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Optokinetic nystagmus (OKN) is a fundamental gaze-stabilizing response found in almost all vertebrates, in which eye
movements attempt to compensate for the optic flow caused by self-motion. It is an alternating sequence of slow
compensatory eye movements made in the direction of stimulus motion and fast eye movements made predominantly in the
opposite direction. The timing and amplitude of these slow phases (SPs) and quick phases (QPs) are remarkably variable,
and the cause of this variability is poorly understood. In this study principal components analysis was performed on OKN
data to illustrate that the variability in correlation matrices across individuals and recording sessions reflected changes in the
noise in the system while the linear relationships between variables remained predominantly the same. Three components
were found that could explain the variance in OKN data, and only variables from within a single cycle contributed highly to
any given component. A linear stochastic model of OKN was developed based on these results that describes OKN as a
triple first order Markov process, with three sources of noise affecting SP velocity, the QP trigger, and QP amplitude. This
model was used to predict the degree of signal dependent noise in the system, the duration of the transient state of SP
velocity, and an apparent undershoot bias to the QP target location.
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Introduction

Optokinetic nystagmus (OKN) is a fundamental
oculomotor response elicited in nature by the image
motion across the retina as an animal moves through
the environment. It is essential for maintaining optimal
visual acuity and can be observed in almost all
vertebrates (Huang & Neuhauss, 2008; Walls, 1962)
and some invertebrates (Land, 1999) with mobile head
or eyes. Although archaic, OKN differs among species
depending on the repertoire of oculomotor subsystems
and patterns of optic flow. In humans the response is
dominated by OKN with fast dynamics, termed early
OKN and the ocular following response (Cohen, Henn,
Raphan, & Dennett, 1981; Cohen, Matsuo, & Raphan,
1977; Gellman, Carl, & Miles, 1990; Miles, 1995, 1998;
Miles, Kawano, & Optican, 1986).

Human OKN can be elicited by instructing a subject
to maintain gaze on a region in space whilst viewing a
large moving visual scene (Honrubia, Downey, Mitch-
ell, & Ward, 1968), either around the subject (rotation-
al OKN) or in the fronto-parallel plane (translational
OKN). The response is an alternating sequence of slow
phases (SPs) and quick phases (QPs). QPs are fast
movements with velocity profiles similar to saccades
(Garbutt et al., 2003; Garbutt, Harwood, & Harris,

2001; Kaminiarz, Königs, & Bremmer, 2009). They are
usually made in the opposite direction to optic flow and
tend to direct the eyes into a more eccentric position.
SPs are slow movements made in the direction of
stimulus motion with a gain (SP speed ‚ stimulus
speed) less than unity, which decreases with stimulus
speed (Fletcher, Hain, & Zee, 1990) so complete retinal
stabilization is seldom achieved. SPs tend to bring the
eye position to a more central location, but the timing
and amplitude of both SPs and QPs are highly variable
(Anastasio, 1996; Balaban & Ariel, 1992; Carpenter,
1993, 1994; Cheng & Outerbridge, 1974; Trillenberg,
Zee, & Shelhamer, 2002). This variability is intrinsic
and implies either an embedded stochastic process or
complicated deterministic behavior manifesting as
chaos. Low fractional correlation dimensions have
been reported, implying chaotic behavior (Shelhamer,
1992, 1996). However, stochasticity affects the correla-
tion dimension (Argyris, Andreadis, Pavlos, & Atha-
nasiou, 1998), and purely stochastic models of
nystagmus can also demonstrate low fractional dimen-
sions (Harris & Berry, 2006).

A complete model of the system has remained
elusive due to the essentially distinct neural pathways
that generate QPs and SPs and the different ap-
proaches used to investigate the two subsystems. The

Journal of Vision (2012) 12(12):5, 1–17 1http://www.journalofvision.org/content/12/12/5

doi: 10 .1167 /12 .12 .5 ISSN 1534-7362 � 2012 ARVOReceived June 27, 2012; published November 8, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/131015309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jonathan.waddington@plymouth.ac.uk
mailto:jonathan.waddington@plymouth.ac.uk
mailto:C.M.Harris@plymouth.ac.uk
mailto:C.M.Harris@plymouth.ac.uk


neural circuitry that generates SPs is relatively well
understood in terms of the underlying control system
(Robinson, 1981) and those structures in the brain
that are known to play an important role such as the
pretectum complex (Hoffmann, 1988; Ilg & Hoff-
mann, 1996). Although much is known about the
neural circuitry involved in generating saccades, the
mechanism that determines when a QP is triggered
and its target position is not well understood.
However, the timing of QPs is often modeled as a
stochastic signal accumulating information (or inte-
grating neural activity) to a threshold, at which time a
QP is generated (Anastasio, 1996; Balaban & Ariel,
1992; Carpenter, 1993, 1994; Trillenberg et al., 2002).
Recently, we compared six of these accumulator
models and found that the best fitting distribution to
QP interval histograms was given by the ratio of two
correlated random variables (Waddington & Harris,
2012). We concluded that this was because SP
duration was determined by the ratio of a variable
SP amplitude threshold and SP velocity that varies
between cycles.

Despite a variable gaze position from cycle to cycle,
average position across cycles tends to remain steady.
This indicates some adaptive mechanism tends to keep
gaze in the desired location and implies that SP and QP
variables must be correlated. Correlations between the
amplitude and velocity of SPs (Watanabe, Ohmura,
Shojaku, & Mizukoshi, 1994) and between the start
position of QPs and QP amplitude (Balaban & Ariel,
1992) have been observed. However, a stochastic model
of the system has been difficult to ascertain due to
variability in the strength of correlations across
individuals and experimental trials.

In this study principal components analysis (PCA)
was performed on eye movement data recorded during
a sustained period of OKN stimulation to investigate
the underlying structure of the correlation matrices of
OKN variables. Each component extracted with PCA
was made up of a weighted linear sum of the analyzed
variables (the eigenvector) and explained a certain
percentage of the variance in the data (proportional to
the eigenvalue). The results of our analysis indicated
that individual differences in the correlation matrices
were due to changes in the eigenvalues of components
while the eigenvectors remained predominantly the
same. This implied that the amount of noise in the
system was changing between recording sessions while
the linear relationships between variables remained
relatively constant.

The similarity of the components between partici-
pants and trials allowed us to develop a reliable
stochastic model of OKN eye movements using only
simple linear stochastic equations, with dependencies
among adjacent cycles and three sources of noise
affecting SP velocity, QP triggering, and QP amplitude.

The most surprising result is that as SP velocity
wanders in a Markov fashion above and below average
SP velocity (in our data and in the model). In many
cases retinal slip reaches values above 58/s which should
dramatically reduce visual acuity.

