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ABSTRACT:  Climate change challenges conservation planners in making decisions about habitat site selection and 
augmentation. This pilot study explores the use of Robust Decision Making (RDM), a decision analytic approach employed 
in water and coastal management, for conservation decision-making. It employs the RDM approach to design a theoretical 
decision experiment that compares the differences in performance between stylized static and adaptive land purchase 
strategies that notionally aim to protect additional habitat for Desmognathus organi, a salamander in the south central 
Appalachians, under uncertain future climate conditions. The static strategy purchases a specific parcel of land in the 
present, whereas the adaptive strategy leases two parcels in the present and purchases the most suitable later. Purchase 
decisions are based on projected future habitat suitability for D. organi, estimated using species response models trained 
with an ensemble of climate model projections. Using RDM methods that emphasize scenario-based analysis and statistical 
discovery of factors that favor one decision versus another in different futures, we find that the adaptive strategy tends to 
perform slightly better than the static strategy in terms of selecting highly suitable habitat over a wide range of futures. RDM 
shows promise as an approach to support conservation decision-making. Additional methodological development is needed 
to apply it to real-world conservation problems.    

Journal of Conservation Planning Vol 13 (2017) 11 – 24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/131015426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


12

Tingstad et al / Journal of Conservation Planning Vol 13 (2017) 11 - 24

INTRODUCTION 

Climate change and its associated uncertainty present 
conservation planners with a significant challenge, in 
particular, making habitat site selection and augmentation 
more difficult (e.g., Hodgson et al. 2009; Dawson et al. 2011; 
Grimm et al. 2013). Conservation planners have always 
grappled with uncertainties including understanding the 
interests of different species, measuring population sizes, 
identifying interactions among species, monitoring land use 
practices and species responses to these, securing land for 
conservation purposes, and other factors (e.g., Pressey et 
al. 1993; Costello and Polasky 2004; Strange et al. 2006).  
The loss of climatic stationarity  adds a new, uncertain 
dimension to conservation decision-making (e.g., Dawson 
et al. 2011; Grimm et al. 2013; Wiest et al. 2014; LeDee 
and Ribic 2015; Mantyka-Pringle et al. 2016; Shah et al. 
2016).  Climate uncertainty presents not only a normative 
challenge – how to best compare alternative choices using 
uncertain scientific information – but also an organizational 
and behavioral one.  Decision makers can find it difficult to 
consider a wide range of futures and instill confidence in 
their choices when the future is poorly understood.

This study describes a pilot application of Robust Decision 
Making (RDM) (Lempert et al. 2003) in a conservation 
decision-making context. RDM is an iterative, quantitative, 
analytic approach for supporting decisions under conditions 
of deep uncertainty, defined as the condition in which the 
parties to a decision do not know or do not agree on the 
system model relating action to consequence and/or the 
prior probability distributions for important inputs to those 
models. Conservation planning in a changing climate 
exhibits deep uncertainty (Mooney et al. 2009; Dawson et 
al. 2011; Moritz and Agudo 2013; Staudinger et al. 2013; 
Staudt et al. 2013).  RDM has been employed in several 
contexts such as water and sea level rise management 
(e.g., Groves et al. 2008; Fischbach et al. 2012; Lempert et 
al. 2012; Groves et al. 2012; Groves et al. 2013; Tingstad 
et al. 2014), although never before for biodiversity or 
conservation-related decision support. 

In addition, RDM has often been used to support adaptive 
management plan development, which may be one 
important way of addressing the deep uncertainty climate 
change imposes on conservation planning (Lawler 
2009; Mawdsley et al. 2009; Araújo et al 2011). Adaptive 
management, which we consider here as explicitly 

designing plans to evolve over time in response to new 
information regarding future environmental, financial, and/
or other conditions, is an increasingly popular concept in 
the conservation and biodiversity management literature 
(e.g., Hodges 1991; Staudinger et al. 2013; Stein et al. 
2013). 

