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Abstract—Incorporating virtual metrology (VM) into run-to-
run (R2R) control enables the benefits of R2R control to be main-
tained while avoiding the negative cost and cycle time impacts
of actual metrology. Due to the potential for prediction errors
from VM models, the prediction as well as the corresponding
confidence information on the predictions should be properly
considered in VM-enabled R2R control schemes in order to
guarantee control performance. This paper proposes the use of
Gaussian process regression (GPR) models in VM-enabled R2R
control due to their ability to provide this information in an
integrated fashion. The mean value of the GPR prediction is
treated as the VM value and the variance of the GPR prediction
is used as a measure of confidence to adjust the coefficient of
an exponentially-weighted-moving-average (EWMA) R2R con-
troller. The effectiveness of the proposed GPR VM-enabled R2R
control approach is demonstrated using a chemical mechanical
polishing process case study. Results show that better control
performance is achieved with the proposed methodology than
with implementations that do not take prediction reliability into
account.

Index Terms—Virtual Metrology (VM), Run-to-Run (R2R)
Control, Gaussian Process Regression (GPR), Exponentially-
Weighted-Moving-Average (EWMA).

I. INTRODUCTION

Semiconductor manufacturing processes are highly repeti-
tive and cyclic in nature and it is quite appealing to make
use of the results from previous runs to improve the oper-
ation of subsequent ones. Those controllers that are capable
of learning from past experience to improve future control
performance are referred to as run-to-run (R2R) controllers
in semiconductor manufacturing [1], [2], [3], [4], [5]. R2R
control adjusts the process inputs or recipes run by run based
on the information obtained before (pre-metrology), during
and/or after (post-metrology) the process so as to compensate
for the effects of process drifts, large shifts in incoming prod-
uct and other disturbances. The adjustment is usually based
on a process model and the process model is continuously
updated using new measurements from ongoing runs. The
exponentially-weighted-moving-average (EWMA) method is
the most widely used R2R controller where a linear (affine)
model is used to approximate the process and only the offset
term in the model is updated [6]. The EWMA coefficient
does not need to be fixed and it can be optimized for each
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run [7]. There are several other R2R control schemes such as
the double EWMA (dEWMA) method based on two coupled
EWMA equations [8], [9], the least-squares estimation (LSE)
method using a second-order model to approximate the process
[10] and the set-valued R2R controller using sets such as
an outer-bounding ellipsoid to approximate the likely model
parameter set [11].

For all R2R control schemes, it is necessary to employ
adequate metrology systems so as to update process models
and modify recipes effectively based on metrology data. The
deployment of metrology systems needs extra investment for
metrology tools and metrology activities also impact nega-
tively on production cycle time. In order to reduce the cost
and the time needed for actual metrology, current metrology
systems usually measure a few samples for the R2R con-
troller. For example, the metrology systems in semiconductor
manufacturing often measure one wafer from a lot of 25
wafers with the assumption that this adequately represents
the quality of the whole lot. Such an approach restricts the
application of R2R control to lot level. However, in practice
significant within-lot wafer variation can occur, typically as
a function of the wafer position within a lot (e.g. first wafer
effects due to chamber seasoning in plasma etch processes). In
addition, abnormal production equipment conditions can occur
abruptly, which will not in general be immediately detected
by one randomly sampled wafer [12]. While wafer level R2R
control can address these issues with 100% pre-metrology
measurement, the associated cost of metrology (capital and
cycle time) generally prohibits its application.

To resolve the limitations of current sampling-based metrol-
ogy systems, virtual metrology (VM) was proposed to predict
the metrology values using sensor data from production equip-
ment and actual metrology values of samples. The benefits of
VM have been well reported in the literature [12], [13], [14],
[15]. For instance, VM enables predictive maintenance and
earlier detection of process drifts based on real-time forecast
of metrology values [12]. VM also meets the need of R2R
controllers by providing timely virtual metrology data both
in terms of post-process feedback metrology and pre-process
feedforward metrology [14], [16]. Thus the study and the
implementation of VM-enabled R2R control have increasingly
attracted attention from both academia and industry. For exam-
ple, the interfaces between VM, other manufacturing execution
components, and R2R modules were defined in [17] to develop
a business model to measure the profitability of VM-related
manufacturing practices, while in [18] VM and R2R solutions
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are developed within a big data context. VM values were
also employed to adjust equipment settings of a chemical
vapor deposition process for maintenance compensation at a
Taiwanese semiconductor manufacturing company [19].