Materials and methods

Ethics statement

All protocols were approved by The University of
Plymouth Faculty of Science Human Research Ethics
Committee. Participants gave informed written consent
and were made aware of their right to withdraw at any
time.

Participants

Ten healthy adults (six female and four male), mean
age 25 (SD¼ 5) years, participated in the study and had
no neurological, ophthalmological, or vestibular im-
pairments.

Procedure

Participants sat in a chair 1 m from the middle of a
flat white screen that covered as much of the field of
view as reasonable to approximate a hemispherical
display (viewable area of 1.57 m by 1.17 m landscape,
subtending 768 by 618). The OKN stimulus was rear
projected (EPSON EMP-500; Seiko Epson Corp.,
Japan) onto the screen at a frame rate of 60 Hz. The
room was kept completely dark except for the
projection onto the screen during stimulation. The
participant’s head was constrained using a chin rest.
Eye movements were measured using a binocular head-
mounted limbus tracker (Skalar IRIS Infrared Light
Eye Tracker; Skalar Medical BV, Netherlands) that
recorded horizontal movement with a resolution of 3
minarc at a sampling rate of 1 kHz. The eye tracker was
calibrated for each participant at the start of each
procedure by recording the voltage output during
fixation of 40 targets at different positions on the
screen. The voltage was linearly proportional to eye
position within 6208 of the center of the display and
linear regression was used to generate a calibration
scale and offset.

Eye movement measurements were recorded on
computer (vsgEyetrace v.3.0.beta software for Win-
dows; Cambridge Research Systems, UK) and stored
on the hard disk of a computer for offline analysis.
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Stimulus

Translational OKN was elicited with a flat vertical
square wave grating, comprised of alternating black
and white vertical stripes moving horizontally at a fixed
tangential speed. Each recording session was comprised
of a pseudorandom sequence of four trials, each with a
different stimulus speed equivalent to 108/s, 208/s, 308/s,
or 408/s at the center of the screen. We note that
translational optic flow generates different rotational
stimulus speeds depending on where the subject looks
on the screen. As an example, in our procedure the
participant sits at a distance of 1 m and the rotational
stimulus speed appears to be approximately 6% slower
when the participant looks 208 away from center. Each
stimulus presentation was recorded over 160 s so that
we could collect a long time series of OKN data to
reliably perform the proposed analyses. As participants
often find it uncomfortable to view very high spatial
frequency stimuli for long periods we chose to use a
stimulus with a spatial frequency of 0.1 cycles/8, which
generated a reliable OKN response but minimized the
likelihood that participants would purposefully look
away from (or through) the screen to alleviate
discomfort. Participants were asked to stare at the
center of the screen rather than follow the moving lines
to evoke ’’stare’’ OKN rather than ‘‘look’’ OKN, and
attention was maintained by giving brief verbal
feedback about the amount of time lapsed during the
stimulus presentation approximately every 10 s. Par-
ticipants were also given a break for one minute
between each trial to alleviate discomfort, tiredness,
and to minimize the effects of any optokinetic after-
nystagmus.

Data analysis

Movement in the direction of the stimulus motion
was defined as positive and movement in the opposite
direction as negative. Position was defined relative to
the center of the stimulus display and is positive on the
side that the stimulus is drifting towards and negative
on the opposite side.

All programs and algorithms for analyzing data were
developed and created in MATLAB (MATLAB;
Mathworks, USA). Each eye was calibrated separately,
and the average was computed to yield a cyclopean eye
position. Eye velocity was derived from the eye position
using a central difference algorithm and zero-phase
digital filtered with an 80 Hz Butterworth filter. Eye
acceleration was derived from the filtered eye velocity
data using a central difference algorithm.

Possible QPs were detected when eye acceleration
was greater than 10008/s2 in either direction. Then,
during a forward pass of the data, eye velocity was

recorded and the peak velocity was determined at the
time when velocity first began to decrease in magnitude
and remained at a lower magnitude for 4 ms. The start
and end point of the QP was then determined by both a
(respectively) backward and forward pass of the data
from the time of peak velocity to the time when eye
velocity returned to a value between 08/s and stimulus
speed for 2 ms. This allowed us to collect QPs that were
made in the direction of optic flow as well as QPs made
in the opposite direction. All eye movements were
reviewed in a customized interactive graphical inter-
face. Blinks were detected manually and intervals
containing blinks were marked and removed from
analysis.

After blinks were extracted, each recorded trial
contained m SP-QP cycles, where m ranged from 64
to 442. Six measurements were taken from each OKN
cycle: xi, Si, Vi, Ti, yi, and Qi, (i¼ 1, m) according to the
scheme in Figure 1. Eye velocity changed between
adjacent SPs, but could also vary during a SP (i.e., SPs
could be nonlinear). We did not analyze the additional
variance introduced by this intra-SP variability and
instead measured SP velocity as the difference in eye
position divided by the SP duration such that Vi¼ (yi –
xi)/Ti.

We define an OKN cycle as one SP followed by one
QP. Variables from adjacent OKN cycles were grouped
to create a vector that was used to generate a
correlation matrix for each trial (40 trials, 10 Subjects
· 4 Speeds). Vectors that included cycles separated by
blinks were not included in generating the correlation
matrix. Each correlation matrix was then analyzed
using PCA.

Principal component analysis (PCA)

PCA can be thought of as passing a line through the
centroid of an n-dimensional cloud of data points and
rotating the line to minimize the squared orthogonal
distance of each point to that line. This line passes
through the maximum variation of the data and is

Figure 1. Geometric representation of OKN and the characteristic

variables. The ith cycle in a series contains one SP followed by

one QP and is defined by six variables: SP start position xi, SP

amplitude Si, average SP velocity Vi, SP duration Ti, QP start

position yi, and QP amplitude Qi.
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termed the first principal component. Successive
components are found by repeating this procedure to
explain the remaining variance, with the added
constraint that each component must be orthogonal
to all preceding components. Mathematically, PCA is
performed by eigenvalue decomposition, where the n ·
n input correlation (or covariance) matrix is diagonal-
ized to yield n eigenvalues and n eigenvectors, where n
is the number of dimensions analysed in the data. In
our investigation PCA was performed using the
correlation (rather than covariance) matrices as it is
based on standardized data, so the variables measured
on different scales do not influence the results of the
analysis disproportionately (Blunch, 2008).