In decision analytic research such as this, a problem can 
be simplified in order to better understand its decision 
characteristics and experiment with new analytic 
approaches. Thus, this pilot study focuses on a single 
salamander species, Desmognathus organi, chosen due 
to its location in the south central Appalachians, where 
climate change is expected to have a substantial impact 
(e.g., Milanovich et al. 2010), and because we had 
access to detailed data required for ecological modeling. 
We chose this species and area to coincide with another 
research effort focusing on salamander species in the 
Appalachians (Moskwik 2014). A single species alone is 
rarely emphasized in conservation plans and literature 
unless it has special significance (which D. organi does not 
appear to have), but it was a necessary simplification to 
enable focused exploration of the RDM-based approach in 
a new context.

The study also drastically simplifies conservation decision-
making for the same reason – by comparing the differences 
in performance, using an RDM approach, between notional 
static and adaptive land purchase policies designed 
to augment the amount of Appalachian salamander 
habitat contained within Federal park lands. The stylized 
static policy purchases a specific parcel of land today 
based on future habitat suitability estimated using an 
ensemble of climate model projections, while the stylized 
adaptive policy leases and protects two parcels today 
and purchases one of them later when the future climate 
trajectory becomes clearer. This study compares strategy 
performance by evaluating each of them over a wide range 
of future climate projections, using multiple configurations 
of species response models. Using the resulting database 
of simulation results, we compare the two policies and 
suggest the future climate conditions that might incline 
notional decision makers towards one or the other policy 
approaches.

This work was undertaken as part of a broader, National 
Science Foundation (NSF) funded effort to understand 
the impacts of different types and spatial resolutions of 
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climate change projections on decision-making in both 
species conservation and water planning contexts. As an 
initial, exploratory application, this study has numerous 
limitations, which we address throughout this paper. The 
work reported here lays the foundations for a methodology 
employed in subsequent efforts. 

The next section describes our study area in further detail 
and our research approach and methods. The third section 
presents results comparing the performances of the 
stylized static and adaptive land purchase strategies. We 
close with discussion about whether and how RDM might 
be further developed to be useful for conservation planning 
and remarks on future applications of this work.

MATERIALS AND METHODS 
 
Species and Study Area

The Plethodontidae salamander D. organi (northern pygmy 
salamander) occurs at high elevations in North Carolina, 
Tennessee, and Virginia (Crespi et al. 2010). Presently 
suitable habitat for D. organi extends across a range of lands 
with different uses and levels of protection, including private, 
private conservation easement, National Park Service 
(NPS), U.S. Forest Service (USFS), Fish and Wildlife Service 
(FWS), and other government lands. Most populations occur 
at elevations greater than 1500 m in spruce-fir forests, 
although populations are encountered at lower elevations in 
mesophytic hardwoods on north slopes (Organ 1961). 

Figure 1 shows the estimated contraction in suitable habitat 
for D. organi by 2041-2070 based on average estimates from 
the species distribution model ensemble (described later in 
this paper) driven by average changes in climate projected by 
our climate model ensemble (described later in this paper). 
By mid-century, our models suggest that D. organi suitable 
habitat (where environmental conditions are conducive to 
species presence) will be reduced to about eight percent of 
its present area. 

For the purposes of developing our concepts for applying 
RDM to conservation decision-making, we considered any 
government-owned lands used primarily for conservation 
and recreation to be protected. We considered as 
unprotected all private land (including conservation 
easements) and other government-owned lands (e.g., 
military installations). This delineation is not entirely 
accurate; for example, human recreation on Federal lands 

may harm ecosystems, while some private landowners 
may have very little impact on the environment. Military 
installations do provide some protected habitat, and some 

conservation easements may be afforded higher protection 
status than some of the public lands we delineate as 
protected. However, this simplification allowed us to 
make convenient assumptions in this pilot study between 
land ownership and risk of decline in salamander habitat 
suitability in the decision model described later. Although 
these simplified assumptions undoubtedly impact our 
results, we did not attempt to quantify the effect. 

