al., 1980; Morton et al., 2009; Reguera et al., 2014). Yessotoxins are known to 85 

be produced by Protoceratium reticulatum and Lingulodinium polyedrum (Visciano et al., 86 

2016). Azaspiracids, the most recently discovered of the regulated marine toxin classes, are 87 

now known to be produced by the dinoflagellate Azadinium spinosum (Krock et al., 2009a; 88 

Tillmann et al., 2009) together with a number of other species of Azadinium (Tillmann et al., 89 

2010, 2011). Algal imines such as gymnodimine, pinnatoxins and spirolides have been 90 

isolated from dinoflagellates Gymnodinium sp., Vulcanodinium rugosum and A. 91 

ostenfeldi/peruvianum respectively (Hu et al., 2001, Moestrup et al., 2009; Seki et al., 1995). 92 

As opposed to all the dinoflagellate sources for these toxins, TTX and a number of related 93 

analogues (TTXs) are shown to be produced by a range of marine bacterial species. Genera 94 

proposed include Vibrio, Bacillus, Aeromonas, Alteromonas, and Pseudomonas (Yasumoto et 95 

al., 1988; Wu et al., 2005; Nogouchi et al., 2006, 2008; Wang et al., 2008; Chau et al., 2011, 96 

Turner et al., 2015a), although links to occurrence of Prorocentrum cordatum/minimum have 97 

been recently hypothesised (Vlamis et al., 2015). 98 

Along the coast of India there have been reports of the occurrence of several 99 

phytoplankton species. These include PSP toxin producing species such as Alexandrium spp., 100 
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including A. tamarense, A. minutum and A. catenella, and Gymnodinum catenatum. Among 101 

identified DSP toxin producers were Dinophysis species, such as D.caudata, D.acuta and D. 102 

acuminata. DA producers were represented here by Pseudonitzchia spp. A PSP outbreak has 103 

been reported previously from the Mangalore region of SW India, which resulted in human 104 

intoxication including one fatality (Karunasagar et al., 1984; Karunasagar et al., 1990; Segar 105 

et al., 1989). Two other PSP outbreaks have also been reported following consumption of 106 

toxic bivalves, with one in 1981 from Kalpakkam, near Chennai, on the east Indian coast 107 

involving a low number of people (unpublished data) and a second in September 1998 from 108 

Vizhijam, near Trivandrum, when over 500 people were hospitalised and at least five deaths 109 

were reported (Karunasagar et al., 1998). To date there have been no reported occurrences of 110 

ASP or DSP intoxication in humans anywhere in India. With an absence of any routine 111 

regulatory monitoring programme for shellfish toxins in India, there is a scarcity of data 112 

describing the prevalence of marine toxin occurrence in shellfish.  113 

The objectives of this study were therefore to assess the presence of domoic acid, 114 

paralytic shellfish toxins, tetrodotoxin and lipophilic toxins in mussels and oysters harvested 115 

in the marine waters of Mangalore, SW India. The assessment included the analysis of 116 

shellfish species harvested over a period of 13 months from four different shellfish harvesting 117 

beds in the Mangalore region. The detection of any hydrophilic or lipophilic biotoxins would 118 

provide links to toxic phytoplankton previously reported in Indian waters together with 119 

evidence for the potential risk to shellfish consumers from a wide range of natural shellfish 120 

toxins.  121 

 122 

2. Materials and methods 123 

2.1 Samples 124 

The southern Karnataka coastline consists of long stretches of wide sandy beaches 125 

with a few rocky outcrops bisected by several major rivers originating from the western 126 

Ghats. Where these discharge into the Arabian Sea they form a network of estuaries, 127 

wetlands, mudflats and mangroves, often sheltered from the ocean itself behind sandspits 128 

(Sowmya and Jayappa, 2016). At several places along the coast, rich natural beds of P. viridis 129 

occur in the intertidal and subtidal rocky areas (Sasikumar and Krishnamoorthy, 2010; 130 