In our application, n is an overestimate of the
maximum degrees of freedom (DoF) because of the
constraints imposed by the geometric relationships
among the variables (Figure 1):

xiþ1 ¼ yi þQi ð1Þ

yi ¼ xi þ Si ð2Þ

Vi ¼ ðyi � xiÞ=Ti ð3Þ
Thus there is only a maximum of d dimensions in the
data, where d is determined by the number of cycles of
OKN and the number of variables in each cycle that are
analyzed. We discarded those n� d components that do
not explain any significant variance in the data. During
our investigation we found that discarded components
had eigenvalues that were either negligible (, 1 · 10�5)
due to numerical round-off error or had values less
than one (0.3 6 0.2) due to the residual error from the
linear approximation of Equation 3 implicit in PCA.
This meant that the components were able to explain
approximately 95% of the variability across all data
sets. The error introduced by the linear approximation
of Equation 3 could not be overcome by performing a
reciprocal transformation of Ti as this introduces a new
nonlinear relationship between Si and 1/Ti. However,
PCA was performed using 1/Ti as a variable in place of
Ti and we found qualitatively similar results.

After discarding n – d components we performed
factor rotation using the varimax strategy to obtain
orthogonal (uncorrelated) rotated components. Vari-
max rotation is a rotation of the component axes that
maximizes the sum of the variances of the squared
loadings of a component. This results in components
that have high loadings for a few variables and low
loadings for the other variables and aids in making the
underlying structure of the loading patterns more clear.
Oblique rotated components were also explored, as
suggested by Costello and Osborne (2005) (using the
promax strategy), but no qualitative differences were
found in our results.

After factor rotation, similar loading patterns were
observed among the trials but with different eigenval-
ues. The d components from each trial were sorted into
categories according to their loading pattern. This was
initially done by eye, but later numerical heuristics were
developed to speed up the procedure. A principal
component can be rotated such that it faces in the
opposite direction but remains in the same dimension,
causing all the loadings on a component to have the
opposite sign. It was necessary to flip the sign of all
loadings in these mirrored components so that they
could be sorted in to the correct category. Each loading
pattern was then displayed as a line plot of loading
value against the original variable, and components
placed in the same category were plotted on the same
axis. This sorting was exhaustive and we found that all
the loading patterns fell obviously into only three
qualitatively different categories (see Results).

Independent component analysis (ICA) is a popular
method used in signal processing that is similar to PCA.
However, performing ICA finds the underlying com-
ponents by maximizing the statistical independence of
the estimated components rather than maximizing the
proportion of explained variance. While this appears to
make ICA a more powerful tool than PCA, to identify
all of the underlying components, no more than one of
them may be Gaussian (Comon, 1994). This makes it
inapplicable in the case where the underlying signals
represent multiple sources of Gaussian noise, and for
this reason PCA was performed rather than ICA on the
OKN data.

Modeling

The Box-Jenkins (ARIMA—autoregressive integrat-
ed moving average models) approach is a common
method used to analyze time series data and evaluate
models based on their forecasting ability. This method
assumes that values in the time series occur at equally
spaced intervals, do not contain missing data, and the
variance in the fluctuations over time are constant (Box
& Jenkins, 1976). Whereas the duration between cycles
of OKN is exceptionally variable, blinks create gaps in
the time series, and there is known to be signal
dependent noise in the ocular motor system (e.g., in
the amplitude of saccades). Although ARIMAmethods
allow for statistical testing of the validity of time series
models, the statistical significance can be interpreted
incorrectly when the assumptions of the model are not
met. In our investigation we only use the methods
specified for identifying the order of an ARIMA model,
such as examining the sample autocorrelation and
partial autocorrelation function of variables to charac-
terize the temporal characteristics of OKN variables.
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The autocorrelation function describes the correla-
tion between the same variable at different points in
time as a function of the time difference. Given a time
series xt, the partial autocorrelation of lag k is the
autocorrelation between xt and xtþk that is not already
accounted for by lags one up to and including k � 1.
The sample partial auto-correlation function was
calculated with the Forecasting options in SPSS 19.0
and the sample autocorrelation function was calculated
using the built-in Matlab function corrcoeff.

When identifying the order of an ARIMA model,
exponential decay of the autocorrelation function is
one indication that the data can be modeled with an
autoregressive model. Then, if the partial autocorrela-
tion function has a sharp cut-off at a lag of one, the
time series is identified as first order. A first order
autoregressive model explains the change in xt at each
lag as a function of xt-1 plus some unexplained noise,
whereas a first order moving average model explains
the change in xt at each cycle as a function of the
unexplained noise in the previous cycle. These identi-
fying techniques were used in conjunction with the
results of PCA to interpret the update dynamics of
OKN variables.

To model the relationships of OKN variables within
cycles, we considered possible linear statistical rela-
tionships that could give the principal components
observed in the data. It was not possible to use the
rotated loadings directly, as the constraints in Equa-
tions 1–3 forced correlations among some pairs of
variables, so it was necessary to interpret the loading
patterns and constraints to yield a statistical model.

Other possible linear relationships were explored, but
they could not reproduce the distributions and
relationships observed in the data. To test the model,
40 simulated sequences of the six OKN variables: xi, Si,
Vi, Ti, yi, and Qi were created. The model parameters
were based on robust regression analysis (Matlab
function robustfit) of the relevant variables for each
trial. These simulated sequences were then subjected to
exactly the same correlation and PCA procedures as
the original data.

Results

Descriptive statistics of OKN variables

Increasing stimulus speed resulted in an increase in
the mean SP velocity (F ¼ 18.2, p ¼ 0.001) that
saturated at higher stimulus speeds, producing some
values of SP gain lower than 0.5 (Figure 2A). However,
even when SP gain was close to unity we observed that
SP velocity fluctuated over time to values much higher
and lower than the mean SP velocity. We found that at
stimulus speeds of 108/s, 208/s, 308/s, and 408/s retinal
slip reached values greater than 58/s in 6%, 48%, 79%,
and 91% of SPs, respectively. This was unexpected as it
indicated that even at moderate stimulus speeds a large
proportion of SPs were being generated with retinal slip
that should dramatically reduce visual acuity.

Increasing stimulus speed also resulted in a decrease
in SP duration (F ¼ 10.1, p , 0.001) with the mean

Figure 2. Descriptive statistics of OKN variables. Effect of OKN stimulus speed on (A) mean SP velocity (filled circles) and median SP

duration (empty circles) and (B) mean SP amplitude (filled circles) and mean QP amplitude (empty circles). Each data point represents the

global mean (or median) values averaged across 10 participants and error bars represent 6 standard deviation between participants.

