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1. Introduction 

Good mechanical (stiffness and strength) performance in a composite system is normally achieved when the 
fibres are well-bonded to the matrix.  In glass fibre reinforced unsaturated polyester resin, the fibres are coated with 
a coupling agent where the molecule has a silane group to bond to the fibre and a vinyl group to react with the 
unsaturation in the resin.  The coupling agent will often have an oleophilic/hydrophobic end in the resin and an 
oleophobic/hydrophilic end at the fibre matrix interface. 

 

1.1. Silanisation of natural fibres 

For natural fibre composites, chemical treatment of the fibres with silanes (silanisation) is often used to enhance 
the fibre/matrix interfacial bonding.  Xie et al. [1] have reviewed direct silanisation of natural fibres (broadly flax, 
sisal and hemp).   The creation of covalent bonds over the whole fibre surface occurs by reaction between hydroxyl 
(OH) groups on the fibre surface and those in the silane molecule (Fig.1).  This reaction should lead to natural fibre 
composites with improved mechanical properties and durability. 

 

 
Fig. 1. Si-O-Si bonding scheme 

 
Van de Weyenberg [2] studied different fibre pre-treatments for flax fibre.  All the methods started with 

mercerisation (1, 2 or 3% NaOH solution for 20 min at RT) of the fibres.  The fibres were then thoroughly washed 
in cold water, then acidified water (20 drops of 0.1 M HCl/litre of water) to neutralise the NaOH. The fibres were 
again rinsed in cold water, then dried in an oven at 80°C for 8 h. The silanisation involved soaking fibres in a 1% 
solution of 3-aminopropyl trimethoxy silane in equal volumes of acetone and water for 2 h.  The fibres were again 
dried in an oven at 80 °C for 8 h. The longitudinal modulus and strength were increased by ~58% and ~38% when 
the fibre was treated with 1% NaOH solution then 3% epoxy resin solution.  The longitudinal modulus and strength 
were increased by 46% and 4% respectively after treatment with 1% silane.  The transverse modulus and strength 
were increased by 400% and 110% respectively after silane treatment. 

 
Xie et al. [1] reviewed the use of silane coupling agents (generally trialkoxysilanes) in NF/polymer composites to 

improve the interfacial properties.  The generic chemical structure of the silane coupling agents is A(4-n)-Si-(R’X)n (n 
= 1,2) where A is alkoxy (alkyl ether), X represents an organofunctional group, and R’ is an alkyl bridge.  The 
alkoxy normally reacts with the NF surface and the R’ organofunctional group is compatible with the organic 
polymer matrix due to their similar polarities. The organofunctional entities in the silane may be amino-, mercapto-, 
glycidoxy-, vinyl-, or methacryloxy- groups. Aminosilanes, especially γ-aminopropyltriethoxysilane (APS), are 
most commonly reported coupling agents used for natural fibres in polymer matrices. 
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Gliesche and Mäder [3] used silane (OSi-Specialties A-1100 or A-1120) coupling agents for flax and ramie 
fibres.  Typical water contact angles for the untreated flax and ramie fibres were 87° and 77° respectively. 

 
The silane treatment of the cellulose fibre surface may produce polymer grafting and decrease hydrophilicity.  

Abdelmouleh [4] treated fibres with 5 w/o silane in stirred 80/20 v/v ethanol/water mixture for 2 h, dried the fibres 
at RT for days, then cured the system under nitrogen atmosphere at 120°C for 2 h.  O-Si-O and C-Si-C bridges were 
reported to have formed between the fibre surface and silane groups.  Shokooi [5] reported that Si–O–C bonds in 
natural fibre composites are less stable under hydrolysis than the Si–O–Si bonds in glass fibre composites. 

 
Hassan et al. [6] reported improved tensile strength, elongation to break and durability for mercerised jute fibres 

grafted with silanes and acrylamide under ultraviolet radiation.  
 
Kabir et al. [7] subjected hemp fibres to alkali, acetyl and silane treatments.  Hemp fibre directly treated with 

silane showed drastically reductions in mechanical properties: -61% and -33% for tensile modulus and strength 
respectively.  For silane applied to previously mercerised fibre, the properties were enhanced, although they did not 
reach untreated fibre composite mechanical properties. 