There are some practical issues with applying VM-enabled
R2R controllers in the semiconductor manufacturing industry.
The essential one is that a virtual metrology value is not an
actual metrology value and thus the error between the estimate
and the actual value negatively impacts the performance of
R2R controllers. The data quality of the VM values inside the
VM-enabled R2R control scheme was considered in [13], [14]
where the EWMA coefficient was adjusted according to the
reliability of VM data. The concepts of reliance index (RI)
and global similarity index (GSI) were proposed in [20] to
gauge the reliability of VM data and they were further utilized
within the feedback loop of R2R control in [21], [22]. By
penalizing statistical measurements based on their informative
distance from real metrology data, an information-theory and
virtual metrology-based approach to R2R control was further
proposed in [23]. The confidence information used in these
VM-enabled R2R control schemes is obtained externally, i.e.,
the computation of the confidence information is separate from
the computation of the VM estimates.

For some VM models, the confidence information of the
predictions can also be obtained internally. For example,
the VM model using relevance vector machine returns not
only point estimates but also probabilistic intervals indicat-
ing the confidence of the predictions [24]. The relevance
vector machine is actually a Gaussian process model with
a specific covariance function [25]. It was observed in [26]
that Gaussian process regression (GPR) performed better than
multiple linear regression (MLR), least absolute shrinkage and
selection operator (LASSO) and neural networks (NN) for
the VM task of a benchmark semiconductor manufacturing
process. Motivated by such experience this paper proposes
using GPR to provide a probabilistic prediction of metrology
for a confidence information enhanced R2R control scheme.
Specifically, by using the mean estimate from the GPR model
as the predicted VM value and the variance estimate as a
measure of confidence to adjust the coefficient of an EWMA
R2R controller, a novel self-contained, confidence information
enhanced, VM-enabled post-metrology R2R control solution
is obtained.

The rest of the paper is organized as follows. GPR is
briefly introduced in Section II. The proposed VM-enabled
R2R control scheme using GPR is detailed in Section III.
Then, as an illustrative example, Section IV investigates the
application of the control scheme to a chemical mechanical
polishing process commonly used in semiconductor manufac-
turing. Finally, conclusions are presented in Section V.

II. GAUSSIAN PROCESS REGRESSION

Gaussian processes extend multivariate Gaussian distribu-
tions to infinite dimensionality, i.e., the joint distribution over
any finite set of fixed test points is a multivariate Gaussian.
According to the tutorial in [27], GPR is briefly introduced as
follows.

Given a relationship of the form y = f (x) between the input
x and the single output y, and set of n test points, then

[ f (x1) f (x2) · · · f (xn)]
T ∼N (µ,Σ), (1)

where N (µ,Σ) signifies a multivariate normal distribution
with mean µ and covariance matrix Σ. Σi j ∈ Σ defines the
covariance between f (xi) and f (x j) and can often be defined
as a function of the input xi and x j, i.e., Σi j = k(xi,x j). The
mean value µ of the normal distribution N is usually assumed
to be zero, i.e., µ = 0. The Gaussian process is then fully
specified by the mean function µ and the covariance function
Σ. It can be seen that GPR is a probabilistic non-parametric
modeling technique as it does not impose a specific model
structure on the function itself.

The covariance function k(xi,x j) can be a function of any
form as long as it generates a positive definite covariance
matrix Σ. An often used covariance function is the squared
exponential covariance function [28], which has the following
form:

k(xi,x j) = σ
2
f exp(−

|xi−x j|2

2l2 ), (2)

where σ f and l are the hyperparameters (denoted by vector
θ ) for the covariance function which can be optimized to best
suit the training data. If xi ≈ x j, then k(xi,x j) approaches
its maximum value, indicating that f (xi) is almost perfectly
correlated with f (x j); otherwise, distant observations have
negligible effect on each other as k(xi,x j) approaches zero.