Sasikumar and Krishnakumar, 2011; Sasikumar et al., 2011). Oysters are less abundant, 131 

being present in only some of the major estuarine areas (Rao and Rao, 1985). 110 samples of 132 

shellfish tissue were analysed during this study, consisting of both green mussels (Perna 133 

viridis) and Indian backwater oysters (Crassostrea madrasensis). The four marine monitoring 134 

sites incorporated in the study were Gangoli, Mulki, Sasthana and Someshwar (Figure 1). At 135 

Gangoli, mussels were collected from the Panchagangavali estuary and at Someshwar from 136 

the open coast. Oysters were collected from the Padukere (Sasthana) and Nandini (Mulki) 137 

estuarine areas. Shellfish were collected using the same methods twice a month over the 13-138 

month study period (Table S1). Typically, 25-50 individuals were collected for each sample. 139 

The samples were transported to the laboratory of the Department of Fishery Microbiology, 140 

College of Fisheries, Mangalore and were frozen, until required for sample processing.  141 

 142 

2.2Reagents and chemicals  143 

Certified reference toxins for PST, DA and LTs were obtained from the Institute of 144 

Biotoxin Metrology at the National Research Council of Canada (NRCC, Halifax, Nova 145 

Scotia, Canada). TTX CRM was obtained from Cifga (Lugo, Spain). Microcystins and 146 

nodularin were obtained from Enzo Life Sciences, Exeter, UK. All reagents for preparation of 147 

LC-MS/MS mobile phases were LC-MS grade, and those used for LC-UV were HPLC grade 148 

or better. Trifluoroacetic acid (≥99% purity), glacial acetic acid (≥99% purity), formic acid 149 
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(≥99% purity) and 25% ammonia (NH4) were all LC-MS grade and purchased from Sigma-150 

Aldrich (Poole, Dorset, UK).  151 

 152 

2.3 Shellfish extraction  153 

For each sample, a suitable number of individuals were shucked to generate a 154 

minimum of 100 g shellfish tissue. Shellfish meat was homogenized and sub-samples taken 155 

for each of the extraction methods. For each batch of samples extracted, a procedural blank 156 

consisting of deionised water was prepared. Extracts were stored (-20 oC) until shipped in one 157 

batch to the Cefas laboratory for toxin analysis. Extracts were received after three days of 158 

transportation in good condition with temperatures maintained < 0°C.  159 

 PSP and TTX extraction was conducted using the method of Turner et al. (2015c). 160 

5±0.01g of each sample was extracted in 5 mL of 1% acetic acid in polypropylene centrifuge 161 

tubes. The tissues and solvents were vortexed for 90 s before adding capped tubes to a 162 

boiling water bath for 5 mins ± 10 s. Samples were subsequently cooled by placing in cold 163 

running water for a minimum of 5 mins. After cooling, tubes were vortexed (90 s) and 164 

centrifuged for 10 minutes at 4500 rpm, prior to decanting the supernatant into a 15 mL tube.  165 

LT extraction was conducted using a scaled-down version of EURL (2015). 1±0.01g 166 

of each homogenised shellfish tissue sample was added to a 15 mL centrifuge tube. 4.5 mL 167 

of 100% methanol was transferred to the homogenate and the tubes capped before vortex 168 

mixing for 3 min. Extracts were centrifuged at 4500 rpm for 8 min at 20°C. The supernatant 169 

was decanted into a new 15 mL tube for each sample extract and PB, before adding a second 170 

4.5 mL aliquot of 100% methanol to the tube containing the pellet. The shellfish solvent mix 171 

was again vortex-mixed, centrifuged and the supernatants from both extraction steps 172 

combined before diluting to a total volume of 10 mL. 173 

ASP extraction was conducted using a method based on that of Quilliam et al., 1995. 174 

2±0.01 g of each homogenised shellfish tissue sample was weighed into a 15 mL 175 

polypropylene centrifuge tube. 4 mL of 50/50 (v/v) methanol/water was pipetted into sample 176 

tubes and vortexed for 2 min. Extracts were then centrifuged (3500 rpm) for 20 min at 20°C. 177 