Data points are shifted on the x-axis slightly for legibility. Representative histograms of (C) SP amplitude illustrating that SPs are not made

in the direction opposite to stimulus motion and (D) QP amplitude illustrating that some QPs are made in the direction of stimulus motion

and the existence of a dead zone close to 08. Data for histograms obtained from Participant 1, stimulus speed 108/s.
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asymptote at approximately 300 ms for speeds greater
than 208/s (Figure 2A). The distribution of SP duration
was positively skewed and all but one were significantly
different to Gaussian (Lilliefors test, p , 0.016 for 39
trials).

Increasing stimulus speed caused mean SP amplitude
to become more positive (F ¼ 13.5, p , 0.001) and
caused mean QP amplitude to become more negative (F
¼ 17.7, p , 0.001) (Figure 2B). Mean SP amplitude and
mean QP amplitude had a strong tendency to
compensate for each other, so that over a trial eye
position did not wander to the limit of gaze. However,
the distributions of SP and QP amplitude during an
experimental trial were often different.

SPs were always made in the direction of stimulus
motion and SP amplitude had a unimodal distribution
(Figure 2C). QPs were usually made in the negative
direction, although approximately 5% were made in
the positive direction and usually the variance of QP
amplitude was greater than the variance of SP
amplitude (36 of 40 trials). QP amplitude was
sometimes bimodally distributed, with a dip around
08 extending approximately 0.88 in both directions
(Figure 2D). However, some very small amplitude QPs
did occasionally occur, and in trials where there were
very few QPs made in the positive direction it was not
possible to identify a dead zone.

Over the course of a trial, QPs tended to compensate
for SP eye displacement, thereby maintaining an
average eye position. However, mean eye position
tended to be held in the negative stimulus field rather
than straight ahead (contraversion). The mean gaze
position over the course of a trial was on average 38 in
to the negative direction with no significant stimulus
speed effect (F ¼ 0.6, p¼ 0.50).

Correlations between OKN variables and
across cycles

Relationships between OKN variables were exam-
ined in the form of multiple pair-wise scatter plots.
Plotting all 40 trials illustrated some general similari-
ties, implying an underlying structure, but there were
often remarkable differences between trials that were
not systematic in any way that we could discern, and it
was not possible to deduce which relationships were
direct (causal) and which were due to indirect
dependencies. When relationships were observed be-
tween OKN variables they appeared linear except for
an approximately hyperbolic relationship between SP
velocity and SP duration. Relationships observed
between cycles also appeared linear, such as between
the SP start position during one cycle and the next.

The autocorrelograms of OKN variables revealed
autocorrelation (Figure 3) in SP velocity and the start
and end position of SPs, sometimes extending back as
far as five cycles although the decay of autocorrelation
was rapid. The partial autocorrelograms for SP velocity
(and the start and end position of SPs) illustrated a
sharp cut-off at a lag of one, implying that the
autocorrelation at a lag of one cycle could explain all
the higher order autocorrelations. These results implied
that the time series of SP velocity and the start and end
position of SPs could be modeled with a first order
autoregressive model (see Methods). However, the
specific values of the cross-cycle correlations were also
remarkably variable between trials. We therefore used
PCA to clarify the underlying structure of the
correlation matrices within and between cycles of
OKN.

PCA performed on one cycle of OKN data

We first performed PCA on the simple 1 · 5 vector
of OKN variables: xi, Si, yi, Qi, and xiþ1. Figure 4
illustrates, step by step, PCA performed on the
correlation matrices generated from Participant 1 (left
panel) and Participant 2 (right panel), viewing an OKN
stimulus at 108/s.

PCA performed on the correlation matrix generated
from Participant 1 (Figure 4B) produced five compo-
nents with the eigenvalues 2.41, 1.51, 1.08, 5.58 · 10�6,
and 2.37 · 10�6. Due to the constraints imposed by
Equations 1–3 there are at most three DoF in these
data, so two components were discarded before factor
rotation. The rotated loading patterns of the three
retained components are illustrated as line plots of
loading values against the OKN variable in Figure 4C,
with each component placed in descending eigenvalue
order from left to right. The largest eigenvalue
component has negative loading from yi, positive

Figure 3. Autocorrelograms of OKN variables. A representative

sample of autocorrelograms for (A) SP velocity, (B) SP start

position, (C) QP start position, (D) SP duration, (E) SP amplitude,

and (F) QP amplitude. Bold line: data obtained empirically from

Participant 1, stimulus speed 408/s. Thin line: data simulated

using our proposed model (see text) with model parameters

estimated from the same empirical dataset.
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loading from Qi, and negative loading from xi, thus
representing QPs with a more negative start position
having more positive amplitude and a more negative
end position. The second component represents QPs
with more negative amplitude having a more negative
end position, and the third component represents SPs
with a more negative start position having more
positive amplitude.

Participant 2 generated a qualitatively different eye
position trace to Participant 1 (Figure 4D, cf. Figure
4A), and the correlation matrices were also clearly
different (Figure 4E, cf. Figure 4B). PCA performed on
the correlation matrix generated by Participant 2
produced components with the eigenvalues 2.50, 1.59,
0.90, 3.09 · 10�6, and 3.63 · 10�7, and the rotated
loading patterns of the three retained components are
illustrated in Figure 4F. Despite the differences in the
correlation matrices we observed similar loading
patterns in the components but expressed in different
eigenvalue order.

PCA performed on the correlation matrices from all
40 trials illustrated that, despite the differences in the
correlation matrices between individuals and stimulus

speeds, the loading values always fell into the same
three basic patterns but in different eigenvalue order.
This indicated that the variability in the correlation
matrices was due to differences in the eigenvalues of
components (the amount of noise the component
represented), but eigenvectors (the linear relationships
between the OKN variables) remained similar.

PCA performed on multiple cycles of OKN

We next performed PCA on the correlation matrices
of OKN variables taken from across multiple adjacent
cycles in series. The results were similar for two, three,
and four cycles, and here the results from across four
cycles are presented. The analysis revealed that the
eigenvalues of components varied between trials but the
loading patterns always fell into 13 distinct categories,
corresponding to the maximum 13 DoF. Further, the
13 categories could be sorted into three broad groups
that represented similar loading patterns but displaced
by one, two, or three cycles, and only OKN variables
from within one cycle (or just over one cycle) had high

Figure 4. Results of PCA performed on a single cycle of OKN. Left panels (A, B, and C) illustrate data from Participant 1 (stimulus speed

108/s, m¼ 388 cycles). Right panels (D, E, and F) illustrate data from Participant 2 (stimulus speed 108/s, m¼ 201 cycles). Top panels (A

and D) illustrate eye position traces during OKN presentation (bold line) and simulated eye position traces from our Markov model (thin

line). Middle panels (B and E) illustrate correlation matrices of OKN variables from the corresponding empirical data set. Bottom panels (C

and F) illustrate the loading patterns for the three primary components extracted from the correlation matrices, and are plotted in the order

of highest to lowest eigenvalue from left to right. Empty circles indicate components extracted from empirical data, filled circles indicate

components extracted from simulated data.
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loadings in any given component (Figure 5). The three
categories of components indicated that each cycle of
OKN constituted three orthogonal (uncorrelated) noise
processes, which we call the Q-component, the S-
component, and the V-component. These noise pro-
cesses extended in time predominantly only across
adjacent cycles, implying a first order Markov process.