Considering measurement errors and other noise sources,
the observation y can be further expressed as a combination
of the underlying function f (x) and a Gaussian noise model
with a mean value of 0 and a variance of σ2

n :

y = f (x)+N (0,σ2
n ). (3)

Therefore
y = [y1 y2 · · · yn]

T ∼N (0,K), (4)

where K = Σ+σ2
n I. Here the output variable is assumed to be

mean-centered.
According to the assumption made for Gaussian processes,

the joint distribution over the observed targets y and a test
target y∗ is also Gaussian:[

y
y∗

]
∼N (0,

[
K KT

∗
K∗ K∗∗

]
), (5)

where K∗ = [k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)] and K∗∗ =
k(x∗,x∗). Then the conditional probability of p(y∗|y) also
follows a Gaussian distribution:

y∗|y∼N (K∗K−1y,K∗∗−K∗K−1KT
∗ ). (6)

Hence, the best estimate for y∗ is the mean of this distribution
and the uncertainty of the estimate is captured in its variance,
that is:

ȳ∗ = K∗K−1y, (7)

and
var(y∗) = K∗∗−K∗K−1KT

∗ . (8)

The operation of GPR for a single-input single-output
system is shown in Figure 1, where the regression model is
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trained using just four measurement points at x =−2,−1,1,2.
The values of y at other points −2 ≤ x ≤ 2 are estimated by
the trained GPR model from these four measurement points.
It can be seen from Figure 1 that GPR returns both mean
values and confidence intervals for all test points, where the
95% confidence interval is taken as ȳ∗ ± 1.96 ·

√
var(y∗).

Furthermore, the confidence interval for the prediction grows
with the distance from the four measurement points used for
the training, which implies less confidence in the prediction.
This is physically intuitive as GPR can provide more accurate
predictions for those test points that are similar to the data
used to train the model.
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Fig. 1. Mean value and 95% confidence domain predicted by GPR

The performance of GPR depends on how well the co-
variance function is selected [27]. The hyperparameters θ for
the selected covariance function can be optimized using the
training data, i.e., by maximizing the conditional probability
p(θ |x,θ), which corresponds to maximizing the log marginal
likelihood log p(y|(x,θ)):

log p(y|(x,θ)) =−1
2

yT K−1y− 1
2

log |K|− n
2

log2π. (9)

Using multivariate optimization algorithms, the optimal choice
for θ can be obtained straightforwardly [25].

III. VM-ENABLED R2R CONTROL USING GPR

Using a similar R2R control diagram to that presented in
[22], the proposed VM-enabled R2R control scheme using
GPR is described in Figure 2, where k is the process run
index; uk+1 is the process input or recipe setting at the start
of run k + 1, which is derived from the EWMA controller;
yt is the target output; the pair (ȳ∗,var(y∗)) is the output
of the GPR VM model at the end of run k; and yz is the
sampled metrology data. Both ȳ∗ and var(y∗) from the GPR
VM model are used in the EWMA controller, as discussed in
the following paragraphs.

Consider a process with linear input and output relationship
defined as:

yk = buk +ηk, (10)

Fig. 2. VM-enabled R2R control using GPR

where yk is the plant output, uk is the control input, b is the
process gain, and ηk is a disturbance. The disturbance ηk is
updated recursively for the next run k+1 by an EWMA filter:

ηk+1 = α(yk−buk)+(1−α)ηk, (11)

where α is the exponential weighting factor or tuning param-
eter for the filter. When b is invertible, the control input at the
next run uk+1 can be expressed as:

uk+1 = (yt −ηk+1)/b. (12)

In a similar manner to the approach proposed in [13], [22],
when yk is obtained from an actual metrology tool measure-
ment, then yk = yz and a conventional EWMA controller can
be employed,

ηk+1 = α0(yz−buk)+(1−α0)ηk, (13)

with the EWMA coefficient α0 determined using standard
design methods such as those discussed in [7] [29]. When
yk is obtained from the prediction provided by the GPR VM
model, then yk = ȳ∗ and the EWMA coefficient α0 is scaled
by a confidence factor, referred to as the Gaussian Reliance
Index (GRI), to give:

ηk+1 = α1(ȳ∗−buk)+(1−α1)ηk, (14)

where
α1 = GRI ·α0. (15)

GRI is derived from the coefficient of variation of the
prediction distribution (cv(y∗)) such that it is monotonically
maps the unbounded confidence information provided by GPR
to a confidence factor spanning the interval 0 and 1, with 1
indicating full confidence in the accuracy of the prediction and
0 no confidence. The coefficient of variation (CV) is defined
as:

cv(y∗) =
std(y∗)

ȳ∗
, (16)

where std(y∗) =
√
var(y∗).