The supernatant for each shellfish sample and PB was transferred into separate 15 mL 178 

polypropylene tubes. A further 4 mL aliquot of 50/50 (v/v) methanol/water was added to the 179 

shellfish pellet tube, vortexed and centrifuged, before decanting into the tube containing the 180 

first supernatant. The supernatant was diluted to a total volume of 10 mL with 50/50 (v/v) 181 

methanol/water and gently shaken until thoroughly mixed. 182 

 183 

2.4 Clean-up and analysis  184 

SPE clean-up of acetic acid extracts prior to analysis for PST and TTX was performed 185 

following the method of Boundy et al., (2015). SPE eluents were vortex-mixed and diluted 186 

3:1with acetonitrile in polypropylene LCMS-grade autosampler vials, before placing into the 187 

autosampler (set at +10oC) for analysis using an Acquity I-Class UPLC system coupled to a 188 

Waters Xevo TQ-S tandem mass spectrometer (Waters, Manchester, UK). UPLC was 189 

conducted using a 1.7 µm, 2.1x150 mm Waters Acquity BEH Amide UPLC column in 190 

conjunction with a Waters VanGuard BEH Amide guard cartridge, held at +60oC. 191 

Chromatographic and MS/MS parameters used were exactly those detailed by the validated 192 

method of Turner et al., 2015c (Table 1). Samples were run together with six-point external 193 

calibration solutions prepared from CRM stocks. Toxicity equivalence factors (TEFs) and 194 

relative response factors (RRFs) for PST were those described by Turner et al., 2015c (Table 195 

2). For TTX analysis the modified method of Turner et al., (2017a) was followed, with 196 

detection conducted using six-level calibration standards prepared from TTX stock solution. 197 

Method performance characteristics are those reported by Turner et al., 2015c and Turner et 198 

al., 2017a. 199 
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Methanolic extracts for each sample was thawed and filtered through a 0.2 µm nylon 200 

syringe filter and an aliquot taken for LC-MS/MS analysis of LT. A second 1.0 mL aliquot of 201 

the raw extract was transferred into a 2 mL screw capped vial for alkaline hydrolysis, by 202 

adding 125 µL of 2.5 M NaOH. After vortex mixing, the vial was heated to 76 ± 2 oC for 40 203 

min, cooled to room temperature before the addition of 125 µL of 2.5 M HCl. The hydrolysed 204 

extract was then ready for LC-MS/MS analysis, using an Acquity Ultra Performance Liquid 205 

Chromatography (UPLC) system coupled to a Waters Xevo TQ tandem mass spectrometer. 206 

UPLC was performed using a Waters BEH C18 column (50 x 2.1 mm, 1.7 µm) with a 207 

VanGuard BEH C18 (5 x 2.1 mm, 1.7 µm) guard cartridge. The analytical method used was 208 

as described by Turner and Goya, 2015 (Table 1). Toxin concentrations were quantified 209 

against six-point external calibrations prepared from NRCC standards. Concentrations of free 210 

toxins were determined in non-hydrolysed extracts, with hydrolysed extracts used for 211 

assessment of total OA-group toxins (free plus esterified toxins). LTs were confirmed as 212 

being detected when both the quantitative and qualifier MRM transitions were present at the 213 

expected toxin retention time, with a concentration above the method limit of quantitation, 214 

taken in this study as 4 µg/kg per toxin.  215 

The 50/50 (v/v) methanol/water extracts were filtered through 0.2 µm syringe nylon 216 

membrane filters into glass autosampler vials. Chromatographic separation for ASP analysis 217 

was conducted using a Phenomenex (Manchester, UK) Kinetex PFP 5.0 µm 4.6 x 150 mm 218 

HPLC column. LC-UV analysis was performed using Agilent 1100/1200 modules (Agilent, 219 

Manchester, UK): quaternary pump, vacuum degasser, autosampler, column over and UV-220 

diode array detector (242 nm). Samples were run alongside external calibration standards for 221 

detection and quantitation purposes, with a method LOQ equivalent to 0.2 mg domoic acid 222 

per kg shellfish tissue. 223 

 224 

3. Results 225 

3.1 PSP and TTX toxins 226 

3.1.1 Total PST and TTX 227 

 PST were detected in all four shellfish harvesting areas during the study, in both 228 

mussel and oyster samples. The highest concentrations were quantified in oysters from Mulki 229 

and Sasthana, with values reaching > 75 µg STX eq/kg in both sites, with a maximum 230 

concentration of 82 µg STX eq/kg in oysters from Sasthana, collected in December 2015. 231 