Monte-Carlo first order Markov model

Based on the PCA results we produced a model of
OKN stochasticity with the same loading patterns as
seen in Figure 5. Due to the constraints imposed by
Equations 1–3 it was not possible to use the loading
values to generate a model directly, and it was
necessary to interpret the loading patterns to determine
which correlations we would need to model and which
would be forced by the constraints.

We made four assumptions before developing the
model. First, we assumed that the three uncorrelated
sources of variability, or noise (corresponding to the S-,
Q-, and V-components) were normally distributed.
Second, we assumed parsimoniously that the process
could be explained by a first order Markov process.
That is, the state of the system is conditional only on
the immediate previous cycle and not explicitly on
earlier cycles. Third, we assumed the model parameters
associated with the eigenvectors (a, b, c, and d; see
below) would be constant across trials. Fourth, we
assumed the model parameters associated with the
eigenvalues (e, es(i), eq(i), and ev(i); see below) would be
free parameters and allowed to vary between trials.

S-component

In the S-component there was a high positive loading
from Si, positive loading from Vi, and negative loading
from xi (Figure 5). This loading pattern indicated that
SP amplitude becomes more positive (increases in
magnitude) with more positive SP velocity and a more
negative SP start position. This correlation could also
be observed in regression of Si against xi and Vi with a
mean R2¼ 0.25 (p � 6 · 10�5 for all trials). We express
these relationships in the form:

Si ¼ axi þ bVi þ esðiÞ ð4Þ
where a and b are constants and es(i) is a normal random
process with mean ŝ and standard deviation rs. We
assume that the values of ŝ and rs remain constant during
each trial. In the S-component there were also positive

Figure 5. Results of PCA performed on four cycles of OKN in

series. Loading patterns of 13 principal components extracted

from four cycles of OKN data in series. Components are classified

into three broad groups representing similar components that are

 
shifted by one or more cycles: Q (components 1–5), S

(components 6–9), and V (components 10–13).
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loadings from Ti and yi, sometimes high and sometimes
low, but these loadings appear to be forced by the
constraints in Equation 3 and Equation 2, respectively.

Q-component

There was an equivalent pattern in the Q-component
with a positive loading from Qi and a negative loading
from yi (Figure 5) indicating that QP amplitude
becomes more positive (decreases in magnitude) with
a more negative QP start position. Evidence of Vi

loading on the Q-component was not as clear as in the
S-component, as it was sometimes positive and
sometimes negative and occurred in association with
loading from Si. However, regression of Qi against Vi

and yi revealed a linear trend with a mean R2¼ 0.34 (p
� 2.2 · 10�5 for all trials). We express these
relationships in the form

Qi ¼ cyi þ dVi þ eqðiÞ; ð5Þ
where c and d are constants and eq(i) is a normal
random process with mean q̂ and standard deviation
rq. We assume that the values of q̂ and rq remain
constant during each trial. We interpret the other
loadings in the Q-component to be forced by the
constraints expressed in Equations 1–3.

V-component

In the V-component of each cycle there was a high
positive loading from Vi and corresponding negative
loading from Ti with a small or absent loading from Si

(Figure 5). This indicates that the V-component
describes whether SP velocity is fast or slow indepen-
dent of its amplitude. This loading pattern implies that
the V-component is self-contained and does not depend
directly on the other variables. However, from Figure
3A we see that Vi is autocorrelated and the regression
of Viþ1 against Vi reveals a clear linear relationship with
a mean R2¼0.28 (p � 3.3 · 10�4 for 35 of 40 trials). As
the principal components reflect uncorrelated noise
processes, we express this relationship in the form of an
autoregressive rather than a moving average model

Viþ1 ¼ eVi þ evðiÞ; ð6Þ
where e is a free parameter, and ev(i) is a normal
random process with mean v̂ and standard deviation rv.
We assume that the values of e, v̂, and rv remain
constant during each trial.

Figure 6. Results of PCA performed on four cycles of simulated

OKN in series. Loading patterns of 13 principal components

extracted from four cycles of OKN data in series, simulated using

the Markov model (Equations 1–9). Components are classified

 
into three broad groups representing similar components that are

shifted by one or more cycles: Q (components 1–5), S

(components 6–9), and V (components 10–13).
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Model parameters

Equations 1–6 describe our stochastic model of the
OKN system, containing three constraints and three
discrete uncorrelated linear stochastic processes. Equa-
tions 1 and 6 describe the update dynamics as a first
order Markov process where the variable in one cycle is
dependent only on the value of the variable in the
previous cycle. We performed multiple linear regressions
on the OKN variables recorded from the real data using
the weighted least squares method to estimate the values
of the model parameters for each trial. Estimates of the
standard deviation of the random processes (rs, rq, and
rv) were calculated from the residuals of regression.

The mean values of a, b, c, and d were�0.250, 0.158,
�0.478, and �0.166, respectively, and were considered
constants for the purposes of our analysis. The mean
values of the noise processes (ŝ, q̂, and v̂) were then
recalculated for each trial, keeping the model param-
eters a, b, c, and d fixed.

Monte Carlo simulations

Monte Carlo simulations of the original 40 data sets
were created using the constants (a, b, c, and d), and the
free parameters (e, es, eq, and ev). The simulated data
sets were created iteratively using Equations 1–6 with
the additional constraints

Si . 0 ð7Þ

Vi . 0 ð8Þ

jQij. z; ð9Þ
where z is a small positive value to mimic the QP dead
zone, which we set to 18.

PCA was performed on the simulated data in exactly
the same way as with empirical data, and the

Figure 7. Proposed model of how noise in SP velocity is

generated. (A) Block diagram illustrating a simple system that

could generate OKN. The values g1, g2, g3 are the respective gain

elements of retinal slip in the forward loop, efference copy in the

feedback loop, and SP velocity in the forward loop. Vs, stimulus

speed; Vs – Vi, retinal slip; Vi, SP velocity. (B) Scatter plot relating

the values of v̂ and e. Data points represent values estimated

from each trial by linear regression. Note that under the

assumptions of the model ev ¼ g1g3Vs and e ¼ g3(g2 – g1).