Various possibilities exist for the GRI mapping function,
Here two options are considered, a truncated linear decay
function of the form:

GRI(cv(y∗)) = [1−β
|cv(y∗)|

cmax
v

]+, (17)

which yields a GRI, and hence α1 value, that decays linearly
to 0 with increasing prediction uncertainty and which is
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exactly zero when cv(y∗) = cmax
v /β , and an exponential decay

function:
GRI(cv(y∗)) = exp(−β

|cv(y∗)|
cmax

v
), (18)

which provides a more gradual decay towards zero with
increasing cv(y∗). Constant cmax

v is a normalization factor em-
ployed to scale the value of cv(y∗) with respect to the expected
normal range of variation, as defined by the distribution of
cv(y∗) values for the reference training dataset used to generate
the GPR VM model. Various options exist for defining cmax

v
with respect to the reference distribution, e.g., the maximum
value or the 95th percentile. Here the maximum value over the
training dataset is selected as the value of cmax

v .
Larger values of the CV map to smaller values of the GRI

and consequently smaller values of the EWMA coefficient α1.
If cv(y∗)= 0 or yk = yz, then GRI= 1 and α1 =α0, which is the
case when actual metrology is used. The sensitivity of the GRI
to changes in the CV can then be controlled by the parameter
β > 0. As will be demonstrated in Section IV, in practice the
exponential mapping provides consistent performance over a
much wider range of β than the truncated linear mapping. As
such the exponential function is the preferred mapping with
β = 1.

Note that, while the GRI modulated α value (i.e. α1) can be
expected to yield better control performance on average than
using a fixed value of α0 or control without VM feedback
(i.e. with α1 = 0) it is not guaranteed to be better for every
run. This is because the choice of α1 is based on a statistical
quantity, GRI, and the heuristically selected mapping from α0
to α1 is not guaranteed to be optimal. Determination of the
optimal α0 to α1 mapping is a topic for future research.

It can be seen that the proposed GPR VM-enabled R2R
control scheme makes full use of the predictions made by
GPR and the confidence information is internally available
from GPR rather than from external computations of RI and
GSI as in [13], [22]. Similarly to the approach in [22], it is
also possible to set a baseline threshold level GRIT for the
GRI, below which α1 is set to zero, i.e., if GRI≤ GRIT then
α1 = 0. This can be defined with reference to the distribution
of the GRI values for the GPR predictions of the training
data. Here GRIT is set as the 5th percentile of the distribution.
The motivation for this modification is a desire to have no
contribution from the current prediction if it is deemed very
unreliable [22].

It is relatively straightforward to update GPR models with
new data, hence the GPR VM model can be continuously
improved as new measurements become available and accord-
ingly cv(y∗)→ 0, GRI→ 1, and α1 → α0. The fundamental
assumption of VM models, and hence also the GPR prediction
model, is that variations in the metrology value being predicted
must be reflected in the variations in the inputs being fed
to the model in order for the model to be able to predict
the metrology value correctly. If the variation in the inputs
is outside the previous experience of the GP model then
this will be reflected in higher variance and hence lower
confidence levels in predictions. If however, a drift occurs
that is not reflected in the model inputs the model will be
blind to it, and hence not react, with negative consequences.

Only actual metrology measurements can detect such drifts,
hence periodic metrology is advisable even when using VM
models. In practice, it is not possible to capture the impact of
all process drifts or maintenance related shifts in VM models
and, therefore, model maintenance strategies such as those
discussed in [30] are vital for successful long term deployment.

IV. ILLUSTRATIVE EXAMPLE

In order to demonstrate the proposed GPR VM-enabled R2R
control scheme and compare it with existing methods in the
literature, the illustrative example studied in [22], a chemical
mechanical polishing (CMP) tool with a scheduled mainte-
nance cycle of 600 wafers, is adopted. The corresponding
process can be described by the following linear relationship
between the input and the output:

yk = PreYk− rkuk, (19)

where yk is the post CMP thickness of run k and PreYk is the
initial CMP thickness of run k; rk is the actual removal rate of
run k and uk is the polishing time. The target CMP thickness
is denoted by yt and yt = 2800 Angstrom in the following
simulation.