Robust Decision Making (RDM) Research 
Approach  

This study explores the use of RDM as a methodological 
framework to examine the impact of climate assumptions 
on conservation decision-making. RDM is an approach 
within the broader field of decision science that aims to 
help people manage difficult decisions under conditions of 
deep uncertainty (Lempert et al. 2003; Lempert et al. 2006; 

Figure 1: Map of study region and projected D. organi present 
and future (2041-2070) ranges. D. organi presence was 
defined as sites having an average suitability score ≥ 500 
across all climate scenarios and modeling approaches, 
described in detail later in the paper. The orange ellipses 
indicate the approximate locations of the land parcels 
considered in the static and adaptive strategies described 
later in the paper. The figure includes data from the United 
States Geological Survey (2012) and United States Census 
Bureau (2013), and was created using the ESRI ArcGIS 
program version 10.2.1.
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Hallegatte et al. 2012; Lempert 2014). The approach rests 
on a simple concept. Rather than using computer models 
and data to describe a best-estimate future, the approach 
runs models on tens to thousands of different sets of 
assumptions to describe how plans perform in a range 
of plausible futures. Analysts then use visualization and 
statistical analysis of the resulting large database of model 
runs to help decision makers distinguish future conditions 
in which their plans will perform well from those in which 
they will perform poorly. This information can help decision 
makers identify, evaluate, and choose robust strategies 
that perform well over a wide range of futures.  

There are several important differences between RDM and 
Species Distribution Modeling (SDM), but in many ways 
these are also complementary approaches. Whereas SDM 
relates observations of species in the field to environmental 
variables in order to statistically explain species-
environment relationships (e.g., Guillera-Arroita et al. 2015; 
Schneiderman et al. 2015), RDM focuses analysis on 
decision-making and the scenario factors that lead to one 
decision being favored over another. As such, information 
derived through SDM can feed an RDM analysis – as it 
does in this analysis through our use of species response 
models – and an RDM analysis could also inform SDM 
by suggesting which species and environmental factors 
appear most influential in a specific conservation decision 
context. 

Climate Models 

This study focuses on future climate as a key uncertainty 
that could affect the performance of the adaptive and static 
land purchase strategies, employing eleven alternative 
climate projections from the North American Regional 
Climate Change Assessment Program (NARCCAP). We 
decided to use these particular projections because we 
had prior experience working with them and they were 
readily available.

NARCCAP pairs low-spatial resolution global General 
Climate Models (GCMs) with higher-resolution (50 km) 
Regional Climate Models (RCMs).  The GCMs are each 
forced with the Special Report on Emission Scenarios 
(SRES) A2 scenario (Intergovernmental Panel on Climate 
Change, undated). For each GCM-RCM projection, 
we aggregated the NARCCAP data from three-hourly 
frequency to monthly climatology, generating thirty-year 

monthly time series for precipitation and daily minimum and 
maximum temperatures. Climate variable time series were 
then spatially interpolated from the native grid to the 800 m 
resolution required by the species distribution models using 
a kriging algorithm, with elevation as a covariate. We then 
computed differences (future minus current for temperature; 
future divided by current for precipitation), which we applied 
to the PRISM Climate Group’s 30 arc-second 1971-2000 
average monthly maximum and minimum temperature and 
precipitation dataset in a final downscaling step (DiLuzio 
et al. 2008). More detailed, local projections could have 
benefited our study, but were not available at the time 
of analysis. Importantly, we focus on the use of multiple 
climate projections as a means of exploring the effects of 
uncertainty on outcomes, and the downscaled GCM-RCM 
results are suitable for that purpose.

These eleven NARCCAP projections suggest consistently 
hotter future temperatures, spanning a range of about 
1.5°C, and consistently wetter conditions, for the most part, 
spanning a range of about 250 mm/year in average annual 
precipitation. We expect D. organi may be particularly 
sensitive to warmer temperatures (Milanovich et al. 2010). 

Projections from the eleven NARCCAP models described 
above provided important inputs for the suite of species 
distribution models used in our analysis. We used all of 
the models described below to conduct our work (we did 
not select a single or handful of models with the best 
“fit”, although future work could weight models based on 
performance metrics). Importantly, we did not average 
the projections to create a single ensemble. Instead, 
we considered each as a distinct representation of a 
plausible climatic future in the analysis so as to inform how 
differences in expectations regarding climate can impact 
decision-making.

Species Distribution Models

We divided our study area into approximately 800 m by 800 
m land parcels according to the 30-arc second grid used for 
the PRISM Climate Group’s gridded climate data described 
in DiLuzio et al. (2008). This spatial scale may not be 
appropriate for all conservation land purchase decisions, 
but was necessary to use here because of the particular 
data and methods available to us for the species response 
modeling, which is an important limitation of our study. 
Following grid generation, we incorporated information 
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about land use, including urbanized areas from the U.S. 
Census Bureau (US Census Bureau 2013) and type of land 
ownership (government or private) based on the land cover 
data from the United States Geological Survey (USGS) 
National Gap Analysis Program (GAP) Protected Areas 
Data Portal (United States Geological Survey 2012) using 
the ArcGIS program in order to assign each 800 m by 800 
m land parcel land use and ownership characteristics. We 
did not attempt to reconcile actual property ownership lines 
with our imposed grid. 