Figure 8. Scatter plots illustrating proportional noise. Scatter plots of (A) standard deviation of S-component against SP magnitude (rs¼
0.36 j �Sj – 0.03), (B) standard deviation of Q-component against QP magnitude (rq ¼ 0.38j �Qj þ 0.20), and (C) standard deviation of V-

component against stimulus speed (rv ¼ 0.12VS – 0.07). Dashed lines represent lines of orthogonal regression.
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components were sorted using the same numerical
heuristics. The results of PCA performed on four cycles
of simulated data are illustrated in Figure 6 and match
the results of PCA performed on the empirical data (cf.
Figure 5) in terms of the number of components
extracted and the patterns and values of loadings.

Pair-wise scatter plots between OKN variables were
created from the simulated data to qualitatively assess
how well the model could describe the indirect as well as
the direct relationships in the OKN system. Autocorrelo-
grams created from the simulated data illustrated the
cross-cycle correlations observed empirically (Figure 3)
with only first order update dynamics. Simulated eye
position traces were also created and compared to the
real data (Figures 4A & 4D), illustrating that the
simulation could capture both the random nature of
OKN and other gross traits such as the degree of
contraversion, the proportion of QPs made in the
positive direction, and the mean value of OKN variables.

The effect of stimulus speed on SP velocity in
the Markov model

We considered how stimulus speed affects SP
velocity in the Markov model, under the assumption
that the dependence was captured either by e or by v̂
(Equation 6). A simplified closed-loop linear control
system that could generate OKN is illustrated in Figure
7A, and the update dynamics of SP velocity in this
system are given by

Viþ1 ¼ g3ðg1ðVS � ViÞ þ g2ViÞ; ð10Þ
where g1, g2, and g3 are the gain elements of retinal slip,
efference copy, and the forward gain of SP velocity,
respectively.

Collecting terms in Equation 10 we can see that:

Viþ1 ¼ g3ðg2 � g1ÞVi þ g3g1VS; ð11Þ
and substituting Equation 11 into Equation 6 illustrates
how e and v̂ relate to the gain elements in the proposed
control system:

e ¼ g3ðg2 � g1Þ ð12Þ
and

ev ¼ g3g1VS: ð13Þ
Thus the model predicted that e and v̂ must be related,
as they share the term g3g1. Rearranging Equation 13
and substituting into Equation 12 illustrates that:

e ¼ g3g2 �
ev
VS

; ð14Þ

and this relationship can be observed in a scatter plot of
the values of e against �v̂/VS from each trial (Figure
7B; R2 ¼ 0.72). Orthogonal regression performed on

these data gives a slope of 1.02 and a y-intercept of 0.87
that indicated the approximate value of the product of
the gain elements g3 and g2.

Equation 13 also implied that the noise in the V-
component may be a consequence of either g1 or g3 (or
both) varying, as these gain elements are effectively
multiplied by the stimulus speed to arrive at the noise
process ev.

Signal dependent noise

We investigated all three noise processes for signal
dependence. For the S- andQ-components we compared
the values of rs and rq against the mean magnitude of
SPs and QPs for each trial. Orthogonal regression
illustrated a linear relationship between the standard
deviation of the S-component and the mean SP
magnitude (Figure 8A; R2 ¼ 0.75), and a linear
relationship between the standard deviation of the Q-
component and the mean QP magnitude (Figure 8B; R2

¼ 0.50). These relationships can be expressed in the form

rs ¼ ksj �Sj þ us

and

rq ¼ kqj �Qj þ uq;

where ks ¼ 0.36, kq ¼ 0.38, and us and uq were not
significantly different to zero. It is quite well-known that
there is proportional noise in saccades to stationary
targets, but the constant of proportionality is usually
much lower at ; 0.1 (van Beers, 2008). It appears that in
OKN the constant of proportionality is not only much
larger but is also observed in the amplitude of SPs.

For the V-component, regression of rv was per-
formed against the values of stimulus speed (VS), mean
SP velocity ( �V), and mean retinal slip. There was a
weak relationship between rv and �V (R2 ¼ 0.29), a
moderate relationship between rv and retinal slip (R2¼
0.46), and a strong relationship between rv and VS (R2

¼ 0.69). We express the relationship between the
standard deviation of the V-component and the
stimulus speed (Figure 8C; R2 ¼ 0.69) in the form:

rv ¼ kvjVSj þ uv;

where kv¼ 0.12 and uv was not significantly different to
zero. This agrees with our hypothesis that a variable gain
element in the OKN control system would cause noise in
SP velocity that is proportional to the stimulus speed.

Autonomous equations

A clearer picture of the entire process can be
obtained by solving Equations 1–6 for the autonomous
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update dynamics of xiþ1, yiþ1, Siþ1 and Qiþ1, given by:

xiþ1 ¼ ð1þ aÞð1þ cÞxi þ ðð1þ cÞbþ dÞVi

þ ð1þ cÞðesðiÞÞ þ eqðiÞ ð15Þ

yiþ1 ¼ ð1þ aÞð1þ cÞyi þ ðð1þ aÞdþ beÞVi þ esðiÞ
þ ð1þ aÞðeqðiÞÞ þ bðevðiÞÞ

ð16Þ

Siþ1 ¼ ð1þ aÞð1þ cÞSi þ ð�bð1þ c� eÞ þ adÞVi

� cðesðiÞÞ þ aðeqðiÞÞ þ bðevðiÞÞ
ð17Þ

Qiþ1 ¼ ð1þ aÞð1þ cÞQi

þ ð�dð1þ a� eÞ þ cbeÞVi þ cðesðiÞÞ
� aðeqðiÞÞ þ ðcbþ dÞðevðiÞÞ: ð18Þ

Here we can see that each of these variables depends on
its value only in the previous cycle and also the SP
velocity in the previous cycle. In other words, the
dynamics are first order Markov and driven by SP
velocity, which is itself another first order Markov
process. The variables xiþ1, yiþ1, Siþ1, and Qiþ1 are all
correlated with each other through a common depen-
dence on SP velocity and the three noise sources es(i),
eq(i), and ev(i).

After the OKN stimulus starts the various OKN
vectors change over time (the transient state) but will
tend towards a statistical steady state where the
probability distribution approaches some fixed func-
tion independent of the starting conditions (Kijima,
1997). Although the durations of the transient states
were not measured directly, they can be easily
computed from the model. The variables xiþ1, yiþ1,
Siþ1, and Qiþ1 all have the same transient rise time
determined by the quantity (1þ a)(1þ c). Empirically,
this value is approximately 0.39 indicating that the
process is stable and will eventually reach steady state.
For SP velocity the transient rise time depends on e and
with a range of values from 0.08 to 0.90 was also always
stable.