Significantly lower total PST concentrations were obtained in the mussels collected from 232 

both Gangoli and Someshwar, with the highest concentration ~ 8 µg STX eq/kg in the 233 

mussels collected from Gangoli during December 2014. Figure 2 illustrates the temporal 234 

variability in total PST quantified in both species across the four sites. At both oyster sites, 235 

very low (< 5µg STX eq/kg) levels of PST were presented between December 2014 and 236 

March 2015. Subsequently from the end of March 2015 onwards, at both sites, a sudden 237 

increase in PSP toxicity was found, with toxins remaining in the flesh consistently until the 238 

end of the study period in January 2016. Much lower levels were quantified in the mussels 239 

from the two other sites, with the highest concentrations determined in shellfish harvested 240 

during early 2015. No TTX was detected in any of the samples from any of the four shellfish 241 

harvesting areas. 242 

 243 

3.1.2 PST profiles 244 

Oyster samples from Mulki and Sasthana were found to contain a range of PST 245 

analogues, including C1&2, GTX2&3, GTX1&4, dcSTX, STX and GTX5. No C3&4, 246 

dcGTX2&3, dcGTX1&4, NEO, dcNEO or doSTX was detected in any of the shellfish 247 

samples. In terms of toxicity equivalents, the profiles were dominated by GTX1 (mean 248 

proportion ~60%), followed by GTX4, GTX2, GTX3 and dcSTX around the same proportion 249 
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(mean ~ 10-15%). The N-sulfocarbamoyl analogues, C1&2 and GTX5 were present at lower 250 

relative levels, with mean proportions around 4-6%. Figure 3 illustrates the mean toxin 251 

profiles from November 2014 to January 2016 in oysters from each of the two harvesting 252 

areas. The results indicate the near identical profiles at both sites. Due to the overall low 253 

toxicity in the mussel samples, the toxin profiles proportions were not determined. However, 254 

toxins detected included dcSTX, STX, GTX2, C1 and C2. Notably GTX1, the dominant PST 255 

congener in the oyster samples, was not detected.  256 

 257 

3.2 Lipophilic toxins 258 

 Analysis of methanolic extracts of mussels and oysters showed a near complete 259 

absence of regulated lipophilic marine toxins from the four study areas. No MRM peaks were 260 

identified for any of the OA-group toxins, AZAs and YTXs. Esterified OA-group toxins were 261 

absent in the hydrolysed extracts. The only LT identified was PTX2, present at very low 262 

concentrations (0.4 µg/kg) in one oyster sample from Mulki harvested in Jan 2015. No other 263 

shellfish samples from this study contained PTX2 or any other pectenotoxins.  264 

The 3 cyclic imines (CIs) analysed in these samples were SPX1 (13-desMeC 265 

spirolide), SPXG (20-Me SPXG spirolide) and GYM (gymnodimine). Of these three, SPX1 266 

and GYM were identified, with 42 samples (~38%) containing detectable levels of SPX1 and 267 

all 110 containing GYM. Concentrations of SPX1 were low ranging from 1.7-2.0 µg/kg. 268 

Figure 4 summarises the GYM concentrations in both shellfish species throughout the year-269 

long study, with the higher levels found in oysters in comparison to mussels. Concentrations 270 

in oysters ranged between 9.0 and 40.2 µg/kg, with elevated values between Nov 2014 to Jan 271 

2015 (mean 24.4 µg/kg). Mussels contained GYM at lower and more consistent 272 

concentrations throughout the study (4.7-9.5 µg/kg; mean = 6.8 µg/kg). 273 

 274 

3.3 ASP 275 

 Out of the 100 bivalve mollusc samples analysed in this study, only two showed trace 276 

levels of DA. One mussel sample from Gangoli, collected in Nov 2014 showed DA at 0.16 277 

mg/kg, and an oyster sample harvested from Mulki in Feb 2015 presented a similar level of 278 