We calibrated the species distribution models using recent 
D. organi presence data and current climate data. For 
modeling algorithms we used five available in BIOMOD 
1.1-7.04 (Thuiller et al. 2009), including generalized linear 
models (GLM), multivariate adaptive regression splines 
(MARS), random forest (RF), generalized boosted models 
(GBM), and generalized additive models (GAM). 

For current climate data we used the PRISM Climate 
Group’s 30 arc-second 1971-2000 average monthly 
maximum and minimum temperature and precipitation 
dataset (DiLuzio et al. 2008). Using this dataset we 
calculated twenty-one bioclimatic variables, commonly 
used in species distribution modeling, using DIVA-GIS 7.5 
(Hijmans et al. 2001). 

When employing the different species response models 
using the eleven different future climate projections, our 
full factorial design yielded 1,430 individual futures. Every 
future provided a habitat suitability score between 0 
(lowest) and 1,000 (highest) for each 800 x 800 m grid cell 
considered in the analysis. Suitability is distinct from actual 
presence/absence, although the two factors can be related 
in that more suitable land is more likely to support the 
species. For the purposes of this study, we consider land 
with a suitability score of at least 500 to be “suitable” for 
D. organi. This was chosen for convenience, and could be 
more thoroughly evaluated in the future, including through 
engagement with stakeholders and additional simulation 
efforts. We refer the interested reader to Moskwik (2014) 
for a full description of our species distribution modeling 
methods. 

Based on our threshold suitability score of 500, the mean 
of all species distribution models suggest that only eight 
percent of the current range of D. organi will remain suitable 
by mid-century (our estimate could change if the threshold 

suitability score for presence is varied). Specifically, the 
range contracts upward to higher elevations (Figure 1), 
consistent with expectations under a warming climate.  
Based on our projections, we do not expect any shift in the 
range outside of areas presently suitable for the species. 
This is also consistent with observed recent downward 
expansions of D. organi (Moskwik 2014) in concert with 
regional cooling during the 20th century (Rogers 2012). 
We do not consider the impact of stressors such as 
deforestation, invasive species, or other threats.

By examining variance in our results across the 1,430 
futures using an Analysis of Variance (ANOVA) test, 
we found that alternative species distribution models, 
combined with different climate projections, contribute 
significant structural, or model-based, uncertainty. Factors 
affecting the suitability scores for D. organi include 
the modeling algorithm (e.g., random forest model, 
generalized boosted model), environmental variables 
(e.g., temperature, precipitation) used as predictors, future 
climate projection, and spatial modeling region. Of these 
factors, the choice of environmental variables to include as 
species distribution model predictors contributes the most 
to the uncertainty (51% of the total variance) with respect 
to habitat suitability, followed by the species distribution 
model structure (37% of the total variance).  Importantly, 
the future climate projection only accounts for six percent 
of the total variance, which impacts our ability to assess the 
differences between static and adaptive land purchasing 
strategies under uncertain future climate conditions.

Strategies, metrics, and decision model 

Our stylized analysis compares static and adaptive land 
purchase strategies. The static strategy purchases an 800 
m x 800 m parcel of private land (one of the boxes in the grid 
previously described) in the near-term that has the highest 
mean future (2041-2070 average) suitability score for D. 
organi calculated assuming equal weightings over all climate 
projections and species distribution models. For simplicity, 
we focus on one 800 m by 800 m parcel of privately held 
land, but our general approach could be straightforwardly 
expanded to consider larger land purchases. We focus 
on land adjacent in one of the four cardinal directions (for 
simplicity) to current NPS holdings based on an assumption 
about the benefit of increasing the size of these lands, 
something that may be reconsidered in future work. 
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Using the same mean future suitability score calculation, 
the adaptive strategy initially places under lease the top two 
ranking parcels for suitability and subsequently chooses the 
higher ranking of the two land parcels for purchase using 
subsequent information regarding which climate projection 
is being most strongly validated by actual climate trends 
over time in a particular scenario, and employing equal 
weighting over the alternative species distribution models. 

