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Abstract

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple chal-

lenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences

of such challenges and improving the realism of projections. We estimated species–environment relationships for

Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of

occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (ab-

sence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model

evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model

accuracy was much improved using a global dataset for model training, rather than restricting data input to the spe-

cies’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion

for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future inva-

sion) were very different depending on the modeling methods used, raising questions about the reliability of ensem-

ble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models

that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as

they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of

the species and its distribution was important in refining choices about the best set of projections. A post hoc test con-

ducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our ‘best’ model. We

showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable

habitats for parthenium. However, discrepancies between model predictions and parthenium invasion in Australia

indicate successful management for this globally significant weed.
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Introduction

A main challenge in predicting geographic spaces likely

to provide suitable habitat to an invasive species is the

identification of appropriate correlates of successful vs.

unsuccessful invasion (e.g., environmental variables

and biotic interactions). Long-term establishment of a

species in a region requires an intersection of (i) envi-

ronmental conditions favorable for survivorship and

reproduction, (ii) biotic interactions that are not suffi-

ciently detrimental to cause local extinction (negative

biotic interactions would include competition, allelopa-

thy, predation, disease; lack of positive biotic interac-

tions also have a negative impact, such as lack of

pollinators), and (iii) the capacity of the species to dis-
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perse to areas with favorable environmental conditions

and biotic interactions (Kolar & Lodge, 2001; Guisan &

Thuiller, 2005; Sober�on & Peterson, 2005; Sober�on,

2007) . This implies that predicting species distributions

can in some cases be safely performed with environ-

mental variables alone, especially in the absence of

strong biotic interactions.

Although modeling a species’ distribution is always

challenging (Ara�ujo & Guisan, 2006), an additional

major challenge when modeling invasive species with

correlative models is that the model is often required to

extrapolate from the known environmental space

(which contains species occurrence records) to an

unknown environmental space (non-native geographic

regions that are potential areas of future invasion).

Specifically, this challenge has three components:

1. Altered species–environment relationships in the novel vs.

realized niches. Predictions made within the range of

geographic space sampled for model building (the

training region) are reliable enough because correla-

tions between the explanatory variables tend to

remain consistent across that range (Elith & Leath-

wick, 2009) and so interpolation in the environmen-

tal space encompassed by the training data is likely

to capture the underlying relationships. Models can

be used to project into unsampled geographic spaces

if the species–environment relationships, the biotic

interactions, and the genetic makeup of the popula-

tions (genetic variability as well as phenotypic plas-

ticity) are sufficiently similar between sampled and

unsampled areas (Austin, 2002). However, invasive

populations can have altered biotic interactions (e.g.,

removal from competition, parasites, or predators),

differences in relative importance of environmental

variables, or evolutionary changes (from either

genetic drift or different selection pressures in the

invaded range) (Ackerly, 2003; Lavergne & Molof-

sky, 2007; Pearman et al., 2008; Duncan et al., 2009).

2. Extrapolation of the models beyond the domain of parame-

ter calibration. Predicting beyond the domain over

which parameters are calibrated can be risky

because of lack of observations for model calibration

and evaluation (Elith & Leathwick, 2009; Zurell

et al., 2012). Many studies have found that the cli-

matic space occupied by invasive species in their

introduced ranges is often broader than that in their

native ranges (Fitzpatrick et al., 2007; Loo et al., 2007;

Kearney et al., 2008). Such a discrepancy in climatic

space can result from the differences between native

and introduced ranges discussed above, but the dis-

crepancy can also result from the fundamental niche

not being fully realized in native ranges because of

(i) dispersal constraints and/or biotic interactions

preventing establishment in some climatically suit-

able areas (Ara�ujo & Peterson, 2012) and (ii) the

geographic area historically inhabited by the species

not covering the entire domain of multivariate cli-

matic space that could support a population (Man-

dle et al., 2010). Therefore, species distribution

models generated within native ranges may repre-

sent only part of the fundamental niche (Sober�on &

Peterson, 2005).

3. Nonequilibrium distribution in invasive ranges. When

occurrence records are available from invaded

ranges, pairing these occurrences with background

samples is challenging because invaded ranges in

which the species may still be expanding in extent or

abundance represent a case of nonequilibrium distri-

bution (Thuiller et al., 2005; Rodda et al., 2011). Even

though species within their native ranges often

occupy fewer areas than are suitable (i.e., their real-

ized niche is smaller than their fundamental niche),

the plant in its native range occurs at some level of

equilibrium distribution across all suitable pixels,

whereas the plant in regions it is actively invading

is, by definition, not in spatial equilibrium. There-

fore, unoccupied spaces in invaded ranges have

higher chances of harboring environmentally suit-

able habitat than in native ranges, simply due to

insufficient time having passed for the species to

occupy the full extent of suitable habitat that it is

capable of occupying.

Studies have attempted to address these challenges.

First, when the observed climatic niche differs between

native and non-native ranges (Broennimann et al.,

2007), models calibrated in one geographic region can

underperform in new geographic spaces (Fitzpatrick

et al., 2007; Beaumont et al., 2009). This challenge of lim-

ited model transferability across space can be dealt with

by inclusion of both native and non-native ranges in

model training, which improved projection in invaded

ranges in some studies (Mau-Crimmins et al., 2006;

Broennimann & Guisan, 2008; Beaumont et al., 2009).

Second, as Monahan (2009) showed with a mechanis-

tic niche model, the challenge of nonequilibrium distri-

butions can arise because the realized niche can be

smaller than the fundamental niche due to dispersal

constraints, biotic interactions, and other reasons. These

conditions, in addition to the issues imposed by ongo-

ing range expansion, make invasive distributions far

from representative of a species’ potential equilibrium

distribution. While the challenges of nonequilibrium

distribution cannot be eliminated entirely, model relia-

bility can be improved with the use of expert opinion

(Murray et al., 2009).

We selected one species as a test case to examine

these complex issues. We modeled the present and
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potential future distribution of the invasive plant,

Parthenium hysterophorus L. (Asteraceae; parthenium).

Parthenium hysterophorus is a globally significant weed

that has invaded Asia, Africa, and Australia (>30 coun-

tries in total) (Adkins & Shabbir, 2014). From its pattern

and degree of spread, parthenium appears to be pri-

marily climatically limited. There are presently no

known strong biotic interactions that restrict the distri-

bution of parthenium at broad spatial scales, and given

the near-global distribution of the species (Fig. 1), it is

likely that such interactions are of minor importance to

its establishment. Therefore, parthenium represents an

excellent opportunity for exploration of the robustness

of differing methodologies within the broad realm of

environmental species distribution modeling (SDM),

with the aim of developing ‘best practices’ for model-

ing spread of invasives in general, and specifically esti-

mating areas at high risk of future invasion by

parthenium.