The update dynamics of SP velocity were simulated
using Equation 6 with the values of v̂ and e calculated
from each trial. To reach 63% of the steady state SP
velocity from an initial speed of 08/s took on average
2.3 cycles (SD ¼ 2.0). Typical values of SP duration
would equate this transient response to a period less
than 1 s. Thus, steady state is reached quickly, and this
result is in good agreement with the study by Abadi,
Howard, Ohmi, and Lee (2005) who showed that
steady state SP velocity was reached in approximately
two OKN cycles. We also simulated the update
dynamics of the SP start position and found from an
initial position of 08 that the start position took an
average 2.4 cycles (SD¼1.6) to reach 63% of the steady

state value, demonstrating that the transient response
for contraversion was also extremely fast.

From Equations 3 and 15–18, the steady state means
for each OKN variable is given by:

�x ¼ ðð1þ cÞbþ dÞ
1� ð1þ aÞð1þ cÞ

�V

þ ð1þ cÞŝþ q̂

1� ð1þ aÞð1þ cÞ’�0:14
�Vþ 0:85ŝ

þ 1:64q̂ ð19Þ

�y ¼ ðð1þ aÞdþ bÞ
1� ð1þ aÞð1þ cÞ

�V

þ ŝþ ð1þ aÞq̂
1� ð1þ aÞð1þ cÞ’ 0:06 �Vþ 1:64ŝþ 1:23q̂

ð20Þ

�S ¼ ad� bc

1� ð1þ aÞð1þ cÞ
�V

þ aq̂� cŝ

1� ð1þ aÞð1þ cÞ’ 0:17 �Vþ 0:79ŝ� 0:41q̂

ð21Þ

�Q ¼ �ðad� bcÞ
1� ð1þ aÞð1þ cÞ

�V

þ �ðaq̂� cŝÞ
1� ð1þ aÞð1þ cÞ’�0:17

�V� 0:79ŝ

þ 0:41q̂ ð22Þ

�T ¼ ad� bc

1� ð1þ aÞð1þ cÞ

þ aq̂� cŝ

1� ð1þ aÞð1þ cÞ
1
�V

’ 0:192

þ 0:48ŝ� 0:25q̂

0:61 �V
ð23Þ

�V ¼ v̂

1� e
: ð24Þ

Equations 19–24 demonstrate how SP velocity affects
all measured OKN variables. The model clearly
predicts that mean SP and QP amplitude depends
linearly on mean SP velocity, whereas mean SP
duration is inversely related to mean SP velocity, with
the asymptote at approximately 200 ms as �V � ‘.
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QP targeting

As the participants were asked to stare towards the
center of the screen we might expect that the desired
target for QPs is straight ahead, but the end position of
QPs tends to overshoot the center and drive eye
position in to the negative field of view. The data
illustrated that the amplitude of QPs depend on their
start position, and the Markov model predicted that
there is a start position where the OKN system would
generate a QP with mean amplitude of zero. We
hypothesized that this position is the desired target
location of QPs. To estimate this position we can solve
Equation 5 when Qi ¼ 0 to give:

yT ¼
�ðdVi þ eqðiÞÞ

c
; ð26Þ

where yT is the desired target location. Estimating Vi

with �V and eq(i) with q̂, we found the average yT for
each trial. Mean values of yT were �6.88, �8.38, �8.98,
and�10.28 for trials with a stimulus speed of 108/s, 208/
s, 308/s, and 408/s, respectively, illustrating a main
effect of stimulus speed (F ¼ 5.9, p ¼ 0.003). These
results indicated that QPs were being targeted in to the
negative field and not straight ahead. Calculating
values of �y and �x from Equations 19 and 20 we found
the average amplitude of QPs and the average distance
to the target location. We found that QPs undershoot
this target location with mean values of �2.18, �2.38,
�3.18, and�4.38 for trials with a stimulus speed of 108/
s, 208/s, 308/s, and 408/s, respectively, demonstrating a
main effect of stimulus speed (F¼ 15.9, p , 0.001). We
considered this undershoot bias as a value of saccadic
gain (QP amplitude ‚ QP target amplitude) and found
it was approximately 0.64, with no main effect of
stimulus speed (F ¼ 2.1, p ¼ 0.122). These results
implied that QPs have a tendency to undershoot their
target location, possibly due to adaptive changes in the
value of saccadic gain or as a result of not fully
compensating for the movement away from the target
location during the SP.

Discussion

In this study of human OKN we have analyzed
extensively the statistical relationships between OKN
eye movement variables (the start, end and amplitude
of SPs and QPs, SP duration, and SP velocity), both
within and across adjacent OKN cycles. All of these
variables are correlated with each other, but the
strength of correlations varied markedly between
individuals, and the stochasticity of OKN could not
be summarized by a single correlation matrix. We
examined the underlying structure of the correlation

matrices using PCA and found that they all have
similar eigenvectors, which were clustered into three
categories. However, their eigenvalues were much more
variable, and components were often found in different
eigenvalue orders across recording sessions. This
indicated that variation in eigenvalues (the explained
variance of components) rather than eigenvectors (the
linear relationships between variables) were the main
reason for the differences between individual correla-
tion matrices (the correlation matrix is a linear sum of
its eigenvectors weighted by their eigenvalues). We
emphasize that the low number of categories of
eigenvectors emerge from the data—and not because
of any deliberate dimension-reducing scheme as is often
employed in PCA. We conclude that OKN can be
explained as a linear stochastic process with three
uncorrelated noise sources, which we label the S-, Q-,
and V-components (Equations 4–6). Although mathe-
matically simple, the behavior of the three interacting
noise processes is non-trivial.

The most remarkable finding was that the update
dynamics of SP velocity can be described by an
autonomous first order Markov process. Although
our model predicts an extremely short transient
behavior in agreement with Abadi et al. (2005), it
appears that SP velocity continues to wander in a
haphazard fashion even after the system has reached
steady state. When viewing a purely translational
stimulus on a tangent screen the apparent rotational
stimulus speed will vary depending on gaze position,
but during our procedure this equates to a 6% decrease
when gaze is directed 208 from the center of the screen.
This difference does not seem to be able to account for
the degree of variability we have observed in SP
velocity, and while high gain can occur (i.e., SP velocity
is not limited) it is clear that it is not always
maintained.

While studies have suggested that the resolution of
slowly moving targets in the parafovea is better than
for static targets (Brown, 1972) the contrast sensitivity
for detecting the motion of high spatial frequency
stimuli drops rapidly with speeds greater than ; 58/s,
and in our data we observe much greater average values
of retinal slip than this. However, visual acuity was not
tested during this investigation so it is not possible to
determine whether participants were attempting to
maintain maximal visual contrast. Further, the contrast
sensitivity for detecting the motion of low spatial
frequency gratings has a peak at stimulus speeds
greater than 108/s (Burr & Ross, 1982), so low spatial
frequency stimuli such as those used in this investiga-
tion might allow for increased retinal slip.