Although the adaptive strategy affords additional flexibility, 
it also imposes costs. In this analysis, we represent this 
cost of undertaking the adaptive strategy through increased 
risk that the habitat quality may degrade due to lack of 
management that would be conducted on a purchased plot 
of land in the static strategy. 

For simplicity in the design of strategies for this pilot analysis, 
we do not consider employing a conservation easement, 
which could have more complex costs associated with it 
than a lease. In addition, we do not explicitly consider the 
price of entering into a purchase or lease contract, or the 
fact that different plots of land have different values. 

To evaluate the success of the static and adaptive land 
purchase strategies, this study uses metrics that focus on 
the suitability of habitat for D. organi; that is, how well a 
parcel of land meets environmental conditions estimated 
to be best for the species. As described earlier, suitability 
is measured here on a 0 to 1,000 scale, with the latter 
endpoint representing the highest possible suitability 
rating. 

In general, measures of effectiveness for the protection 
of a single species can include species abundance, 
habitat area, and habitat quality (e.g., Gering et al. 2003; 
Hodgson et al. 2009; Nelson et al. 2009). This study uses 
three measures that focus on habitat area and quality; in 
particular, asking:

•  Is at least ten percent of the area of presently suitable 
land protected in the future (2041-2070)?

•  Did the purchased land contribute to the ten percent 
conservation goal?

•  What is the estimated suitability of the purchased land 
during 2041-2070?

The first measure focuses on a notional overarching 
conservation goal. For 1971-2000, 692 parcels exist in 
the study area with average suitability score ≥ 500, as 
determined by species distribution modeling described 
later in this section. This first measure is satisfied if in the 
future (years 2041 to 2070) the 69 parcels with the highest 
habitat suitability have scores of at least 500 and are all 
contained on protected land. In some futures there may 
not be a sufficient number of suitable parcels to achieve 
this goal no matter what land is purchased. Alternatively, 
in other futures, protected areas may include enough 
suitable habitat that the goal may be met whatever land 
is purchased. Finally, there are some futures in which the 
purchase of exactly one parcel of land will achieve the goal. 

The second measure focuses on whether or not the 
purchased land contributes to meeting the conservation 
goal described above. This measure requires the purchased 
land to have suitability of at least 500 and to be among the 
69 parcels with the highest suitability scores in mid-century, 
but can be met whether or not the overall conservation goal 
is achieved. The third measure focuses only on the future 
quality of the land purchased as measured by its suitability 
in each future scenario and is evaluated independently of 
the other two metrics. For the purposes of this pilot study, 
we make the simplifying assumption that suitability scores 
in the present and future may be interpreted as having the 
same biological meaning.  

It is useful to note that defining measures of effectiveness 
for land management strategies represents an ongoing 
challenge (e.g., Fleishman et al. 2006; Boitani et al. 2008). 
Overall, “effectiveness” is a values judgment that should 
be made by decision makers, which increases the need for 
decision support approaches, such as that proposed here, 
that offer flexibility in the objectives they consider. 

Our decision model, which brings together the different 
aspects of our analysis to help enable implementation of 
the RDM approach, ranks the suitability of different land 
parcels and calculates the three measures described 
above. To rank the parcels by suitability, the model 
conducts a simple sorting procedure where it identifies all 
non-urban private land parcels adjacent in one of the four 
cardinal directions to protected land, and then ranks them 
by D. organi suitability. 
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To calculate aggregate measures of success described 
above for the two strategies, the model adjusts the 
suitability score for each parcel in our study area based on 
its land use category. Any land presently within an urban 
boundary has suitability set to zero because we do not 
expect to find D. organi in urban environments. In this pilot 
study, conservation easement/leased land and privately 
owned lands had suitability scores degraded in each model 
run by factors of twenty and fifty over the course of the 
entire future time period, respectively. These values were 
chosen for convenience, and are intended to reflect our 
assumption of increased risk to habitat resulting from the 
lower level of formal management regulation than would be 
present in protected lands. The suitability of a private land 
parcel purchased in the static strategy remains unchanged 
because this land then becomes protected and thus at no 
risk for degradation in our simplistic approach, while the 
suitability of private lands leased by the adaptive strategy 
degrades because these now fall within our category of 
leased land at risk of some degradation. 