Here, we use P. hysterophorus as a case study to

develop novel approaches to correlative SDM aimed at

reducing the influences of these challenges and improv-

ing the realism of projections. First, we propose a new

approach designed to (i) improve model transferability

across space (i.e., from training region into new geo-

graphic spaces) and (ii) reduce the chance of sampling

false absences of species in a nonequilibrium state of

distribution. This approach uses occurrences from all

regions but obtains background (absence) points only

from native ranges. We then present approaches for

modeling the invasive species at a global scale; specifi-

cally, we quantitatively compare the effect of the fol-

lowing in predicting the species distribution in native

ranges, invaded ranges, and potential areas for future

spread: (i) sources of occurrences and background

ranges, (ii) approaches to drawing background points,

and (iii) alternate sets of predictor variables. We also

compare the accuracy of different modeling methods in

projecting occurrences far away from the training

region and relate these results to AUC scores within the

training region.

Materials and methods

Distribution, invasion history, and biology

Parthenium (Parthenium hysterophorus L., Asteraceae), a native

of Central America, Mexico, and southeastern USA, is a weed

of global significance (Navie et al., 1996). The plant was first

identified in non-native ranges as a weed in Queensland, Aus-

tralia, in 1955 (Auld et al., 1982–83) and then India in 1956

(Rao, 1956). Since the 1950s, parthenium has spread to most

humid/subhumid tropical and subtropical areas of the world,

from sea level to 2700 m (Dhileepan & McFadyen, 2012).

Genetic analysis suggests that parthenium genotypes found in

Australia, India, and Africa possibly originated from southern

Texas, USA (Graham & Lang, 1998).

Parthenium is an annual herb with a deeply penetrating

taproot and an erect shoot. With good rainfall and warm tem-

perature, parthenium has the ability to germinate and estab-

lish at any time of the year. Parthenium is a prolific seed

producer; a mature plant can produce more than 150 000

seeds in its lifetime (Dhileepan, 2012). The seed is spread by

animals, wind, water, vehicles, agricultural and road construc-

tion machinery, fodder, and seed lots (Auld et al., 1982–83;

Navie et al., 1996), as well as other human activities (e.g.,

parthenium flowers in bouquets, green parthenium plants as

packing materials, and parthenium weed as green manure).

Buried seeds persist and remain viable in soil for reasonably

long periods, with nearly 50% of the seed bank viable up to

6 years (Navie et al., 1998). In the invaded ranges, parthenium

negatively affects crops, rangeland productivity, native biodi-

versity, and the health of humans and animals (reviewed in

Dhileepan, 2009).

Resolution and extent of study areas

Because of parthenium’s unusual success in spreading to all

continents except Europe, our study modeled its future distri-

bution on a global scale. We performed the modeling at 2.5-

arc-min resolution. We excluded Antarctica from analyses, as

very little of that continent is suitable for plant life.

Occurrence records

We obtained occurrence records from freely available data-

bases, published personal records, and primary data collected

for this study (see Appendix S1, Table S1).We eliminated points

with a spatial uncertainty greater than 1 min, yielding 3989

points, averaging 1.7 occurrences per grid cell. However, there

was a marked variation in density across the sources. For

instance, one source (coauthor DK) had >37 occurrences per

grid cell (859 records in 23 grid cells). DK confirmed that he per-

formed an exhaustive survey of the plants in several patches of

the 23 grid cells. Based on our field observation, the surround-

ing habitat is similarly suitable for the plant but we have an

order ofmagnitude fewer points from it. Therefore, tominimize

the effect of sampling bias (e.g., Elith et al., 2010), we eliminated

all but one point per grid cell, yielding 2322 points for analyses.

This approach, which eliminates all but one presences within ca

5 km by 5 km area, is similar to the spatial filtering of occur-

rences by Boria et al. (2014) where they eliminated presences

within 10 km of a selected occurrence record and yielded better

models as a result of reduced sampling bias and overfitting.

Assessing the role of roads

Roads have been shown to be associated with spread of inva-

sive plants (Tyser & Worley, 1992; Parendes & Jones, 2000). In

invaded areas, parthenium records also tend to occur near

roads. We tested the role of road for its facilitation effect, as a

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 4464–4480
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conduit of propagule dispersal and as a driver of spatial sam-

pling bias (see Appendix S2-A for details).

Choice of background points

Eight minimum area convex polygons were created around

concentrated regions of occurrences (Fig. 1). We chose this

method based on previous research showing that models built

using a geographic background much larger than the core area

of the species’ distribution can result in poor model perfor-

mance: Acevedo et al. (2012) found that increasing the geo-

graphic extent of the background results in higher

discriminatory power of the model within the background,

with an increase in AUC. However, when the same models

were evaluated with records from the core area of the distribu-

tion, a negative relationship was observed between geo-

graphic extent and AUC, reducing the reliability of the models

in projecting core area of distribution. To reduce the chances

of models with artificially inflated AUC but with little real-

world relevance when projected, we limited the background

ranges to the most concentrated areas of occurrence. This

resulted in 3.4% of the presences falling outside of the back-

ground regions but effectively reduced the background

regions to about one-third of the area of convex polygons cre-

ated separately within each continent encompassing all pres-

ences of the continent. However, those 3.4% of presences that

fell outside of the selected background areas were retained in

the list of presences, making use of all the occurrence records

in the study.

Background points were not drawn from the space within

10 km of recorded presences. To keep prevalence (the propor-

tion of sites with presences, or number of presences/number

of both types of points) constant between regions, we matched

the number of background points to the presences within each

region. Barbet-Massin et al. (2012) show that regression mod-

els (GAM and GLM) do not substantially improve with an

increase in the number of background points to those typically

suggested for MaxEnt (e.g., 10 000), and classification models

actually get worse with larger numbers of such points; they

further suggest using same number of presences and back-

ground points for RF and BRT, providing support to our fairly

large dataset (2322 points of each type) and the design of equal

number of two types of points. A random draw of background

points assumes that the grid cells are of equal size because

each grid cell has equal chance of being selected. In reality,

grid cells further away from the equator are progressively

smaller because of the Earth’s curvature. Background samples

therefore need to be drawn taking into account cell sizes if the

latitudinal gradient in the range is nontrivial (>200 m; Elith

et al., 2011), which is the case in this study. We therefore

undertook weighted sampling such that grid cells were sam-

pled in proportion to their geographic area. To estimate the

effect of roads on sampling bias, we drew one set of back-

ground points using only cell area as the weight/bias (Area-

Bias) and a second set weighted using both cell area and

linear distance to roads (AreaRoadBias).