We have found that the noise associated with the V-
component is related to stimulus speed, in accordance
with Kolarik, Margrain, and Freeman (2009) who also
found that variation in velocity between SPs increased
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linearly with stimulus speed. Stimulus speed, retinal slip,
and mean SP velocity are dependent on each other
(retinal slip ¼ stimulus speed – eye velocity). However,
only retinal slip and eye velocity by way of efference copy
(Sperry, 1950) are readily available to the system,
whereas stimulus speed must be reconstructed internally.
The error term in our V-component then appears to
reflect an internally generated noise. We propose that the
reason for this signal dependent noise is a variable
element in the forward loop of the OKN control pathway
(either the overall reflex gain or the neural integrator),
which is effectively multiplied by stimulus speed.

We have also found that the standard deviation of
the Q-component is linearly related to the mean QP
magnitude. This result is not entirely unexpected as it is
well-known that larger saccades have larger errors to
static visual targets. What is surprising is that the
constant of proportionality is approximately 0.38,
which is much more than typical static saccades. The
reason for this is unknown but may reflect targeting
error when saccades are made to a position without any
obvious visual target or simply error when making
saccades to a moving target. The standard deviation of
the S-component is also linearly related to the mean SP
magnitude, indicating the presence of proportional
noise in determining the threshold at which to trigger a
QP and was unexpected.

We originally anticipated direct correlations among
variables across many OKN cycles, as a long-term
adaptive mechanism could explain why average eye
position does not randomly wander off to the limit of
gaze. We were surprised to find only correlations across
adjacent cycles indicating no memory across cycles.
With hindsight, we can see that the Q- and S-
components control mean eye position in a rather
simple way. QP amplitude is negatively correlated with
the start position of the QP (or end position of the
previous SP) and will therefore tend to correct for the
end position of the previous SP. Similarly, SP
amplitude is negatively correlated with SP start
position (or the end of the previous QP) and will tend
to correct for end position of the previous QP. The Q-
and S-components cooperate to maintain mean eye
position, via rapid start position feedback.

The average position of gaze over the course of each
trial was 38 in the direction from which the stimulus
originated, rather than directly ahead. An increase in this
contraversion has been observed with increasing stimulus
speed, when elicited with a rotating full-field patterned
curtain (Garbutt, Harwood, &Harris, 2002). An increase
in contraversion has also been observed during periods of
perceived self-motion (circular vection) that occur during
rotational OKN (Thilo, Guerraz, Bronstein, & Gresty,
2000). The lack of a significant stimulus speed effect on
contraversion in our data could be the result of using a

translational rather than rotational stimulus and the lack
of strong linear vection.

The start of a QP is determined by the saccadic trigger,
which could be determined by SP duration (Anastasio,
1996; Carpenter, 1993, 1994), eye position (Chun &
Robinson, 1978), or a combination of processes (Balaban
& Ariel, 1992). Our results indicate that the threshold is
dependent on both the SP start position and SP velocity
and cannot be determined solely by position or duration.
It is tempting to consider the dependence of SP amplitude
on SP velocity as a refractory period during which QPs
are not triggered. The mean value of b estimated from
our data was 0.16, indicating a refractory period of 160
ms. However, this conclusion should be considered with
caution, as SPs clearly can occur with durations under
this value. The QP amplitude is also dependent on both
the QP start position and SP velocity. Similar relation-
ships have been observed in the threshold for triggering
the QP of vestibular nystagmus in humans (Lau,
Honrubia, & Baloh, 1978) and rabbits (Lau &Honrubia,
1986). This implies that these relationships have biolog-
ical relevance in other species and even other forms of
nystagmus, and future studies might investigate how the
model parameters change between foveate and afoveate
species or between optokinetic and vestibular nystagmus.

A possible target location for QPs has been deduced,
but we predict that QPs to this target seem to
constantly undershoot with a saccadic gain as low as
0.64. It has been observed that memory guided
saccades made to a briefly flashed target during a
period of smooth pursuit can only partially compensate
for the smooth pursuit eye movement away from the
target, and only if given sufficient time (Blohm, Missal,
& Lefevre, 2005; Daye, Blohm, & Lefevre, 2010). These
previous investigations demonstrated that saccades can
fully compensate for the smooth pursuit eye movement
when saccade latency is greater than 400 ms, but tend
not to compensate when saccade latency is less than 200
ms. Our finding that QPs undershoot the hypothesized
target location may indicate that OKN is not able to
fully compensate for the eye movement away from the
target location during the SP due to relatively short
duration SPs.

The distribution of SP duration is particularly
interesting due to its similarity with the distribution
of saccade latencies to visual targets, and stochastic
models of saccade latency are often used to explain
simple models of decision making. For steady-state
OKN the Markov model predicts that the probability
distribution of SP duration would be a ratio of two
random variables Ti¼ Si / Vi, and assuming normality
of the error terms this variable would be given by a
positively skewed distribution. In a previous study we
investigated the goodness of fit of six different
probability density functions to the histograms of SP
duration and found that the distribution of two
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correlated and left truncated (at zero) normal variables
gave a significantly better fit to the data than the other
models tested (Waddington & Harris, 2012). We
propose that this is due to the approximately linear
trajectory of SPs and that QPIDs are given by the ratio
of a variable SP amplitude threshold and SP velocity
that varies between cycles.

The analysis we have performed here and our model
might be applied to understand pathological types of
nystagmus such as congenital nystagmus or gaze-
dependent nystagmus due to cerebellar dysfunction.
Pathological spontaneous nystagmus is often highly
nonlinear and it seems unlikely that a linear analysis
(such as PCA) would be successful in determining the
underlying components of the data. However, nonlin-
ear methods of analysis could be applied (e.g., principle
manifolds) and higher order terms (such as accelera-
tion) could also be included in the analysis to
investigate how variables that characterize each nys-
tagmus waveform depend on each other.

In summary, we have examined human OKN cycle by
cycle, and this leads us to consider OKN as three first
order Markov processes acting in sequence to determine
at which point to trigger a QP, the position at the end of
the QP, and the new eye velocity at the end of the QP.
Surprisingly, the Markovian update dynamics of SP
velocity allows retinal slip to reach values where visual
acuity should drop dramatically. This brings into
question the traditional assumption that OKN is a
system that solely minimizes retinal slip and requires
further exploration.
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