 
Zhou et al. [8] reported that silane-treated sisal fibres formed covalent bonds. Differential Scanning Calorimetry 

(DSC) and Thermo-Gravimetric Analysis (TGA) indicated that the silane treatment changed the surface topography 
and chemical structure, and lead to thermal degradation of the sisal fibres. 

 
Guduri et al. [9] reported toughening of Hildegardia NF reinforced epoxy matrix with polycarbonate polymer.  

For NF treated with NaOH solution for 1 h then sprayed with 1% silane coupling agent over the surface, the 
adhesion between fibre and matrix increased, but the water resistance fell.  This may be because the fibre surface 
becomes more polar, and consequently the hydrophilicity increases. 

  
Liu et al. [10] proposed a combined chemical treatment for the improvement of transverse mechanical properties 

of unidirectional (UD) abaca fibre/epoxy system. The six-part method was (i) RT mercerisation of the fibre in 1.0 
w/o NaOH solution for five minutes or in 5.0 w/o NaOH solution for 30 minutes, (ii) thorough washing with water, 
(iii) dried at 70°C, (iv) silane treatment of the mercerised fibre in (1.0 w/o γ-glycidoxypropyl-trimethoxy silane, 1.0 
w/o acetic acid, 49 w/o alcohol and 49 w/o water prepared mixing all the components in an opaque container for 60 
minutes) solution for 24 h and constant 5.3 pH, (v) washed with distilled water and kept at RT for 30 minutes and 
finally (vi) dried in the oven at 100°C for 2h.  They concluded that covalent bonding between the fibres and silanes 
increased the interfacial adhesion and thus improved the mechanical properties and durability of the resulting 
composites. For abaca fibre composites (Vf = 0.3) mercerised with 5% NaOH for 30 min before silanisation, the 
composite transverse tensile strength increased by 80%. 

 
Rong et al. [11] reported that silanisation for a sisal/epoxy system saw tensile modulus and strength decrease, 

while there was a 47% increase in strain at break.  Zahari [12] produced silanised ijuk/PP composite with tensile 
strength was increased by 17% but little improvement seen for the water absorption properties.  Asumani et al. [13] 
reported a 50% increase in tensile modulus for kenaf/PP/silane composite. 

 
Cantero et al. [14] studied different chemical treatments in the flax/PP composite system.  Flax fibre treated with 

vinyl trimethoxy silane had a 9% increase in tensile modulus and 5% decrease in tensile strength.  The flexural 
properties were negatively affected by the silanisation. 
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1.2. Silane-in-the-matrix for synthetic fibre composites 

An alternative route to enhanced fibre matrix bonding in synthetic fibre, e.g. carbon fibre (CF)/epoxy, composites 
is addition of the silane coupling agent to the matrix, rather than surface treatment of the fibres.  Georgiopoulos et 
al. [15] studied three different biodegradable matrixes treated with silane, but found no real improvement in the 
composite mechanical properties. 

 
Bogoeva-Gaceva et al. [16] studied the factors affecting the CF/epoxy interface.  Surface chemical groups were 

identified to evaluate their effect on the epoxy resin curing process. Conventional interface evaluation methods, such 
as fibre pull-out tests, with thermal DSC and TGA techniques indicated that oxidation of the CF surface provides a 
definite enhancement in fibre/epoxy adhesion. 

 
Since good wetting of a substrate is important for the achievement of a good interface, many studies have been 

performed to investigate wetting methods for CF fibre. Xu [17] wrote that the utilisation of acrylic acid in the epoxy 
resin formulation substantially increases the wettability of the fibre tows, directly improving the interface properties. 

 
Chen et al. [18] evaluated a new T800 CF sizing for the increment of the interface with resin reformulated for 

enhanced toughness and increased fibre wetting. Both factors directly increased the interface properties.  The matrix 
toughness enhanced the interface, while improved wetting created mechanical anchoring between the rough CF 
surface and the matrix. The NOL (Naval Ordnance Laboratory)-ring shear test method, may indicate doubling of 
interface/interphase bonding when both the fibre sizing and resin reformulation effects are considered. 