0.18 mg/kg. Both results were below method LOQ and close to the LOD (0.2 mg/kg). No 279 

other samples showed chromatographic peaks indicative of DA. 280 

 281 

4. Discussion 282 

In relation to the PST regulatory action limit of 800 µg STX eq/kg, the maximum 283 

concentrations of PST determined in this study were low. The highest concentrations of 284 

toxins quantified reach approximately 10% of action limit, thereby representing a low overall 285 

risk to shellfish consumers based on the data generated in this study. The recent work of 286 

Turner et al., (2016), showed evidence for low PST uptake (maximum 31 µg STX eq/kg) in 287 

mussels in mesocosms containing Alexandrium minutum at 100,000 cells/L held at conditions 288 

(temperature 28oC and 32oC; salinity 35 PSU and 31 PSU) similar to the environmental 289 

conditions recorded in Mangalore during this study (Table S1). The highest concentrations 290 

were determined in oysters from Mulki and Sasthana, in comparison to the mussels from 291 

Gangoli and Someshwar. Without any of the sites containing both shellfish species, however, 292 

it is not clear whether the significant differences recorded are due to the differences in toxin 293 

uptake rates between the species, or relate more to the conditions at individual sites. Previous 294 

reports of PSP in shellfish from this region showed PSP toxicity rising to 1200 µg STX eq/ 295 

kg in oysters (Crassostrea cucullata) and 3400 µg STX eq/ kg in clams (Meretrix casta) 296 

(Karunasagar et al., 1984). Several PSP intoxications in humans were reported including one 297 

fatality. Cooked clams obtained from the homes of affected people and clams collected from 298 

the natural bed were analysed by MBA and found to contain PSP at a level of 3370 µg STX 299 
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eq/kg (Karunasagar et al., 1984). Since then, there have been no further reports of PSP 300 

intoxication in local consumers. Other than the reports of low levels of PSP toxicity in 301 

molluscs during 1985 and 1986 (Segar et al., 1989), there have been no further reports of 302 

PST accumulation in bivalve molluscs from this region, although the absence of a routine 303 

monitoring programme may explain this non-detection. 304 

The results from this study show the almost uniform presence of PST in oysters 305 

between April and December 2015. Blooms of dinoflagellates along the west coast of India 306 

are thought by some authors to proliferate between September and October, although this 307 

may relate in part to the lower number of phytoplankton analyses conducted during monsoon 308 

season (D’Silva et al., 2012). Other authors, however, have evidenced a dominance of 309 

diatoms in the water column until December, with dinoflagellates increasing their overall 310 

contribution during February to March (Asplund et al., 2011). Mean toxin profiles in oysters 311 

from both shellfish harvesting areas were nearly identical, with a clear dominance of GTX1, 312 

together with the presence of other gonyautoxins (GTX2-5), dcSTX, STX and C1&2. Toxin 313 

profiles determined from the 1983 outbreak samples showed a similar dominance of 314 

gonyautoxins (GTX1-4) and C1&2, as well as lower concentrations of STX and dcSTX. In 315 

addition, the results showed the presence of NEO and dcGTX2&3, as well as C3&4, toxins 316 

not detected in this study (Karunasagar et al., 1990). These differences may relate to the 317 

higher overall toxicity levels found in the 1983 samples in comparison to those from the 318 

current study. In addition, the analysis of the outbreak samples was performed using a post-319 

column oxidation LC-FLD method, so may have been subject to interferences for some of the 320 

toxins present at low concentrations. Finally, there may have been species-related differences 321 

in the toxin profiles as a consequence of bacterial or enzymatic toxin transformation within 322 

tissues (Bricelj and Shumway, 1998; Cembella et al., 1994; Jaime et al., 2007; Oshima, 1995; 323 

Sakamoto et al., 2000; Sato et al., 2000; Wiese et al., 2010; Turner et al., 2012).  324 

At the time of the toxin profile identification in outbreak samples, authors used the 325 

qualitative toxin profile, in tandem with the findings of cysts morphologically similar to A. 326 

cohorticula, to postulate that Alexandrium species was the probable causative organism for 327 

PSP occurrence (Karunasagar et al., 1990). Since then, the long-term monitoring of 328 

phytoplankton communities in this region has revealed complex interactions between 329 

hydrographic parameters such as sea surface temperatures, rainfall, wind speed and water 330 

column mixing and phytoplankton occurrence. Nevertheless, whilst phytoplankton 331 

communities have been highly dynamic in the past decades, the presence of the potentially 332 