Predictor variables

We obtained raster layers for 19 climatic variables and altitude

at 2.5-arc-min resolution from WorldClim version 1.4 (Hij-

mans et al., 2005, www.worldclim.org). This set of climatic

variables (Appendix S1, Table S2) was supplemented with

other variables that are likely to affect parthenium: soil mois-

ture, percent canopy cover, human population density, and

distance to the nearest road (linear and square root, Appendix

S2-A, Fig. S1). See Appendix S1 and Table S3 for additional

information about variables.

Species distribution models

We used two regression based models, that is, generalized

linear models (GLM) and generalized additive models

(GAM), and two decision tree based methods, that is, random

Fig. 1 Occurrence records (blue solid circles) and background regions (yellow polygons, orange in native range). Numbers displayed

next to each of the eight polygons represent the number of presence points drawn, and is equal to the number of background points

drawn.
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forests (RF) and boosted regression trees (BRT). These four

modeling methods have been, in general, shown to perform

well in SDMs (Ara�ujo et al., 2005; Elith et al., 2006; Pearson

et al., 2006; Elith & Graham, 2009) but each has their own

strengths, biases, and weaknesses. Modeling distributions of

invasive species has been performed with high accuracy using

BRT, RF, and GAM (Cutler et al., 2007; Broennimann & Gui-

san, 2008; Elith et al., 2010). Because the same sets of data were

used for training and testing all methods, the only differences

between models being compared were the modeling methods

themselves. This allowed us to isolate the effects of the meth-

ods when comparing models. When we conducted the analy-

sis in the BIOMOD package of R, MaxEnt (Phillips et al., 2006)

– one of the most popular modeling algorithms in SDM – was

not available in the package. Running MaxEnt models in its

stand-alone software presented important problems that we

could not resolve: We applied two types of biases while draw-

ing background points which were drawn in fixed number

from each of eight regions of the world. Then, fivefold parti-

tioning of the presences and background points was per-

formed for each continent separately. This was not possible

with the MaxEnt stand-alone software, so MaxEnt was omit-

ted from this study.

Overfitting and predictive performance

An excessively complex model has very high fit to the

training data because its excess parameters (relative to the

number of observations) explain random error in the data.

This can obscure the true underlying relationship between

variables and therefore yields a model with poor predic-

tive performance. We used two approaches to control over-

fitting. The Akaike information criterion (AIC) was used

for GLMs. Cross-validation was used for GAMs, RF, and

BRTs.

Various novel combinations of background sampling
method, pairing of presences to background points, and
choices of predictor variables

We performed nonmetric multidimensional scaling (NMDS)

of 23 environmental variables used in SDM and plotted

occurrences in the ordination plot; principal components

analysis (PCA) was not suitable for extracting components

because of highly nonlinear relationships between the pre-

dictor variables. We developed three methods for selecting

data points to train models: (i) presence points from the

world and background points from various polygons in

the world (PWBW), (ii) both presence and background

points from native ranges (PNBN), and (iii) presence

points from the world and background points from the

native range (PWBN) (Fig. 2).

The background points in each of the three point sources

were drawn using two biases: (i) cell area (AreaBias) such that

background points were more likely to be drawn from bigger

cells and (ii) both cell area and proximity to road (AreaRoad-

Fig. 2 Visual description of the three methods for selecting data points to train models. PNBN = both presence and background points

from native ranges; PWBN = presence points from the world and background points from the native range; PWBW = presence points

from the world and background points from various polygons in the world.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 4464–4480
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Bias) such that, on the top of size, cells nearer to roads are

more likely to be selected than those further away. We created

two sets of explanatory variables: (i) WorldClim, soil moisture,

percent canopy cover, human population density, (ii) all vari-

ables in the first set plus proximity to road (both linear and

square root) (Appendix S1, Table S2). We performed the study

with a fully crossed design of these three factors; the design

gave us a set of 12 combinations (hereafter ‘scenarios’) of point

source, bias in drawing background, and sets of explanatory

variables (Table 1).

Evaluation indices

We evaluated models with the following metrics: area

under the receiver operating characteristic curve (AUC),

sensitivity, specificity, Cohen’s kappa, and the true skill

statistic (TSS). AUC scores are easy to interpret and have

been widely used in comparing species distribution models,

but have recently been criticized for several reasons (Al-

louche et al., 2006; Lobo et al., 2008). We dealt with several

of these criticisms in the following ways: (i) An ROC plot,

and therefore the AUC score, does not provide information

about the distribution of model errors in geographic space.

We dealt with this criticism by computing AUC scores for

each continent separately, as well as for the entire sampling

extent and the world; (ii) AUC scores can easily be inflated

by increasing the geographic extent for drawing background

points. To deal with this criticism, we set geographic back-

grounds in eight convex polygons enclosing dense masses

of occurrences, leaving out isolated points, and reducing

the background area dramatically. We then used the same

set of points for all the models within each of the three

levels of the factor ‘point source’ (Table 1). The three levels

of ‘point source’ were intended to be different in their geo-

graphic extent of sampling ranges, so that we could test the

effect of point sources in models; (iii) Obtaining random

background points from sites that are not confirmed for

species’ absences inflates the chances of false absences. This

is unlikely in our study to cause differences among meth-

ods, as the same set of presence and background points

were used for each modeling method. Finally, the potential

effect of prevalence was minimized using the same number

of presence and background points.

In contrast to AUC, the benefit of using Cohen’s kappa is

that it corrects for the model fit expected by chance (Allouche

et al., 2006). However, Cohen’s kappa is sensitive to preva-

lence. Allouche et al. (2006) therefore recommend using TSS

for model evaluation.

Traditional vs. region-specific model evaluation

AUC and other evaluation metrics computed on independent

data provide estimates of model generalization and predictive

power, but only within the range of sampling. The ability of a

model to predict outside the training region cannot be esti-

mated with the conventional approach of computing AUC on

independent data withheld from model construction. To deal

with this problem, we computed AUC and other evaluation

scores for every model using presences and background

points from each continent separately, with the exception of

Europe for which there were no occurrence records. All AUC

values reported in this study were computed in this way. We

compared this AUC with the traditional AUC (computed on

independent data from the training region) in Fig. 4. Our

approach of computing AUC not only provided an index for

comparing models’ predictive capacity outside its range (i.e.,

transferability), but also allowed us to determine the best

model for projecting in each continent. Given the fact that con-

tinents have very different environmental spaces of presences

(Fig. 3), it is likely there is not a single best model for predict-

ing every continent.