 
The aim of any epoxy resin reformulation is to achieve a determined performance and to increase the adhesion 

with the fibre.  Wang [19] and Chruściel [20] introduced silanes, siloxanes or silsequioxanes into the epoxy resin 
backbone to enable covalent chemical bonds between the resin and fibre and hence increase composite performance. 

 
Brantseva et al. [21, 22 and 23] reported the importance of reducing the resin surface energy for the better 

wetting of the glass fibres (GF).  They reported that when epoxy resin was modified with 10 w/o polysulfone, the 
composite interfacial properties were increased. 

 
Onjun [24] reported that silane in an epoxy matrix migrated to the interfaces where it creates a bridge between 

glass fibre and matrix and hence enhances the composite long term mechanical performance and the hygrothermal 
resistance due to an increase in the composite subcritical debonding energy (G).  

 
Although the literature has many references to direct silanisation of natural fibres, the authors are not aware of 

any previous reference to the addition of silanes to the matrix for natural fibre composites.  This paper considers the 
possibility of using silanes in the matrix to reduce/eliminate fibre pre-treatment while also achieving optimum 
composite properties.  It is anticipated that the incompatibility of the organofunctional group with the resin will 
result in that entity being driven to any surfaces or interfaces in the system where it may react with other species 
present, especially the natural fibre surface. 

 

2. Materials 

2.1. Flax fibre 

Composites Evolution (CE/Chesterfield - England) produces flax and/or jute yarns and fabrics under the trade 
name Biotex [25]. This study used CE unidirectional (0° UD) 275 gsm flax fabric. The CE fibre properties are 
shown in Table 1. 
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Table 1. An example of a table. 

Flax fibre average properties 

Density 1500 kg/m3 

Diameter* 20 µm 

Tensile modulus 50 GPa 

Tensile strength 500 MPa 

Strain at failure 2% 

* An “apparent” diameter was estimated: natural fibres normally have a non-circular cross-section. 

2.2. Epoxy resin 

In this study, composite production used Araldite LY 1569 CH/Aradur 3489 CH petrochemical-based epoxy 
infusion resin from Huntsman LLC. (USA) [26]. 

2.3. Chemical products 

Sodium hydroxide (NaOH; CAS #1310-73-2; molecular weight 40; granules) was sourced from Sigma-Aldrich 
[27]. Ethanol (C2H5OH; CAS #64-17-5; molecular weight 46.07; thin clear liquid) was sourced from Sigma-Aldrich 
[28]. The silane coupling agent for epoxy composites was 3-(trimethoxysilyl) propylamine (C6H17NO3Si; BYK-C 
8001; CAS #82985-35-1; molecular weight 179.29; viscous liquid) [29] (Fig. 2). 
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Fig. 2. 3-(trimethoxysilyl) propylamine structure 
 

3. Experimental 

The fibres were assumed to be supplied untreated and were subjected to four different treatments as described in 
§3.1. 

3.1. Treatments 

3.1.1. Biotex flax/Huntsman epoxy + 1.5% silane in hardener 
Laminate 1 was manufactured with untreated Biotex flax reinforcement.  The Huntsman epoxy system (Araldite 

LY 1569 CH/Aradur 3489 CH) was supplemented with 1.5% silane initially added to the hardener. 

3.1.2. Biotex flax/Huntsman epoxy + mercerised + 1.5% silane in hardener 
Laminate 2 was manufactured with Biotex flax fibre mercerised for 3h at 1M NaOH concentration (determined to 

be the best fibre treatment in an earlier study/not published). As for laminate 1, 1.5% silane initially added to the 
hardener for the Huntsman epoxy resin system. 
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3.1.3. Biotex flax/Huntsman epoxy + 1% silane treated fibre 
Laminate 3 was manufactured with unmercerised Biotex flax fibre which had been treated with 1% silane 

solution (50/50 v/v ethanol/water) for 1h at RT, then dried at RT for 48h. The standard Huntsman epoxy system 
(Araldite LY 1569 CH/Aradur 3489 CH) was used without addition of silane. 