PSP-producing genera, Gymnodinium has been found on a regular basis (Godhe et al., 2015). 333 

G. catenatum itself was reported to occur both in planktonic and cyst forms in 1996 from 334 

waters in the Mangalore region (Godhe et al., 1996). A. minutum has also been found by 335 

microscopic and polymerase chain reaction (PCR) detection methods in field samples from 336 

Mangalore during 1999 (Godhe et al., 2001). Other toxin producing species identified along 337 

the west coast include A. minutum, A. tamarense and A. catenella (Shahi et al., 2015). 338 

Certainly the absence of PST analogues related to G. catenatum such as C3&4, GTX6 and 339 

dcNEO (Vale, 2010; Costa et al., 2015) in this study, indicates that the causative organisms 340 

in Mangalore during 2015 are possibly Alexandrium spp. 341 

No evidence was found for the presence of TTX in any samples, even during 342 

December when V. parahaemolyticus abundance has been shown to be highest in this region 343 

(Rehnstam-Holm et al., 2014), although significant variability in V. parahaemolyticus 344 

abundance has been previously recorded even during times of stable water column 345 

temperature and salinity (Rehnstam-Holm and Godhe, 2012). It is noted however that oysters 346 

from this study were collected in the shallow sublittoral zone and mussels were collected by 347 

hand divers from deeper water sites. Consequently, none of the shellfish from this study were 348 

present in the intertidal zones, where exposure to the high temperatures during low tides may 349 
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potentially result in the increase of bacterial levels, and therefore promote TTX production 350 

(Turner et al., 2017b).  351 

 Domoic acid was detected at trace levels only (< 0.2 mg/mg), showing little evidence 352 

for accumulation of toxins from DA-producing phytoplankton in this region. The presence of 353 

organisms such as Pseudonitzchia sp. (Härnström et al., 2007; Shahi et al., 2015) and 354 

Nitzschia sp. (Härnström et al., 2009; D’Silva et al., 2012; Shahi et al., 2015) has been 355 

previously reported around the west coast of India during period of diatom dominance in the 356 

water column, although the temporal variability in bloom occurrence has been highlighted 357 

(Shahi et al., 2015) and the toxicity of such species from this region has never been tested. As 358 

such the risk, until further toxicity assessment is conducted, should not be discounted. 359 

 The EU-regulated LTs were notable by their near-complete absence from both mussel 360 

and oyster samples. This was surprising given the prevalence of at least six species of the 361 

genus Dinophysis in ~40% of water samples around the coast over a long-term monitoring 362 

period, between 1990 and 2010 (Godhe et al., 2015). The detection of trace amounts of the 363 

pectenotoxin PTX2 in one sample indicates the presence of D. acuminata (Kamiyama and 364 

Suzuki, 2009), but such a species is generally also associated with production of OA-group 365 

toxins (Tango et al., 2004; Reguera et al., 2012, 2014). Species identified along the western 366 

coast of India include D. acuminata, D. caudata, D. miles, D. norvegica, D. tripos and D. 367 

rotundata (Shahi et al., 2015), with several of these associated with DSP toxin production. 368 

Over a 21-year period of assessment, Dinophysis spp. were detected in 19 years (~90%), with 369 

variable (moderate to high cell densities) between years. Moreover, cell counts were 370 

positively correlated with sea surface temperatures (SST) during this period. The highest 371 

presence of Dinophysis previously recorded was during 1996-1998, which coincided with the 372 

strongest El Nino Southern Oscillation event of the 20th century (Godhe et al., 2015), during 373 

which elevated SST resulted in a significant increase in net phytoplankton abundance. Mean 374 

annual SST values were >30°C during this period, before decreasing to ~29°C around 2005 375 

and then increasing to ~30°C in 2010 (Godhe et al., 2015). During this study, SST ranged 376 

from 26.0°C to 29.5°C, with a mean of 27.8 °C. Therefore, it is likely that lower cell densities 377 

of Dinophysis spp. were present between 2014 and 2015, although it is noted that there is no 378 

phytoplankton data available to our knowledge. Dinophysis species present in the marine 379 

waters around Mangalore have not to date been cultured and tested for toxin production 380 

capability. Until proven otherwise, it is to be inferred that the Dinophysis present around 381 