The decision model produces adjusted suitability scores at 
mid-century for each parcel of land for each strategy under 
every projection from the species distribution models. The 
model then uses these suitability scores to calculate the 
metrics described earlier for each strategy. 

RESULTS AND DISCUSSION

To compare the static and adaptive land purchase policies, 
we used the decision model to choose the specific land 
parcels considered as part of those policies and evaluated 
them over multiple futures. We then employed the resulting 
database of model runs to assess the value of the adaptive 
strategy and to identify the climate conditions that tend to 
favor it over the static strategy.

Table 1 provides an initial summary of the performance of 
the two strategies over the 1,430 futures using the three 
metrics previously described. The static plan results in 10% 
of habitat area protection in more futures (325) than the 
adaptive plan (308), though this difference is not significant 
with 95% confidence according to a Chi-Square test.  Both 
strategies meet this goal in relatively few futures because 
at least one of the 69 most suitable parcels of future habitat 
often resides in private or existing conservation easement 
land that was not selected as part of a purchase strategy, 

or in some cases there are insufficient numbers of suitable 
land parcels to achieve the overarching conservation goal 
regardless of ownership. The static plan may result in 
10% habitat area protected in more futures because land 
leased as part of the adaptive plan can degrade before it 
is purchased. 

For the other two metrics we defined, the adaptive 
plan performs better than the static. The adaptive plan 
contributes to the 10% habitat protected goal in more 
futures (974) than the static (766), which is significant 
within a 95% confidence interval according to a Chi-Square 
test (p=0.001).  The adaptive plan also purchases land with 
suitability scores greater than 500 in more futures (1,204) 
than the static (1,076). On average, the suitability of land 
purchased increased by 82 suitability points using the 
adaptive plan (adaptive strategy average suitability = 744, 
static strategy average suitability = 662), significant with 
95% confidence according to both a t-test and an ANOVA. 
(This is not surprising, considering that a t-test is a special 
case of the one-way ANOVA.)

The histogram in Figure 2 shows how, compared with the 
static policy, the adaptive strategy substantially increases 
the number of futures in which the purchased land has a 
high suitability score (> 900). Relative to the static policy, 
the adaptive strategy also decreases the number of land 
purchases with very low suitability scores (< 100). The 
static strategy increases the number of futures with land 
purchases with suitability scores between 700 and 900.  
These patterns suggest that in some futures the adaptive 
strategy can identify the best available land better than the 
static. However, there appears to be a range of futures 
for which it seems that the costs of the adaptive strategy 
(due to land degradation) exceed its benefits. Altering our 
assumptions about land degradation could change these 
results. One particularly important assumption in this pilot 

Table 1: Number of futures in which static and adaptive 
plans satisfy the three metrics.

Metric STATIC ADAPTIVE

10% of habitat area protected 325 308

Purchased land contributes to top 
10% habitat protected goal 766 974

Purchased land has suitability > 500 1076 1204
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analysis is that protected lands do not degrade, which is 
realistically not the case. 

To identify the climate conditions that tend to favor the 
adaptive over the static strategy, Figure 3 compares the two 
strategies based on the difference in the number of futures in 
which the purchased land makes a difference in achieving the 
goal of protecting at least ten percent of the area of presently 
suitable land. These differences are displayed along axes 
that represent each climate projection’s spatially averaged 
deviation from the current (PRISM) annual maximum 
temperature and annual mean precipitation, respectively. 
For climate projections close to the mean deviations from 
current climate conditions, the static and adaptive strategies 
perform similarly in terms of selecting a parcel of land that 
was highly suitable relative to all other parcels (regardless of 
ownership). For projections further from the mean delta, the 
adaptive strategy tends to perform better than the static. This 
pattern makes sense since the static strategy purchases 
land based on the climate ensemble mean projection.  