3.1.4. Biotex flax/Huntsman epoxy + mercerised + 1% silane treated fibre 
Laminate 4 was manufactured with Biotex flax fibre which had been mercerised for 3h at 1M NaOH 

concentration, treated with 1% silane solution (50/50 v/v ethanol/water) for 1 h at RT, then dried at RT for 48h. The 
standard Huntsman epoxy system (Araldite LY 1569 CH/Aradur 3489 CH) was used without addition of silane. 

3.2. Panel infusion 

The four laminates manufactured by resin infusion under flexible tooling with a flow medium (RIFT II) 
following the scheme illustrated in Fig. 3. Laminates were manufactured on an AMOND lamination table controlled 
with its own software, then cured at ambient temperature in an electrically heated mould tool. 

 
Fig. 3. Laminate 1-4 lamination scheme 

 

3.3. Sample cutting 

Mechanical test samples were prepared using a Mutronic DIADISC 5200R cutting machine.  The use of a 
diamond saw blade caused burning of the flax/epoxy composite panel surfaces.  While the cut was precise and clean, 
the friction produced by the saw caused ignition of the generated dust.  A substitute hard steel saw blade (higher 
thermal conductivity) produced precise clean cuts, without burning the samples. 

3.4. Tab gluing  

Tabs were manufactured using two layers of biaxial 1200 gsm glass fibre fabric then adhered to the sample ends 
with Araldite 2015 bi-component epoxy adhesive [30] to avoid the premature failure in the grip area.  The adhesive 
was cured at RT for 1h followed by an oven post-cure at 60ºC for 1h. 
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3.5. Testing 

Mechanical testing was performed on a Shimadzu AG-X PLUS 250KN, computer coupled universal testing 
machine with a 100 kN load cell using Trapezium X software and accuracy class 0.5 according to UNE-EN-ISO-
7500-1:2006.  

3.6. Standards 

Tensile tests were conducted in accordance with the ISO 527-4/-5 standards.  The different characteristics for the 
longitudinal and transverse tests are summarised in Table 2. 

 

Table 2. Longitudinal tensile test conditions 

 ISO 527-4/-5 longitudinal  
tensile test conditions 

ISO 527-4/-5 transverse 
tensile test conditions 

Number of specimens 10 10 
Specimen dimensions 250mm x 15mm x a (mm) 250mm x 25mm x a (mm) 
Tabs type Double bonded ±45° GF/epoxy Double bonded 45°GF/epoxy 
Tabs dimensions 50mm x 15mm x a (mm) 50mm x 25mm x a (mm) 
Free length between tabs 150mm 150mm 
Test speed 2mm/min 2mm/min 
Strain measurement Video extensometers Video extensometers 
Test climate ISO291 class 2 ISO291 class 2 

 

4. Results  

The study was performed on four different laminates: 
1. Unmercerised unsilanised flax/epoxy with 1.5% silane-in-hardener, 
2. Unmercerised silanised flax/epoxy with 1.5% silane-in-hardener, 
3. Unmercerised silanised flax/epoxy with no silane in the resin, 
4. Mercerised silanised flax/epoxy with no silane in the resin. 

 
Table 3 presents the longitudinal and transverse test results measured for the four systems tested according to the 

ISO527-4/5 standard: E1, S1 and ε1 values were obtained from the longitudinal tests, while E2, S2 and ε2 values were 
obtained from the transverse tests.   

Table 3. Mechanical properties 

 1-Biotex/Huntsman  
SiHard 

2-Biotex/Huntsman  
NaOH (1M 3h) +SiHard 

3-Biotex/Huntsman 
SiFib 

4-Biotex/Huntsman  
NaOH (1M 3h) +SiFib 

E1 13.08 10.08 10.05 10.88 
E2 3.66 4.08 3.72 3.87 
S1 136.46 105.24 120.50 95.49 
S2 16.65 14.11 17.53 19.28 
ε1 1.29 1.92 1.57 1.44 
ε2 0.36 0.33 0.44 0.50 
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5. Conclusions 

The data in Table 3 suggests that the optimum mechanical properties (highest longitudinal modulus and strength) 
are achieved when silane is added to the epoxy resin hardener before laminate manufacture and the fibres are used in 
their raw state.  The use of raw state fibres reduces the environmental burdens arising from chemical treatments 
(NaOH and polluted waste solvents) and from the energy required for drying the treated fibres.  Further, mixing 
silane with hardener rather than chemical treatment of the fibres, can save considerable time in the natural fibre 
composite production system. 