The actual removal rate rk of run k is hard to measure
in practice and here its value is simulated by the following
formula [22]:

rk = Ak× (
Stress1 +Stress2

1000
)× (

Rotspd1 +Rotspd2

100
)

× (
Sfuspd1 +Sfuspd2

100
)+(PM1 +PM2)+Error, (20)

where the meanings of Error, PM1, PM2, Stress1, Stress2,
Rotspd1, Rotspd2, Sfuspd1, Sfuspd2 and PreYk are listed in
Table I as in [22]; Ak = (4 × 10−6) · (PU − 1)3 + (3.4 ×
10−3) · (PU− 1)2 + (6.9× 10−3) · (PU− 1) + 1.202× 103 is
the nominal removal rate and it is assumed to be known for
the controller; PU is the parts usage count between periodic
maintenances (PMs).

TABLE I
DEFINITION OF SIMULATION PARAMETERS AND SETTING VALUES [22]

Item Definition
Error Random error
PM1 Error due to tool-parts’ variation from periodic maintenance
PM2 Random disturbance of tool-parts’ variation
Stress1 Tool stress error due to re-assembly during PM
Stress2 Random disturbance of tool stress
Rotspd1 Tool rotation-speed error due to reassembly during PM
Rotspd2 Random disturbance of tool rotation speed
Sfuspd1 Slurry fluid-speed error due to reassembly during PM
Sfuspd2 Random disturbance of slurry fluid speed
PreYk Pre-process (etching depth) value that affects the kth run

According to (20), the actual removal rate rk of run k can
be treated as a function of six process variables:

rk = f (Stress,Rotspd,Sfuspd,PU,PU2,PU3), (21)

where Stress=(Stress1+Stress2), Rotspd=(Rotspd1+Rotspd2)
and Sfuspd=(Sfuspd1+Sfuspd2). Hence, using these six vari-
ables as inputs VM models can be identified from simulated
runs of the CMP process to estimate the actual remove rate.
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The estimation for rk is denoted as r̄k. Two VM models
identified using MLR and GPR are used for the computation
of the RI, where the MLR model is the reference model
and the GPR model is the conjecture model. Adopting the
GPR model as the common VM model for all VM-enabled
R2R control schemes ensures that any performance differences
between controllers can be attributed exclusively to if and how
confidence information is used in the control schemes.

The GPR model returns both the estimated removal rate r̄k
and the corresponding variance var(rk). Then ȳk = PreYk−
r̄kuk is the estimated CMP thickness of run k with the standard
deviation std(yk) = uk ·std(rk). Based on the proposed VM-
enabled R2R control scheme shown in Figure 2, the control
input uk+1 for the run k+1 should be:

uk+1 = (PreYk+1− yt +ηk+1)/r̄k+1. (22)

If yk = yz, i.e., yk is obtained from the actual metrology, then

ηk+1 = α0(yz−PreYk + r̄kuk)+(1−α0)ηk. (23)

If yk ≈ ȳk, i.e., yk is estimated from the GPR VM model, then

ηk+1 = α1(ȳk−PreYk + r̄kuk)+(1−α1)ηk, (24)

where α1 = GRI · α0 and GRI is computed according to
equation (17) or (18).

TABLE II
SIMULATION PARAMETER VALUES AS USED IN [22]

Item Normal Distribution
Mean Variance

Error 0 300
PM1 0 100
PM2 0 6
Stress1 1000 2000
Stress2 0 20
Rotspd1 100 25
Rotspd2 0 1.2
Sfuspd1 100 25
Sfuspd2 0 1.2
PreYk 3800 2500

Since the quality of the confidence information plays an es-
sential role in the proposed GPR VM-enabled R2R controller,
the first simulation investigates the quality of the confidence
information provided by GPR via the GRI for the exponential
mapping with β = 1 and cmax

v equal to the maximum value
of CV over the training data. For comparison purposes the
RI confidence metric is also evaluated. Ideally, the confidence
levels defined by GRI and RI should be proportional to the
percentage prediction errors. To investigate this MLR and GPR
VM models are identified from process data of sample runs
PU = 1 : 4 : 401 for the setup where all process variables are
normally distributed with parameter values as listed in Table
II. Only a fraction of the data from a full run is used to train the
models so as to limit their ability to generalize, increasing the
likelihood of larger prediction errors on test runs. This enables
the GRI and RI to be tested over a wider range of errors than
would be facilitated by a more comprehensively trained model.
The two VM models are then tested on a full cycle of runs
PU = 1 : 1 : 600 to obtain r̄k, GRI and RI, respectively.
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Fig. 3. A scatter plot of the CV and GRI values versus the GPR VM model
percentage prediction errors
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The coefficients of variation (CV) of the GPR model predic-
tions, cv(rk), and the corresponding GRI values are plotted as a
function of the percentage prediction errors in removal rate in
Figure 3(a) and 3(b), respectively. It can be seen that in general
the CV values increase while the GRI values decrease as the
prediction errors increase, and that the GRI is widely spread
over the interval [0,1]. Hence, the GRI provides an effective
measurement of confidence in the GPR VM predictions.