Analysis and computation

The main work of species distribution modeling was per-

formed with the package BIOMOD 1.1-7.02 (Thuiller, 2003;

Thuiller et al., 2009) installed in R 2.14.0 (The R Project for Sta-

tistical Computing) on the Lonestar supercomputer at the

Texas Advanced Computing Center. For each of the 12 scenar-

ios (Table 1), we performed 100 independent modeling repli-

cates. Each replicate is the average of 25 iterations resulting

from sets of cross-validation points: For each random set of

points (all presences, randomly drawn background points),

we performed fivefold cross-validation of the models, using

four groups as training sets and the fifth as a testing set. We

thus obtained five sets of training presences, which we crossed

Table 1 Complete factorial design of the study. The four factors result in a total of 48 combinations of levels. Each combination

had 100 independent projections of global modeling (each independent projection being an average of 25 iterations resulting from

fivefold partitioning of cross-validation sets from each random draw of background crossed with the same of presences), yielding a

total of 4800 independent projections for the world. (See Fig. 2 for ‘point source’ abbreviations)

Factors

Point source Bias used in background draw Explanatory variable sets Model

Levels PWBW

PWBN

PNBN

Grid cell area (AreaBias)

Grid cell area and proximity

to road (AreaRoadBias)

All variables including Road (Road)

All variables except Road (NoRoad)

Generalized linear models (GLM)

Generalized additive models (GAM)

Random forests (RF)

Boosted regression trees (BRT)
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with five sets of training background points, yielding a total of

25 projections. As the five sets of occurrence points were not

truly independent of each other (once a set of points are

divided into five groups and the first set of training and test-

ing points are created, all the other sets of training and testing

points can be predicted), the resulting 25 projections were

averaged to obtain one independent projection. In total, we

generated 12 scenarios * 4 SDMs * 100 independent repli-

cates = 4800 projections. The BIOMOD settings included the

following: polynomial terms and stepwise procedures using

AIC criteria for GLM, maximum number of trees to be 5000

for BRT, and three degrees of smoothing in spline functions

for GAM. Analysis of BIOMOD output and plotting was per-

formed in the following packages installed to R 2.15.1: gridEx-

tra, matrixStats, plyr, PresenceAbsence, R.methodsS3, Sciplot,

sperrorest, TeachingDemos, and AUC.

Incorporation of expert opinion

The eight regions (Fig. 1) where models were trained/tested

comprise only 7.2% of all grid cells where models were pro-

jected. Outside of these polygons, the relevance of the evalua-

tion metric can be questionable (see ‘Introduction’ for three

main reasons). Therefore, we needed some basis to evaluate

the models outside of those polygons (93% of the grid cells).

For determining the best model for each continent, we supple-

mented AUC scores (useful for evaluating the models within

training/testing ranges) with expert opinion (useful for evalu-

ating the models outside of model training/testing ranges).

Expert opinion did not replace or undermine AUC scores but

rather added to the model selection process. For incorporating

expert opinion in the model selection process, the first author

(KM) presented 48 projections of the world (see Table 1 for the

combinations of factors) to three experts on parthenium (coau-

thors KD, AM, LS), each of whom has spent extensive time

studying Parthenium under both field and laboratory condi-

tions. Each expert was interviewed separately as to how the

model projections matched up to their own experiences for the

region they knew. The three experts have conducted extensive

field work on many aspects of parthenium ecology and man-

agement, including extensive distribution surveys as well as

studies of seed banks, natural herbivores, and management

options (e.g., introduced biocontrol agents and postrelease

evaluation) across the entire current range in 15 countries

(South Africa, Mozambique, Swaziland, Ethiopia, Kenya, Tan-

zania, Bolivia, Brazil, Paraguay, Madagascar, Venezuela, Aus-

tralia, Argentina, India, and Sri Lanka). Each expert offered

their opinion about the realism of the model projections based

upon over a decade-long field experience with parthenium

management in Africa, Asia, or Australia, and upon cumula-

tive understanding about the requirements and tolerances of

this plant across a range of climatic and environmental condi-

tions present in suitable habitats across the world. Each expert

recommended the best model for each continent after examin-

ing different parts of the continent for the mismatch between

projected and expected habitat suitability. Extended details

about the method are provided in Appendix S2-C.

Results

Continental differences in the multivariate environmental
space of presence points

In the first two axes of a nonmetric multidimensional

scaling (NMDS) plot of 23 predictor variables, clusters

of occurrence records from various continents had a

markedly different extent, central tendency, and disper-

sion (P � 0.0001, Fig. 3). This indicates that the envi-

ronmental space of presence points in various invaded

regions is different from each other and also is different
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Fig. 3 Distribution of presences from different continents in the

first two axes of a nonmetric multidimensional scaling (NMDS)

of 23 environmental predictors (#1–23 in Appendix S1,

Table S2). To test whether presences from different continents

occupy similar ecological niche, we conducted Welch’s ANOVA

and Levene’s test for homogeneity of variance (as in Mandle

et al., 2010) and two other tests. The continents are significantly

different along each of first two NMDS axes. For the first NMDS

axis, Bartlett test of homogeneity of variances: K-

squared = 430.4321, df = 4, P-value < 2.2e-16 (Levene’s test

yielding highly significant difference also); one-way analysis of

means with Welch’s correction: F = 129.2033, num df = 4.000,

denom df = 530.801, P-value < 2.2e-16 (Kruskal–Wallis rank

sum test yielding highly significant difference also). For the sec-

ond NMDS axis, Bartlett test: K-squared = 662.1226, df = 4, P-

value < 2.2e-16 (similar results by Levene’s test); Welch’s

ANOVA: F = 354.8588, num df = 4.000, denom df = 514.089, P-

value < 2.2e-16 (similar results by Kruskal–Wallis test). Tukey’s

multiple comparisons of means were significant at 0.05 level for

every pairwise comparison of continents in at least one axis of

the plot.
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from that of the native range (Tukey’s multiple compar-

isons of means, P < 0.05).

Significant effects of methodologies and choices used to
construct models

The full factorial design of this study allowed us to

tease apart the effects of variations of each of the four

factors on modeling performance when the effects of

the other factors were held constant (Table 1). We

calculated AUC, sensitivity, specificity, kappa, and TSS

as a performance measure of modeling methods. A

four-way analysis of variance showed that all four fac-

tors – point sources, method used to draw background

(absence) points, choice of explanatory variables, and

choice of SDM – had significant effects on each of the

five measures of model performance (P < 0.0001; AUC

results in Appendix S1, Tables S4).

Spatial structure in occurrence points and road as a
predictor

Our factorial design showed that the suspected road–
weed association was not strong (see Appendix S2-A

for details). When road was included as an explanatory

variable, AUC improved by 0.03–0.04 but the model

yielded a biologically unrealistic projection map (Ap-

pendix S2, Fig. S3) which contradicted ground surveys;

three coauthors of this study (KD, AM, and LS), all with

extensive experience in parthenium management

throughout its invaded ranges, concluded that there

was an overly dominant effect of road, with a predicted

distribution unrealistically restricted to be near roads.