 

Acknowledgments 

AHM is grateful to the Santander Postgraduate Internationalisation Scholarship for partial funding of this 
programme of work, and Acciona Blades S.A. for testing facilities. 

 

References 

[1] Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. and Mai, C. “Silane coupling agents used for natural fiber/polymer composites: A review”. 2010. 
Composites Part A, 41, 7, 806-819. 

[2] Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E. and Verpoest, I. “Influence of processing and chemical treatment of flax 
fibres on their composites”. 2003. Composites Science and Technology, 63, 9, 1241-1246. 

[3] Gliesche K. and Mäder E. “Langfaserverstärkte Kunststoffe auf der Basis von Naturfasern”. In: Proceedings of 7th international techtextil  
symposium, Frankfurt, Germany; 1995. 

[4] Abdelmouleh, M., Boufi, S., Belgacem, M.N., Duarte, A.P., Ben Salah, A. and Gandini, A. “Modification of cellulosic fibres with 
functionalised silanes: development of surface properties”. 2004. International Journal of Adhesion and Adhesives, 24, 1, 43-54. 

[5] Shokoohi, S., Arefazar, A. and Khosrokhavar, R. “Silane coupling agents in polymer-based reinforced composites: a review”. 2008. Journal 
of Reinforced Plastics and Composites, 27, 5, 473-485. 

[6] Hassan, M.M., Islam, M.R., Shehrzade, S. and Khan, M.A. “Influence of Mercerization Along with Ultraviolet (UV) and Gamma Radiation 
on Physical and Mechanical Properties of Jute Yarn by Grafting with 3‐(Trimethoxysilyl) Propylmethacrylate (Silane) and Acrylamide Under 
UV Radiation”. 2003. Polymer-Plastics Technology and Engineering, 42, 4, 515-531.  

[7] Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F. “Tensile properties of chemically treated hemp fibres as reinforcement for composites”. 
2013. Composites Part B, 53, 362-368. 

[8] Zhou, F., Cheng, G. and Jiang, B. “Effect of silane treatment on microstructure of sisal fibers”. 2014. Applied Surface Science, 292, 806-812. 
[9] Guduri, B.R., Rajulu, A.V. and Luyt, A.S. “Chemical resistance, void contents, and morphological properties of Hildegardia 

fabric/polycarbonate‐toughened epoxy composites”. 2007. Journal of Applied Polymer Science, 106, 6, 3945-3951. 
[10] Liu, K., Zhang, X., Takagi, H., Yang, Z. and Wang, D. “Effect of chemical treatments on transverse thermal conductivity of unidirectional 

abaca fiber/epoxy composite”. 2014. Composites Part A, 66, 227-236. 
[11] Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C. and Zeng, H.M. “The effect of fiber treatment on the mechanical properties of unidirectional 

sisal-reinforced epoxy composites”. 2001. Composites Science and technology, 61, 10, 1437-1447. 
[12] Zahari, W.Z.W., Badri, R.N.R.L., Ardyananta, H., Kurniawan, D. and Nor, F.M. “Mechanical Properties and Water Absorption Behavior of 

Polypropylene/Ijuk Fiber Composite by Using Silane Treatment”. 2015. Procedia Manufacturing, 2, 573-578. 
[13] Asumani, O.M.L., Reid, R.G. and Paskaramoorthy, R. “The effects of alkali–silane treatment on the tensile and flexural properties of short 

fibre non-woven kenaf reinforced polypropylene composites”. 2012. Composites Part A: Applied Science and Manufacturing, 43, 9, 1431-
1440. 

[14] Cantero, G., Arbelaiz, A., Llano-Ponte, R. and Mondragon, I. “Effects of fibre treatment on wettability and mechanical behaviour of 
flax/polypropylene composites”. 2003. Composites Science and Technology, 63, 9, 1247-1254. 