Similarly, the RI values (derived from the area of inter-
section between the statistical distribution of the GPR-based
VM estimate from the conjecture model and the statistical
distribution of the MLR-based reference prediction value as
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described in [20]) are plotted in Figure 4 as a function of the
percentage prediction errors obtained with the GPR conjecture
model. The RI values obtained also reflect the confidence
of the predictions made by GPR with bigger percentage
prediction errors corresponding to smaller RI values, although
the spread of values is less than observed with the GRI. It can
also be seen from Figure 3(b) and Figure 4 that the degree of
correlation between the computed confidence levels and the
percentage prediction errors is stronger for the GRI than for
the RI. Specifically, the magnitude of Pearson’s correlation
coefficient with respect to the percentage prediction errors is
0.898 for the GRI compared to 0.826 for RI. Hence, the GRI
measure is more sensitive to prediction errors than RI in this
case and, therefore, a stronger indicator of confidence in VM
model predictions.

Using the identified VM models, four different R2R control
schemes are compared:
• Case 1: R2R with in-situ metrology (actual metrology)

and a constant weighting parameter α = α0;
• Case 2: R2R with a GPR VM model, and with a

constant α = α0;
• Case 3: R2R with a GPR VM model and with the GPR

derived GRI used to adjust the α parameter, such that:
α = α1 = g(GRI,GRIT ) ·α0 where g(GRI,GRIT ) = 0 if
GRI < GRIT and g(GRI,GRIT ) = GRI otherwise;

• Case 4: R2R with GPR used as the VM model and the
RI used to adjust α as given in [22], that is: α = α1 =
f (RI,RIT ,GSIT ) ·α0 with f (RI,RIT ,GSIT ) = 0 if RI <
RIT or GSI>GSIT and f (RI,RIT ,GSIT ) =RI otherwise,
where RIT and GSIT are the thresholds for the RI and
global similarity index (GSI), respectively.

The process mean-absolute-percentage error (MAPE) with
respect to the target value:

MAPE =
∑

N
k=1 |(yk− yt)/yt |

N
×100% (25)

is used to evaluate the performance of these four R2R control
schemes.

Following [22], the first comparison for these four R2R
control schemes is performed on the CMP process under the
assumption that all process variables are normally distributed
with distribution parameters as listed in Table II. These nom-
inal conditions provide the reference process data for training
the GPR VM model. Controller performance is then evaluated
for test data where an offset of 20 is added to Rotspd for runs
PU = 100 : 1 : 400 of the maintenance cycle to simulate an
undetected process shift during the control process. Figure 5
shows a plot of the evolution of the removal rate under these
conditions together with a plot of the ideal model removal rate
and the GPR VM model prediction.

Using various values of α0, and setting RIT = 0.7 and
GSIT = 9 in accordance with [22], the MAPEs of these four
approaches for a typical maintenance cycle (600 wafers) are
shown in Figure 6. It can be seen that the R2R controller
using actual metrology performs better than the other three
VM-enabled R2R controllers for small values of α0 and that
the R2R controllers using confidence information also perform
better than the R2R controller which does not take confidence
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Fig. 5. Typical removal rate evolution over a maintenance cycle for the
Gaussian distribution CMP model with a process drift/offset introduced during
the processing of wafer 100-400. The plot also shows the VM GPR prediction
and ideal model removal rates
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Fig. 6. MAPE performance of the four R2R control schemes for normally
distributed process variables over a full maintenance cycle (600 wafers)

information into account. For larger values of α0, the proposed
GRI enhanced controller of Case 3 performs much better
than all other cases, demonstrating a degree of robustness in
relation to the choice of α0. As a lower value of α0 implies
better R2R control performance for this specific process, the
adjustment from α0 to α1 for Case 3 contributes to its superior
performance to Case 1 for larger values of α0.