This could result from a simple sampling bias, in which

occurrences are more likely to be detected near roads

due to a bias in the frequency of visits by observers. We

minimized this possible source of sampling bias (for

more efficient SDMs as in Syfert et al., 2013) by drawing

more background points near roads. However, this

approach (Road as a bias) did not yield significantly

different AUC scores (Appendix S2, Fig. S2), suggesting

that the suspected road–weed association does not exist

or that spatial correlation between roads and the envi-

ronmental variables used in this study is not sufficient

to contribute significant bias to models. On the other

hand, if the association was strong and the weighting

factor (i.e., the linear distance) we used did not com-

pletely cancel out the sampling bias in presences, then

road could still appear as a significant predictor with-

out showing any bias effect in sampling. With these

results, we cannot conclusively determine whether an

association exists between roads and probability of

presence, or if it existed, whether it resulted from sam-

pling bias or facilitation of establishment and growth

by roads. If the correlation between habitat suitability

and distance to road is real, then the ‘road’ model

would have limited application in global modeling of

potential invasive spread. Therefore, for the rest of the

analyses except Fig. 6, we dropped AreaRoadBias and

road as a predictor.

Continent-wise prediction and predictability inside vs.
outside the training region

This left only two factors: choice of training regions

from which to draw point sources and choice of SDM.

Models built with the three point sources (PWBW,

PWBN, and PNBN) had dramatic differences in predic-

tive ability. Obtaining both presences and background

points from all regions of the world (PWBW) gave

models with substantially higher predictive power on a

global scale than models that were built with other

combinations of points (PWBN, PNBN) (Fig. 4a). The

predictive power of the models in non-native ranges

worsened with the use of points from only the native

range (either only background points or both back-

ground and presences). For Asia, Africa, and Australia,

the AUC for PWBW was higher than that for other

point sources by 0.12-0.26, and by 0.035-0.071 for South

America. However, prediction accuracy within the

native range (North America) was maximized by hav-

ing both presence and background points from only

native areas (PNBN), the difference with the other point

sources being only 0.014-0.018. For the whole world,

PWBW had an AUC that was 0.11 higher than the sec-

ond best model (PNBN) (Fig. 4a, column ‘World’). We

therefore chose PWBW as the best combination of

source and background points.

The AUC scores reported so far were the ones com-

puted by predicting points from various continents irre-

spective of whether or not the continent contributed

points to model construction. This AUC (e.g., AUCworld

for all continents together) was not the same as the AUC

computed by predicting an independent dataset from

the training region (AUCtraining region), something used

traditionally for model comparisons. The dashed box in

Fig. 4a shows that AUCtraining region (column ‘Training

region’) was much higher than AUCworld (column

‘World’) for PWBN (0.928–0.654 = 0.274) and PNBN

(0.841–0.712 = 0.129). Not surprisingly, for PWBW, the

two AUCs were identical because the range of back-

ground sampling and presences fell in all continents.

Comparing models

The scenario of factors chosen as ‘best’ performing

(PWBW with AreaBias, NoRoad) was applied to all

four SDMs: GLM, GAM, RF, and BRT (Fig. 4b). RF

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 4464–4480

IMPROVING PROJECTIONS FOR PLANT INVASIONS 4471



scored the highest AUC on every continent, with

BRT second. Kappa and TSS indices followed similar

patterns to AUC (Appendix S3, Fig. S4). In global

comparisons, the AUC scores were as follows: RF –
0.87, BRT – 0.835, GAM – 0.794, and GLM – 0.787

(Appendix S1, Table S5). Based both on evaluation

metrics and biological insight about distribution and

ecophysiology of the plant (see ‘Discussion’ and

Appendix S2-C), for our ‘best’ models, we chose

GAM for projecting in Africa, Australia, and New

Zealand, and BRT for the rest of the world (Fig. 5,

and Appendix S3, Fig. S5).

Incongruence among levels of factors

The total variance of all projections for a grid cell

showed a decreasing trend with increase in habitat suit-

ability (Fig. 6a). Worldwide, most grid cells were

unsuitable for parthenium. We partitioned the total

variance in estimated suitability into the percentage of

variance contributed by each factor. When all the grid

cells were considered together, >99% of variance in

suitability predictions was contributed by modeling

method, point source, and choice of explanatory vari-

ables. Choice of bias and replicates of presence and

background points in total accounted for <1% of the

total variance (Fig. 6a, pie chart). The partitioned vari-

ances plotted against habitat suitability (Fig. 6b) exhib-

ited a number of trends: Variation contributed by point

sources decreased and variation as an effect of SDM

increased with habitat suitability. For habitat suitability

estimates of below 0.68, more variation was caused by

point sources than by choice of SDM. For higher habitat

suitability scores, differences among SDMs were

responsible for more of the variance among outputs.

Explanatory variable sets, bias, and background point

replicates all exhibited a unimodal relationship of vari-

ation against habitat suitability, with the variation

explained by each of them being highest around a habi-

tat suitability of 0.5.

Evaluation indices

We calculated commonly used (AUC, sensitivity, speci-

ficity) and less commonly used (kappa, TSS) model

evaluation indices. Our AUC scores had a very tight

and linear relationship with both kappa and TSS

(r = 0.85–0.89 for four SDMs, Appendix S3, Fig. S6).

SDMs were given the same set of presence and back-

ground points, keeping the prevalence at 0.5. This

resulted in kappa and TSS scores being identical

(kappa-TS r = 1.0 for all SDMs, Appendix S3, Fig. S6),

because in estimating the predictive accuracy of mod-

els, the dependence of kappa statistic on prevalence is

corrected by TSS (Allouche et al., 2006).

Final evaluation using expert opinion

All three experts (co-authors KD, AM and LS) came to

similar conclusions about roads not being very useful

as an explanatory variable for their region of expertise

(discussed above). For our final choice of point source

(PWBW), the recommended models were as follows
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Fig. 4 AUC (�1SE) computed for different regions of the world

(for comparison, kappa and TSS have similar pattern; see

Appendix S3, Figs. S4, S6). (a) Point sources compared with two

types of AUC score; all models collapsed. Models were trained

on the 80% points of the entire dataset of each point source and

tested on the held-out dataset from the same point source. AUC

score computed that way is reported on column ‘Training

region’ inside dashed box. The models were then tested for each

continent separately (using presences and background points

from the continent) ensuring the points used for testing were

not used in model training. Weighted average of all continents

(contingent upon number of points) is given in column ‘World.’

Within each of the seven region/continent, all pairwise differ-

ences among three point sources were significant at 0.0001 level.

Dashed box shows how AUC score computed on training

region is much higher than the one computed for the world.