[15] Georgiopoulos, P., Christopoulos, A., Koutsoumpis, S. and Kontou, E. “The effect of surface treatment on the performance of 
flax/biodegradable composites”. 2016. Composites Part B: Engineering, 106, 88-98. 

[16] Bogoeva-Gaceva, G., Mäder, E., Häuβler, L. and Sahre, K. “Parameters affecting the interface properties in carbon fibre/epoxy systems”. 
1995. Composites, 26, 2, 103-107. 

[17] Xu, Z., Chen, L., Huang, Y., Li, J., Wu, X., Li, X. and Jiao, Y. “Wettability of carbon fibers modified by acrylic acid and interface properties 
of carbon fiber/epoxy”. 2008. European Polymer Journal, 44, 2, 494-503. 



456	 Aitor Hernandez Michelena et al. / Procedia Engineering 200 (2017) 448–456
 Author name / Procedia Engineering 00 (2017) 000–000 9 

 

[18] Chen, W., Yu, Y., Li, P., Wang, C., ; Zhou, T. and  Yang, X. “Effect of new epoxy matrix for T800 carbon fiber/epoxy filament  wound 
composites”. 2007. Composites Science and Technology, 67, 11, 2261-2270. 

[19] Wang, Z., Jiang, J., Zhang, D. and Cheng, R. “Synthesis and characterization of high‐performance epoxy resin based on disiloxane and 
4,4′‐oxybis(benzoic acid) ester”. 2012. Journal of Applied Polymer Science, 123, 4, 2485-2491. 

[20] Chruściel, J.J. and Leśniak, E. “Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates”. 
2015. Progress in Polymer Science, 41, 67-121. 

[21] Brantseva, T.V., Gorbatkina, Y.A., Dutschk, V., Schneider, K. and Häßler, R. “Modification of epoxy resin by polysulfone to improve the 
interfacial and mechanical properties in glass fibre composites. III. Properties of the cured blends and their structures in the polymer/fibre 
interphase”. 2004. Journal of Adhesion Science and Technology, 18, 11, 1309-1323. 

[22] Brantseva, T.V., Gorbatkina, Y.A., Dutschk, V., Vogel, R., Grundke, K. and Kerber, M.L. “Modification of epoxy resin by polysulfone to 
improve the interfacial and mechanical properties in glass fibre composites. I. Study of processes during matrix/glass fibre interface 
formation”. 2003. Journal of Adhesion Science and Technology, 17, 15, 2047-2063. 

[23] Brantseva, T.V., Gorbatkina, Y.A., Mäder, E., Dutschk, V. and Kerber, M.L. “Modification of epoxy resin by polysulfone to improve the 
interfacial and mechanical properties in glass fibre composites. II. Adhesion of the epoxy-polysulfone matrices to glass fibres”. 2004. Journal 
of Adhesion Science and Technology, 18, 11, 1293-1308. 

[24] Onjun, O. and Pearson, R.A. “Effect of Silane Adhesion Promoters on Subcritical Debonding of Epoxy/Glass Interfaces After Hygrothermal 
Aging”. 2010. The Journal of Adhesion, 86, 12, 1178-1202. 

[25] http://compositesevolution.com/biotex/  acceded 27/01/2017 
[26] http://www.huntsman.com/advanced_materials/Search acceded 27/01/2017 
[27]http://www.sigmaaldrich.com/catalog/search?term=1310-73-

2&interface=CAS%20No.&N=0&mode=match%20partialmax&lang=es&region=ES&focus=product Acceded 26/01/2017 
[28]http://www.sigmaaldrich.com/catalog/search?term=ethanol&interface=All&N=0&mode=match%20partialmax&lang=es&region=ES&focus

=product Acceded 26/01/2017 
[29] https://www.byk.com/en/additives/additives-by-name/byk-c-8001.php Acceded 26/01/2017 
[30] https://apps.huntsmanservice.com/Product_Finder/ui/PSDetailProductList.do?pInfoSBUId=4&PCId=6776 Acceded 04/04/2017 