Figures 2 and 3 suggest that the improvement gained by 
the adaptive strategy remains small relative to the total 
variance across futures. This is due to at least two factors. 
The adaptive strategy responds to the notional decision 
maker gaining additional information about the climate at a 
later point in time, but the large majority of the variance in 
the suitability scores depends on uncertainty associated with 
the species distribution models.  In addition, the adaptive 
strategy leases the top two land parcels based on the climate 

ensemble mean, and thus may be choosing from a relatively 
narrow portfolio of options.  Alternative adaptive strategies 
that lease a more diverse range of parcels might perform 
better. The relative lack of climate sensitivity in this species, 
the present design of the adaptive strategy to select from 
a narrow portfolio of options, and the inherent assumption 
that decision makers will be able to ascertain the climate 
trajectory with greater clarity in the future, lead us to only 
cautiously suggest the benefit of an adaptive strategy, such 
as that presented in this pilot example.

It is also worth noting that up until this point, we have made 
no assumptions regarding the distribution of probabilities 
across the 1,430 futures considered in the analysis. This is 
an important consideration since, as Figure 3 suggests, the 
value a decision maker attributes to the adaptive strategy 
compared to the static may depend on her expectations about 
the relative likelihood of the alternative climate projections. If 
the projections close to the ensemble mean are significantly 
more likely in a decision maker’s mind than those further 
away, the benefit of the adaptive strategy will be minimized 
relative to the situation where the decision maker believes 
that the full range of climate projections are equally likely. 

Figure 2: Histograms of land parcel suitability scores for the 
static and adaptive policies.

Figure 3: Relative benefit of the adaptive strategy compared 
with the static strategy in different climatic futures. 
Specifically, the difference in number of times the adaptive 
strategy was successful in achieving the goal in metric 1 (Is at 
least ten percent of the area of presently suitable land 
protected in the future (2041-2070)?) versus the static strategy, 
compared with each climate projection’s spatially averaged 
deviation from the current (PRISM) annual maximum 
temperature and annual mean precipitation. 
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CONCLUSIONS

Managing climate uncertainty in conservation planning 
is a topic of increasing interest.  Predictions for species’ 
habitat availability in the future (e.g., Spencer et al. 
2010; Stein et al. 2013) can be highly sensitive to climate 
projections, which are deeply uncertain. At present, many 
conservation plans do not quantitatively consider the 
uncertainty due to future climate change (e.g., Olson and 
Dinerstein 2002; Hoekstra et al. 2005; Spencer et al. 2010), 
although numerous assessments of biodiversity and future 
ecosystem health note the importance of climate change 
and its impacts (e.g., Parmesan, 2006; President’s Council 
of Advisors on Science and Technology 2011; UK National 
Ecosystem Assessment 2011; Grimm et al. 2013; Nelson 
et al. 2013; Stein et al. 2013; Intergovernmental Panel on 
Climate Change 2014). 

This article describes a new application for decision analytic 
research, demonstrating some initial steps for how RDM 
methods could help support the process of selecting and/or 
augmenting lands for species conservation. To do this, we 
followed the common practice in decision analytic research 
of simplifying the underlying research problem in order 
to understand its decision characteristics more deeply 
and experiment with a new analytic approach. We used 
some data available for a single salamander species in the 
Appalachian Mountains to demonstrate a simple, theoretical 
example. Although it appears that the RDM approach may 
have some promise for conservation planning research, 
there are also many limitations brought to light by our study 
that indicate more methods development is needed before 
the approach can be applied to a more complex, real world 
situation.

As a quantitative decision analytic approach for supporting 
decision-making under conditions of deep uncertainty, 
RDM offers several useful attributes for conservation 
planners that complement existing approaches and tools. 
The RDM method represents uncertainty with multiple 
runs of simulation models, which makes it very flexible 
in terms of the ecological models utilized, the types of 
climate and other uncertain information included, and the 
representations and algorithms employed to describe the 
alternative conservation strategies under consideration. 
In this study, we used highly detailed species distribution 
models to estimate land suitability, a relatively broad 

ensemble of climate projections, and a simple but easily 
generalizable representation of an adaptive land purchase 
strategy. RDM enabled us to examine the value of 
alternative, stylized ecological reserve site augmentation. 
Such information could provide useful information to 
decision makers and could help facilitate deliberation and 
engagement with stakeholders.

In particular, this study finds that an adaptive land 
purchase strategy that leases two parcels of land and then 
subsequently purchases the one most favorable depending 
on the climate trajectory tends to perform slightly better 
over a wide range of plausible futures than a static strategy 
that purchases the single best-estimate parcel today. The 
adaptive strategy does impose costs because in this study 
the suitability of land under lease can degrade faster than 
that purchased today for protection. The impact of these 
costs may be seen in the statistically insignificant difference 
between static and adaptive plan performance in achieving 
the overarching conservation goal described by metric 1. 