A plot of the value of the thresholded GRI (i.e. α1/α0) for
Case 3 is given in Figure 7. As can be seen the GRI drops to
zero above run 475, which is the point where the VM model
begins to diverge from the actual removal rate, and has a higher
frequency of thresholded values (i.e GRI<GRIT ) in the period
with the offset (c.f. Figure 5).

In order to further confirm these observations in Figure 6,
a second comparison of these four R2R control schemes is
performed on the CMP process under the new assumption that
all process variables follow Weibull distributions. The Weibull
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Fig. 7. Evolution of the thresholded GRI (i.e. α1/α0) for Gaussian distributed
process variables over a full maintenance cycle (600 wafers)

TABLE III
WEIBULL-DISTRIBUTION PARAMETER VALUES AS USED IN [22]

Item Weibull Distribution
αω β

Error 108.5 7.2
PM 2800.1 850.1
Stress 0.951 150
Rotspd 0.986 100
Sfuspd 0.917 250
PreYk 3826.3 77.83

distribution is described by the equation [22]:

f (x) =
β

αω

× (
x

αω

)β−1× e−(
x

αω
)β

, (26)

where αω and β are referred to as the scale parameter
and shape parameter, respectively. The nominal parameters
of the Error, PM, Stress, Rotspd, Sfuspd and PreYk Weibull
distributions are listed in Table III, where PM=PM1+PM2 and
biases of 100 and 2800 are deducted from every Error and
PM value created by the Weibull distributions to generate
potentially negative values [22].

The VM models are also identified using a fraction of the
maintenance cycle data sampled at PU = 1 : 4 : 401 under
nominal conditions. Since the Weibull CMP model has an
offset with respect to the ideal model over the full maintenance
cycle, an additional disturbance in the form of increased
variation in removal rate is introduced for wafers 100-400
for the test runs. This is achieved by increasing the variance
of Rotspd by 0.1 at PU = 100 : 1 : 400. Figure 8 shows a
plot of the resulting removal rate, the ideal model, and the
GPR VM model approximation for this scenario. The MAPEs
of the four R2R controllers for a typical simulation run are
shown in Figure 9. The results show a similar trend to Figure 6
with the proposed GPR-enabled R2R controller outperforming
the other controllers for most values of α0. The optimum
value occurs at α0 = 0.3. For completeness a plot of the
evolution of the thresholded GRI is presented in Figure 10.
This also follows a similar pattern to the results obtained with
the Gaussian distributed process variables (Figure 7).

Two factors contribute to the performance of the GRI based
R2R controller (Case 3) with respect to the real metrology
based R2R controller (Case 1). The applied α with real
metrology is always fixed at α0 whereas the applied α with
GRI will in general be less than α0. Hence to get the same
effective α the optimum α0 for GRI will always be greater
than the value with real metrology. The superior performance
of GRI, especially for higher values of α0 can be partly
attributed to this. The other factor is that larger variations in
removal rate generally produce lower confidence predictions,
and hence a lower value of applied α . Hence, in effect the
GRI based controller is a nonlinear controller with a gain that
reduces as the variance in the removal rate increases. This
enhances the performance of the controller making it possible
for it to outperform the in-situ metrology based fixed gain
linear R2R controller.
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Fig. 8. Typical removal rate evolution over a maintenance cycle for the
Weibull distribution CMP model with an increased process variance intro-
duced during the processing of wafer 100-400. The plot also shows the VM
GPR prediction and ideal model removal rates

In order to account for stochastic variation and provide a
statistically robust comparison of the controllers, 100 simu-
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Fig. 9. MAPE performance of the four R2R control schemes for Weibull
distributed process variables over a full maintenance cycle (600 wafers)
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Fig. 10. Evolution of the thresholded GRI (i.e. α1/α0) for Weibull distributed
process variables over a full maintenance cycle (600 wafers)

lation runs (i.e full maintenance cycles of 600 wafers) were
performed for the normal distribution and Weibull distribution
setups. The average MAPEs over the 100 repetitions for each
setup are shown in Figure 11 and 12, respectively. The 95%
confidence interval for the mean estimates for Case 3 and Case
4 are also plotted in the figures (dashed lines). The confidence
intervals for Case 1 and Case 2, which are of similar scale to
those of Case 3 and Case 4, respectively, have been omitted
in the interest of clarity. It can be seen that the Monte Carlo
simulation results confirm the observations in Figure 6 and
Figure 9. Furthermore, the 95% confidence interval for the
proposed approach of Case 3 are narrower than for Case
4, reflecting the fact that the performance of the proposed
GRI enhanced R2R controller is more consistent over the 100
repetitions.