This and all the subsequent figures except Fig. 6 report result

for AreaBias and NoRoad. (b) Models compared for the point

source PWBW (AreaBias, NoRoad). All pairwise differences

between models within a continent/region are significant at

0.05 level except the following: Asia: GAM vs. GLM, South

America: GAM vs. GLM.
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(with number of experts voting for the models in paren-

theses): Asia and South America – BRT (3); Australia –
GAM (3); North America – BRT (2) and RF (1) with the

expert voting for RF saying BRT only slightly worse

than RF; and Africa – GAM (2) and BRT (1). We there-

fore chose BRT for Asia, North America, and South

America, and GAM for Australia and Africa (Fig. 5).

Discussion

‘Essentially, all models are wrong, but some are useful’

(Box & Draper, 1987). SDMs in practice often use data

that violate key assumptions of the models (Pearson &

Dawson, 2003; Jeschke & Strayer, 2008). Specifically, it

is assumed that (i) a species distribution is not affected

by biotic interactions or is affected in the same way

across the entire distribution, (ii) genetics and plasticity

remain constant across the entire range of the distribu-

tion, and (iii) there is no dispersal constraint, allowing

species to occupy all spaces with suitable climate and

be absent elsewhere. Various remedies to improve the

realism of SDMs have been proposed by previous stu-

dies (Broennimann & Guisan, 2008; Jim�enez-Valverde

et al., 2011; Rodda et al., 2011). Here, we demonstrated

Fig. 5 Prediction of habitat suitability for the world; generalized additive models (GAM) used for Africa, Australia, and New Zealand,

and boosted regression trees (BRT) used for the rest of the world. Occurrences and background points in equal number were obtained

from each of the five continents (PWBW, see Fig. 1). Background points were obtained without considering proximity of grid cells to

road; explanatory variables included 23 predictors but not road.
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Fig. 6 Variance in 4800 independent predictions. (a) Total variance trend against habitat suitability, density plot of habitat suitability,

and variance partitioned to the factors (pie chart) that contributed to it in the entire projected area (modeling method: 39.2%, point

source: 47.6%, set of explanatory variables: 12.5%, bias: 0.35%, background point replicates: 0.037%, present point replicates: <0.002%);

(b) rescaled variance partitioned to predictors. Variance partitioning in both plots included habitat suitability as the prediction of BRT

models. The total variance in every grid cell was partitioned to factors and expressed as fraction for pie chart and Fig. 6b. Type I analy-

sis of variance performed. (Note: The variance partitioned to various factors is not the fraction of the total variation in distribution

explained by the factor.)
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that SDMs can be greatly improved through biological

insight guiding careful selection of SDM methods, of

background regions used for building the models, and

of choice of predictor variables.

On top of the many challenges that always accom-

pany SDM (Ara�ujo & Guisan, 2006; Thuiller et al.,

2008), modeling invasive species requires dealing with

nonequilibrium distributions and often differences in

climatic space occupied by the species in native and

invaded ranges. We found that projections away from

the sampled space were very different with different

modeling methods, raising questions about the reliabil-

ity of ensemble projections that average results from

many different outputs. Further, traditional model eval-

uation indices (AUC, kappa, etc.) need careful compu-

tation and interpretation complemented with insight

about the biology and distribution of the species. Bio-

logical insight becomes even more important when the

projection range is much broader than the sampled geo-

graphic space.

In addition, we have demonstrated that it is also

important to use model evaluation metrics computed

with independent points drawn from the projected

ranges, rather than from training regions. This is, as of

yet, a rare practice in SDM.

To the best of our knowledge, our study is the first to

quantitatively compare the effect of decoupling pres-

ences from background ranges. However, our results

also demonstrated that a decoupling approach does not

necessarily lead to a better model. A frequently

reported challenge of SDMs is that background ranges

(where the species is absent) are much larger than the

range of presences, a situation that artificially inflates

AUC scores. One of our choices for points, PWBN, was

opposite to most other studies in that the background

range was much smaller than the range of presences.

We chose to examine this combination of presences and

absences based on the logic that, while an invasion is

still in progress (as is the case for parthenium), the

invaded range will contain substantially more ‘false

absences’ than the native range, simply because the

plant has yet to invade all suitable habitat that it will

eventually be able to occupy. While the biological justi-

fication for this choice of presence and background

points seems sound, the statistical problems that

emerged by inferring a model in this fashion resulted

in models that were not particularly trustworthy. Mod-

els trained with PWBN were unreliable, predicting suit-

able habitats in Greenland and northern Canada where

this tropical/subtropical species not only currently

does not exist, but, according to our three parthenium

experts, is not expected to ever be able to exist. In spite

of this lack of biological realism, these same models

secured the highest AUC score when evaluated with

independent data from the training region (Fig. 4a,

dashed box; discussed below).

Improving model performance

By approaching the global modeling of parthenium via

12 scenarios that explore the effects of geographic train-

ing region (sources of points), possible sources of sam-

pling bias, and possible effects of roads on model

outputs, we found that no single evaluation criterion

was adequate for choosing the ‘best’ set of approaches.

We found the most important areas to consider could

be grouped into three themes: Choices made concern-

ing appropriate use of model evaluation metrics, the

model training region, and choice of SDM. We explore

these in more detail below.

Evaluation metrics. We found that AUC scores can be

very misleading if used as sole criteria for choosing a

model, supporting the few previous studies that have

explored this (Allouche et al., 2006; Lobo et al., 2008).

Biological knowledge of the species and its distribution

was important in refining choices about the best set of

predictions (Murray et al., 2009), especially when the

geographic range of predictions is much broader than

the training region of the model, as is true for most

invasive species.

We hypothesized that PWBN would give the best

model because it would have two advantages over

other point sources: (i) Occurrence points outside of the

native ranges were expected to either expand the niche

or more completely characterize the historic niche, and

(ii) background points taken only from within the

native range would be less likely to fall on suitable, but

currently unoccupied habitats. AUC computed on the

withheld data from sampling ranges (from the same

range that provides model building points) was very

high with an average AUC of four SDMs of 0.93 (see

column ‘Training region’ in the dashed box, Fig. 4a).

PWBN projections for non-native ranges are, however,

unrealistic biologically because a good portion of north-

ern Canada, Greenland, Europe, and some parts of the

Russian boreal forest are predicted to be suitable (Ap-

pendix S3, Fig. S7). Parthenium is from tropical and

subtropical areas and therefore highly unlikely to be

able to establish in boreal conditions, and our extensive

search has not yielded a single record of the plant from

these regions.