Here, we summarize a few of the most important limitations 
of this pilot study. The assumption in our adaptive strategy 
that decision makers will be able to link observed climate 
trends with a particular climate trajectory in order to make 
a future decision is almost certainly overly optimistic. 
Thus, this analysis likely represents an upper bound to 
the benefits of the very simple “lease two, then buy one 
parcel strategy” considered here. In addition to more 
realistic assumptions about the potential for future learning 
regarding climate, a successful adaptive strategy would 
also likely require efforts to reduce uncertainty regarding 
the species distribution models used.  A successful adaptive 
strategy might also employ a broader set of policy levers, 
such as protecting diverse parcels of land (perhaps as part 
of an effort to protect multiple species or preserve genetic 
diversity within a single species), identifying ecological 
corridors, or enacting some type of habitat exchange policy 
that shifts the location of protected areas over time (e.g., 
Cuperus et al.1999; Venter 2014).

In addition, ecosystems are complex; conservation 
measures may impact some species positively and 
others negatively, and interdependencies, such as within 
a food web, may need to be considered (e.g., Tylianakis 
et al. 2010). Climate change, with its effects on species’ 
movements and ecosystem composition, makes it even 
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more difficult to define broad conservation goals and 
specific metrics (e.g., Hodgson et al. 2009; Dawson et al. 
2011). Further, land protection status can be associated 
with land management objectives without explicit 
consideration of biodiversity features or goals (e.g., Boitani 
et al. 2008), which can disconnect land protected status 
from conservation decisions. The measures used in this 
study clearly represent only a small window into the full set 
of those that might be appropriate.

This pilot study has several other limitations. In many ways, 
it lacks a rigorous approach that would be used to support 
real-world conservation decisions. Also, we have not 
formally assessed decision maker preferences and goals 
with respect to D. organi. As a pilot study, this analysis did 
not include any stakeholder deliberations, but the general 
RDM approach is designed to facilitate such interactions. In 
addition, we did not consider issues related to salamander 
population dynamics or advances in understanding of the 
species ecology of D. organi, which is a recently revised 
species. Further, the species distribution models used here 
neglect potentially important interactions among species. 

The study employs a simple, and not entirely accurate, 
representation of land use and considers notional 
measures of success relevant to only a single species. 
We consider only one particular type of conservation 
investment and focus on a small subset of the possible 
land use considerations and associated uncertainties, in 
particular the rate at which habitat may degrade based on 
the type of land ownership. 

While broader than many in the literature, the range of 
climate projections considered here samples only a small 
range of the plausible futures and is insufficiently dense to 
provide good statistics for the vulnerability map in Figure 
3. Finally, we did not analyze the impacts of variability 
associated with the species response modeling, which 
represents a much larger source of variability than future 
climate.  

Despite limitations, this study illuminates important 
differences between conservation planning and previous 
RDM applications and suggests some initial ideas for 
managing climate uncertainty in conservation planning. 
Important differences with previous RDM applications 
include focus on finer scale geography and significantly 
more uncertainty in the system (species response) models 

than in previous water management applications. This pilot 
study adapts tools developed in previous RDM studies 
to this new context. In so doing, it also provides useful 
information on the extent to which the future habitat of D. 
organi may contract over a wide range of plausible future 
climate change and suggests that compared to a land 
purchase strategy that focuses on the best-estimate future 
climate, an adaptive land purchase strategy might expand 
the range of climate futures over which conservation 
strategies benefit the species.

The RDM framework can be straightforwardly extended to 
address many of the limitations of this pilot study by, for 
instance, considering multiple species, a wider range of 
climate projections, strategies that employ a richer array of 
policy options and potential for learning, and facilitating the 
reframing and refocusing of goals with which the biodiversity 
community may need to engage in the face of the climate 
change challenge. Overall, as a flexible, iterative, multi-
scenario approach to decision support, the RDM approach 
used in this study – once further developed and refined 
for conservation applications –  may prove generally useful 
in helping the biodiversity community design and evaluate 
adaptive management strategies under a wide range of 
potential future climate conditions.
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