Plots of the evolution of the value of the thresholded GRI
(Case 3) averaged over the 100 Monte Carlo simulations are
given in Figures 13 and 14, respectively, for the Gaussian
distribution and Webuill distribution CMP simulation models.
The operation of the GRI is clearly evident in these plots, with
both the period of process perturbation (PU = 100−400) and
the period where the model is extrapolating outside its training
range (PU > 450) yielding substantially lower average GRI
values than during normal operation.

As a final experiment, to evaluate the performance of
the truncated linear decay and exponential GRI mapping
functions, and to assess the sensitivity of the resulting R2R
controllers to β , a 100 run Monte Carlo study was conducted
using each mapping function for β values in the range 0 to 5.
The mean and standard deviation of the MAPE of the optimum
controller (Case 3) for each value of β over the 100 simulation
runs are plotted in Figures 15 and 16, for the Gaussian and
Weibull CMP models, respectively. The results show that for
values of β < 1 the linear and exponential GRI mapping
functions yield similar performance. Beyond the value of 1
the linear mapping deteriorates rapidly while in contrast the
exponential function provides consistent performance up to
β = 3 with a gradual degradation in performance thereafter.
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Fig. 11. Monte Carlo simulation results (100 runs) for R2R control of the
CMP process assuming process variables follow normal-distributions
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Fig. 12. Monte Carlo simulation results (100 runs) for R2R control of the
CMP process assuming process variables follow Weibull-distributions
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Fig. 13. Evolution of the thresholded GRI (i.e. α1/α0) for Gaussian
distributed process variables over a full maintenance cycle (600 wafers)
averaged over 100 Monte Carlo simulations
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Fig. 14. Evolution of the thresholded GRI (i.e. α1/α0) for Weibull distributed
process variables over a full maintenance cycle (600 wafers) averaged over
100 Monte Carlo simulations
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Fig. 15. Performance of the Case 3 R2R controller on the Gaussian CMP
process when employing truncated linear decay and exponential decay based
GRI as a function of β . Results are computed over 100 Monte Carlo
simulations (dashed lines indicate one standard deviation)

V. CONCLUSIONS

This paper has proposed the use of GPR to implement
a VM-enabled EWMA R2R control scheme that adapts its
response based on the confidence in the prediction provided by
the VM model. A similar approach has been proposed by [22]
using the externally computed RI and GSI to provide a mea-
sure of the confidence in model predictions. The advantage of
employing GPR is that, as a probabilistic modeling paradigm,
it directly generates a mean prediction and variance estimate.
Hence, the GPR based solution is self-contained, providing
both the VM prediction and the variance estimate used to
adjust the coefficient of the EWMA controller.

Simulation results for a CMP case study confirm that, as
expected, the variance estimate provided by GPR is indica-
tive of the accuracy of the VM prediction, and comparisons
with the RIs suggest that GRIs can be a stronger indicator
of confidence in predictions than RIs, especially when the
controller operating space is not adequately represented by the
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Fig. 16. Performance of the Case 3 R2R controller on the Weibull CMP
process when employing truncated linear decay and exponential decay based
GRI as a function of β . Results are computed over 100 Monte Carlo
simulations (dashed lines indicate one standard deviation)

training space used to estimate the VM model, and hence the
accuracy of the VM model is limited. Such scenarios are likely
to be common place in practice due to the challenges with
collecting suitable datasets for training VM models a priori
in a production environment. The proposed GRI confidence in-
formation enhanced VM-enabled R2R controllers can achieve
better control performance over a wide range of α0 values,
providing a degree of robustness to sub-optimal selection of
this control parameter.

It should be noted that in this treatise only feedback (post-
metrology) R2R is considered. Future work will explore the
use of GRI information with feedforward VM (pre-metrology)
R2R control. Other areas to investigate include incorporating
on-line VM model updating into the VM-enhanced R2R
control framework using confidence information informed
dynamic metrology sampling, and developing strategies for
VM model maintenance in the presence of process drifts and
maintenance shifts that are not reflected in the model inputs.
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