Mangalore may potentially be non-toxic strains.  382 

 The consistently low levels of the spirolide SPX-1 throughout the study samples is of 383 

little if any consequence to human food safety, given the lack of evidence for oral toxicity 384 

from cyclic imines (Richard et al., 2001; Davidson et al., 2015). Various Alexandrium 385 

species have been identified as SPX producers, including A. ostenfeldii and more recently the 386 

morphologically similar, but usually smaller, A. peruvianum (Cembella et al., 2000; Touzet et 387 

al., 2008). A. peruvianum has been identified along the western coast of India (Shahi et al., 388 

2015) although the toxin concentrations determined in this study perhaps indicate that 389 

phytoplankton producers are present at only very low densities, which in addition may not be 390 

resolved from the presence of other Alexandrium species. Gymnodimine has been linked to 391 

neurotoxicity in mice following i.p injection (Davidson et al., 2015) and has been isolated 392 

from Gymnodinium mikimotoi (Seki et al., 1995), later renamed as Karenia selliformis 393 

(Haywood et al., 2004). Production of GYM has also been demonstrated in European strains 394 

of A. ostenfeldii (Salgado et al., 2015). To date GYM has been identified in shellfish from 395 

Northern and Southern Africa, New Zealand (Krock et al., 2009; Davidson et al., 2015), and 396 

more recently Mexico (Garcia-Mendoza et al., 2014). Gymnodinium spp. have previously 397 

been reported as re-occurring in the water column of the study areas over the past few 398 

decades (Godhe et al., 2015), particularly during the warmer months. As discussed in the 399 
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context of PST results, blooms of dinoflagellates in this region are generally at their 400 

maximum density between September and October (D’Silva et al., 2012). GYM 401 

concentrations in oysters, however, showed a maxima around December to January, 2-3 402 

months after the expected peak of phytoplankton blooms. Moreover, the increase in GYM 403 

was not observed during the end of 2015. The higher concentrations of GYM in oysters from 404 

this study in comparison to mussels are interesting given the general consensus that many 405 

marine toxins accumulate to significantly higher levels in mussels than many other species of 406 

mollusc (e.g. Bricelj and Shumway, 1998). As with the PST results, the inter-species 407 

differences for GYM may either relate to species-specific uptake effects or to differences in 408 

the water column during shellfish feeding and toxin uptake. 409 

Overall the results have indicated a relatively low level of risk from biotoxins for the 410 

majority of the study period. With maximum total PST concentrations around 10% of the 411 

current EU regulatory MPL of 800 µg STX eq/kg, no significant concentrations of regulated 412 

lipophilic marine toxins and only trace levels of domoic acid detected, there is good evidence 413 

that the shellfish grown and consumed during 2015 were relatively free from harmful toxins. 414 

However, with past work showing significant inter-annual differences in toxin phytoplankton 415 

production in Mangalore, more analysis on a larger number of samples would be required 416 

over a longer time period to generate a better understanding of risk to shellfish consumers in 417 

this region of India. Given the significant growth in the local shellfish industry including 418 

international export, and the socio-economic impacts this brings to the region, it is critical 419 

that routine monitoring of bivalve mollusc production areas is implemented, to help mitigate 420 

against these potentially life-threatening natural toxins. 421 
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Table 1. MRM transitions used for LC-MS/MS detection and quantitation of PST, TTX and LT 

analogues, with primary (quantitative) transitions highlighted in bold 

Analogue ESI+ Transition 

 

ESI- Transition 

STX 300.1>204.1,138.0 

  NEO 316.1>126.1,,220.1 

  dcSTX 257.1>126.1,222.0 

  dcNEO 273.1>126.1,225.1 

  doSTX 241.1>60.0,206.1 

  TTX 320.1>302.1,162.1 

  GTX2 

  

394.1>351.1, 333.1 

GTX3 396.1>298.1 

 