This strong mismatch between a very high AUC

score and unrealistic projection maps indicated that

there were severe problems with the traditional

approach of computing AUC using withheld data from

the training region (e.g., Peterson et al., 2007). When the

model built from PWBN was evaluated under different

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 4464–4480

4474 K. P. MAINALI et al.



conditions (with both the background and presence

points from across the world), the AUC scores dropped

from 0.93 to 0.65, making PWBN the worst set of points

for making models of global prediction. In fact, PWBN

yielded the worst models for three of the five continents

(Fig. 4a). The lack of background points from non-na-

tive ranges resulted in dramatic overprediction in non-

native ranges (a situation that tends to increase AUC).

Very few studies have quantitatively estimated model

transferability (e.g., Mau-Crimmins et al., 2006; Duncan

et al., 2009). We found that generalization and transfer-

ability of models (e.g., projecting invasive ranges out-

side of the training region) were best estimated

quantitatively with AUC computed on distribution

data from projected spaces (e.g., for each continent).

Previous studies have improved their models by

including points from the invaded range and by parti-

tioning the model prediction errors into various latitu-

dinal bands in the western USA (Wenger & Olden,

2012). But to the best of our knowledge, no other study

has taken our more complex approach of treating each

continent as independent for the purposes of model

building. We evaluated a model with occurrences and

background points from each continent separately, and

this approach provides a quantitative estimate of model

transferability. This novel approach provides a unique

method for improving projections into invaded ranges

and thereby increasing model robustness.

Training regions. A small fraction of global grid cells

have high habitat suitability for parthenium. From our

ANOVA results, we observed a systematic decline in total

variance with increasing suitability scores (Fig. 6a).

When all grid cells were examined together, more vari-

ation in projected suitability was contributed by the

point sources than by the SDM methods, with the rela-

tive importance of point source being even higher at

habitats of low suitability. This indicates the impor-

tance of finding the best set of training points when

making projections far from the current distribution of

the invasive species. Conversely, all point sources tend

to converge in their projection maps for the most highly

suitable habitats (see Appendix S2-D for details).

We found that prediction accuracy was much

improved using the global dataset for training the mod-

els (PWBW = presences from the world and back-

ground points from the world), rather than restricting

training to the native range (PNBN = presences from

native range and background points from native

range), as also found by prior studies (Mau-Crimmins

et al., 2006; Broennimann & Guisan, 2008; Jim�enez-Val-

verde et al., 2011; Rodda et al., 2011).

We showed that presences from different continents

occupied different regions of environmental space

(Fig. 3), as has been found in other studies of invasive

species (Broennimann et al., 2007; Beaumont et al.,

2009). Therefore, in order to encompass the set of envi-

ronments that are suitable for parthenium, we needed

to take presence points from the global distribution of

the species. This result supports prior studies that have

demonstrated that introduced ranges included in

model training improve prediction in invaded ranges

(Mau-Crimmins et al., 2006; Broennimann & Guisan,

2008; Jim�enez-Valverde et al., 2011; Rodda et al., 2011).

To understand why AUC computed in the traditional

way (on the training region) performed poorly, we con-

sidered how AUC is computed. When PWBN models

were tested on held-out data from the same ranges

(presences from the world and background points only

from native ranges), as the models attempted to maxi-

mize AUC scores, they ended up overpredicting out-

side the native ranges. But when these PWBN models

were tested with background points from outside the

native ranges, their AUC score decreased because most

of the habitats considered suitable by the models were

unsuitable in model testing data. Consequently, sensi-

tivity (correctly predicting known occurrences) for

PWBN stayed close to 1 outside the native ranges but

specificity (correctly predicting the assumed absences)

was between 0.05 and 0.19 (Fig. 7).
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Fig. 7 Sensitivity (fraction of occurrence records predicted posi-

tive) and specificity (fraction of background points predicted

negative) of the models built on three point sources. All models

collapsed.
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To explain this result, we propose a hypothesis: In

multivariate environmental space, global presences are

more distant to native range background points than to

world background points (Fig. 8a), allowing PWBN

models to set a threshold that classifies the two types of

points with the least amount of error (and therefore

very high AUC) when tested with held-out data from

training region. The hypothesized spacing of the clus-

ters of points predicts that the broad environmental

domain of presences in PWBN models includes most of

the background points from invaded ranges; conse-

quently, PWBN models, when evaluated with points

from invaded ranges, yielded a very low specificity rate

(0.05–0.19, Fig. 7). We computed Euclidean distances

among the clusters of world presences, world

background points, and native range background

points in the environmental space of our 23 predictors

(Fig. 8b). These distances supported our hypothesis

that global presences are more environmentally similar

to global background points than to native range back-

ground points. This explains why PWBN models, in

spite of having the highest AUC scores in the model

training space, have a very unrealistic prediction for

non-native ranges (see Appendix S2-B for details).

Therefore, we dropped PWBN models from further

consideration. Between PNBN and PWBW models, we

chose PWBW for predicting the world; a very small

gain in AUC (0.02) by PNBN models over PWBW mod-

els in native ranges is more than counterbalanced by a

large gain in AUC (0.035–0.256) by PWBW models over

PNBN models in non-native ranges.

Some recent studies have suggested that we may

improve model reliability by focusing on efficient pre-

diction of presences rather than absences (Phillips &

Elith, 2010; Jim�enez-Valverde et al., 2011; Ara�ujo &

Peterson, 2012). However, we note that in the present

study, this approach yielded unreliable models. Our

PWBN models, with the highest AUC score on inde-

pendent data from the training range (Fig. 4a, dashed

box) and close to 100% accuracy in predicting presences

(Fig. 7a), yielded very unrealistic projections at higher

latitudes (Appendix S3, Fig. S7). This was most likely

because the climatic niche of presences outside of the

native range was not efficiently contrasted by the cli-

matic space encompassing the pseudoabsences (dis-

cussed above).

Choosing SDM through combining information from stan-

dard metrics and biological insight. We observed that the

projections of the four SDM methods outside the train-

ing region were substantially different, with some of

them completely unrealistic (details in Appendix S2-C).

Therefore, rather than build an ensemble projection (by

averaging across the models), we chose the best projec-

tion(s) separately for each continent that best matched

the biologically realistic expectations drawn from the

expert opinion of our authors (details in Appendix S2-

C). The model underlying that ‘best’ projection was the

‘best’ model.

There were some important differences in predictions

made by the four SDM methods, the differences being
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Fig. 8 (a) Illustration of our hypothesis that occurrence records

from the world are more closely spaced in environmental space

with background points from the world compared to back-

ground points from native range making models built with

PWBN points highly inaccurate for prediction. Vertical red line

represents the threshold in models built with presences from

the world and background points from native range (PWBN).

Whereas the threshold yields a very high AUC scores for PWBN

models when evaluated with independent points from the train-

ing region, i.e., PWBN, it also classifies most of the environmen-

tal space of background points outside native ranges as positive

inflating false-positive error rate (when evaluated with indepen-

dent presences and background points from each continent)

resulting in patterns of Fig. 7. (b) Pairwise Euclidean distances

within and between groups showing how groups are spaced

apart in multivariate environmental space (23 predictor vari-

ables; road excluded). The mean dissimilarity of 3324 between

global presences and global background points is much smaller

than the dissimilarity between global presences and native

range background (3720). (The dendrogram shows the mean

dissimilarity of native range background points with the other

two groups together at slightly over 3600). Multiresponse per-

mutation procedure (MRPP) shows that the groups differ signif-

icantly in the multivariate environmental space (P

value < 0.001, A value = 0.0432, observed delta 3294, expected

delta 3442).
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more dramatic further from the training region. For

example, we concluded that GLM’s predictions of

highly suitable habitat in most of Greenland and part of

northern Canada and northern Russia were very unre-

alistic (Appendix S3, Fig. S8). These regions have harsh

winters that parthenium, a plant of tropical origin,

cannot survive. Given that GLM was the only one of

the four SDM methods to drastically deviate from

expectations in areas that are far away from sampling

regions, we believe that the extrapolation of GLM’s

parametric interaction terms between variables beyond

the parameter space of model training is likely the

cause. However, GLMs were commonly used in early

analyses (Elith & Leathwick, 2009) and still are a widely

used modeling method (Austin, 2002).

RF is a stronger classifier; compared to BRT, it has a

tendency to overemphasize differences between grid

cells. Its very flexible fitting procedure makes RF very

effective in modeling complex responses (Berk, 2009).

An unavoidable consequence of this flexibility that

allows RF respond to highly local features of data is

that it can inflate the risk of overfitting (Berk, 2009) and

compromise its generalization, hampering its ability to

make projections in a new landscape. BRT, on the other

hand, reduces overfitting by giving different weight to

the observations with highly local features, and averag-

ing such fitting attempts. Essentially, this approach,

called boosting, ‘combines the outputs from many

weak classifiers to produce a powerful committee’

(Hastie et al., 2009). BRT, therefore, is likely to yield

predictions that are more reliable outside of the training

region than RF. These fundamental differences between

RF and BRT match our observation: RF underpredicts

Asia and southeastern Africa, and overpredicts South

America and northern part of Africa including Sahara.

Continent-wise, BRT gave the best predictions of all

four modeling methods for Asia, North America, and

South America; therefore, BRT not only secured one of

the highest AUC scores but also closely matched our

expectations about the species distribution. For Aus-

tralia and Africa, GAM gave the best predictions (de-

tails in Appendix S2-C).

Expert opinion has been found to be useful in SDM

(Murray et al., 2009). The importance of biological

insight in model selection (details in Appendix S2-C)

was heightened in the present study because the eight

regions for which we computed AUC represented only

7.2% of the total grid cells on the planet for which pro-

jections were made.

Post hoc validation of our ‘best’ model in the field

Our post hoc test among SDMs used novel independent

field data to validate projection outputs from models

developed with entirely different datasets. One of the

authors of this study (BBS) travelled extensively to col-

lect distributional data of parthenium across Nepal in

September and October 2013, after all of our models

were completed. The 339 occurrence records he docu-

mented had a high correspondence with grid cells esti-

mated to be suitable with our BRT model for Nepal.

Our model projection was validated by the fact that the

observed AUC of 0.76 (based on records collected after

modeling) was statistically significantly different from

the AUC expected under the null model (Fig. 9).

Future distribution of parthenium

In Asia, Africa, and South America, we identified vast

stretches of highly suitable habitat for which no parthe-

nium occurrences have been recorded. Eastern China,

South-East Asia, and part of Japan and Korea were pro-

jected to harbor highly suitable habitat for the weed. In

its native range, our projection maps suggested that

parthenium was in equilibrium: Our results do not

show large areas as suitable that are not already occu-

pied. However, our results indicated that the archipe-

lago that includes Cuba, Jamaica, Haiti, Dominican

Republic, and Puerto Rico has high likelihood of being

invaded by this weed as they provide highly suitable

habitat, but our exhaustive search could obtain only

seven occurrence records from that region.

Interestingly, our models showed that the coastal

regions in the south (e.g., New South Wales) and west

(e.g., Northern Territory) of Australia have some of the

most suitable habitat for this weed. However, no major

parthenium infestations are currently present in those

areas. Even though we did not obtain a single occur-

rence record from that region, there have been cases of

the weed being carried there by the flood events of 2010

and 2011. We believe this discrepancy between pro-

jected habitat suitability and lack of occurrence records

is due to very effective management interventions to

reduce, contain, or to eradicate parthenium where pos-

sible, in both states during the past several decades

(Penna & MacFarlane, 2012). Also, strict quarantine

measures are enforced across Australia for vehicle and

grain movement from parthenium-infested areas. In

addition, effective biological control and grazing man-

agement strategies have significantly reduced parthe-

nium infestations in the core parthenium areas in

central Queensland, resulting in reduced soil seed bank

and limited the risk of parthenium seed spread to new

areas (Dhileepan & McFadyen, 2012).

Africa, where several agencies are working toward

the management of the weed, is likely to face stronger

challenges. The entire eastern coastal belt of Africa,

eastern half of Madagascar, Congo basin, coastal
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regions of Ghana, and surrounding countries are pro-

jected to harbor highly suitable habitat for the spread

and proliferation of parthenium.

Our habitat suitability projection roughly corre-

sponds at a coarse spatial scale to the projection of

parthenium with the use of CLIMEX model developed

by McConnachie et al. (2011). However, our study

differs substantially in both methodology and regional

projections of suitability. McConnachie et al. con-

structed a single model from known climatic tolerances

of parthenium and using its distribution in its native

range and South Asia for making global projection

models. In comparison, our approach used region-

specific model selection and conducted continental

cross-validation. Compared to our projection, McCon-

nachie et al. (i) overpredicted the extent of suitable

habitat in South America and Africa, (ii) underpre-

dicted in eastern China, and (iii) projected the world at

two orders of magnitude coarser spatial resolution,

making it problematic to use their results for manage-

ment interventions.

In summary, we found that construction of a highly

reliable model for projecting future parthenium inva-

sion potential required that (i) all geographic spaces

were included in model training, (ii) flexible, data-de-

fined smoothers were included to model nonlinear

responses, and (iii) interactions between variables were

modeled as they were discovered in data. We found that

data-driven models, such as boosted regression trees,

that (i) efficiently fit the dominant pattern but exclude

highly local patterns in datasets and (ii) capture interac-

tions as they appear in data rather than making a priori

assumptions led to improved generalization of global

projections of current distributions and hence improved

projections of potential spread of parthenium.
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