394.1>333.1 

GTX1 

  

410.1>367.1,349.1 

GTX4 412.1>314.1 

 

410.1>367.1 

GTX5 380.1> 300.1 

 

378.1>122 

GTX6 396.1> 316.1 

 

394.1>122 

dcGTX2 

  

351.1>164.0,333.1 

dcGTX3 353.1>255.1 

 

351.1>333.1 

dcGTX1 

  

367.1>274.1,349.1 

dcGTX4 369.1>271.1 

 

367.1>349.1 

C1 

  

474.1>122.0,351.1 

C2 396.1>298.1 

 

474.1>122.0 

C3 412.1>332.1 

 

490.1>410.1 

C4 412.1>314.1 

 

490.1>,392.1 

OA, DTX2   803.5>255.1, 113 

DTX1   817.5>255.1, 113 

YTX   570.5>467.4, 396.2 

Homo YTX   577.5>474.2, 403.2 

45 OH YTX   578.5>467.4, 396.2 

45 OH homo YTX   585.5>474.2, 403.2 

AZA1 842.5>654.4, 362.3   

AZA2 856.6>654.4, 362.3   

AZA3 828.5>658.4, 362.3   

PTX1, PTX11 892.5>821.5, 213.1   

PTX2 876.3>823.5, 213.1   

SPX1 692.5>164.1, 444.3   

GYM 508.4>136.1, 162.1   

20-Me SPX-G* 706.5>164.2   

*Only 1 MRM used for identification and quantitation 
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Table 2. Toxicity equivalent factors (TEFs) used in study. 

Toxin TEF 
C1 0.01 
C2 0.1 
C3 0.02 
C4 0.1 
dcGTX2 0.2 
dcGTX3 0.4 
dcGTX1 0.51 
dcGTX4 0.51 
GTX2 0.4 
GTX3 0.6 
GTX1 1 
GTX4 0.7 
GTX5 0.1 
GTX6 0.1 
doSTX 0.052 
dcSTX 1 
dcNEO 0.4 
STX 1 
NEO 1 
OA 1 
DTX1 1 
DTX2 0.6 
PTX2 1 
AZA1 1 
AZA2 1.8 
AZA3 1.4 
YTX 1 
homo YTX 1 
45-OH YTX 1 
45-OH homo YTX 0.5 
1- dcGTX1 and dcGTX4 based on assumed toxicity equivalency factors (Sullivan, 1983) 
2- doSTX toxicity equivalency factor (Turner et al., 2015b) 
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Figure 1. Map showing location of shellfish harvesting areas and photos of four marine monitoring 

points for bivalve molluscs sampled during this study a) Gangoli b) Mulki c) Someshwar d) Sasthana 
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Figure 2. Summary of total PST concentrations (µg STX eq/kg) quantified in mussels and oysters from 

four shellfish harvesting areas in Mangalore 

 

 
 

  

0

10

20

30

40

50

60

70

80

90

0

1

2

3

4

5

6

7

8

9

12/14 03/15 06/15 10/15 01/16

T
o

ta
l P

S
T

 in
 o

y
st

e
rs

 (
S

T
X

 e
q

/k
g

)

T
o

ta
l P

S
T

 in
 m

u
ss

e
ls

 (
µ

g
 S

T
X

 e
q

/k
g

)

Date

Gangoli (mussels) Someshwar (mussels)

Mulki (oysters) Sasthana (oysters)



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 3. PST profiles in oysters from Mulki and Sasthana 
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Figure 4. Summary of GYM concentrations (µg/kg) quantified in mussels and oysters from four 

shellfish harvesting areas in Mangalore 

 

 
 

 

0

5

10

15

20

25

30

35

40

45

12/14 01/15 03/15 05/15 06/15 08/15 10/15 11/15 01/16

G
Y

M
 c

o
n

ce
n

tr
a

ti
o

n
 (

µ
g

/k
g

)

Date

Mulki (oysters) Sasthana (oysters)

Gangoli (mussels) Someshwar (mussels)



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

• First ever systematic study of Indian shellfish toxins 
• Application of chemical detection monitoring 
• Assessment of marine biotoxins 
• PST temporal variability 
• PST profile assessment 
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