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Abstract—One of the fundamental problems in
developmental robotics relates to the progressive spon-
taneous acquisition of motor abilities by an organism.
Throughout this process, the speed of acquiring abil-
ities, which we term ‘learnability’, is strongly limited
by the dimensionality of the sensori-motor space; this
in turn could affect the survival of an organism. In
this paper, we tackle the problem of dimensional
change during development using a framework of
control dimensionality reduction based on nonlinear
system balancing. Using a set of internal models
of behaviour of increasing dimensionality, we show
that joint-stiffness regulation can be used to ensure
optimal development of motor skills. This is quantified
as a maximisation of internal model accuracy at
intermediate stages of learning. We test our approach
in a simulation of a human arm modelled as a 2 link
kinematic chain performing point-to-point and via-
point reaching tasks. We then analyse optimal joint-
stiffness development towards facilitating effective
dimensional change and compare two strategies, (i)
uniform development and (ii) proximo-distal develop-
ment, i.e. variation of only the distal joint stiffness.
Our results indicate that latter strategy, although
lower in accuracy is a simpler approach towards
learnability regulation. The implications of the model
and the results for biological motor control and
robotics are then discussed.

I. INTRODUCTION

In the study of motor behaviour development
in nature, one of the key questions is that of
how the neural control mechanisms of organisms
cope with the large neuro-mechanical Degrees of
Freedom (DoF). While large dimensionality affords
an organism evolutionary advantages in tackling
with novel environmental contexts, it is unclear how

organisms cope with the difficulties of real-time
control and motor learning in the resulting high-
dimensional state spaces. Given the importance of
accurate (optimal) motor behaviours for survival it
seems likely that there should be a premium on
learning as quickly as possible for a given level
of competence and task complexity. This speed of
learning, which we call ‘learnability’ [8], depends
ultimately on the dimensionality of the state-space
and there is increasingly a consensus that some
form of manipulation of dimensionality is taking
place essential in order to regulate learnability [11].
Naturally, any control over dimensionality must be
manifest in the neural and/or structural architecture
of the organisms, and must be inheritable itself (i.e.
coded in DNA) [6]. It is therefore important to
understand the mechanisms underlying dimensional
change during motor development.

Bernstein[1] was one of the earliest to iden-
tify the necessity for some form of developmental
strategy of dimensionality regulation to reduce the
complexity of motor skill learning. His three stage
learning model, consisted of (i) initial DoF freez-
ing, (ii) later DoF unfreezing and (iii) exploitation
of reactive phenomena. Several investigators have
since sought to validate this theory in natural [11],
[2] and synthetic contexts [3] and the strategy is
usually modelled as progressive state-space explo-
ration for acquiring task-specific kinematic transfor-
mations [12]. Despite some experimental evidence
[13], several open questions remain. First, the terms
“freezing”, “unfreezing” and “exploitation of reac-
tive phenomena” all are open to interpretation and
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joint stiffness regulation is one possible mechanisms
suggested. Secondly, no single study has so far
managed to examine all three stages of learning in
a skill, mainly due to the time scales within which
such a mechanism seems to function. Lastly, focus
is only paid to resulting variations in the kinematics
of behaviours – this approach does not explain how
optimal human motor behaviours are acquired in a
dynamic context. The dynamical systems perspec-
tive [11], [10] represents an alternative modelling
approach however the nature of the dimensional
change (increase vs. decrease) remains inconclusive
and the role of neuro-mechanical effects such as
joint stiffness is not easy to model. In contrast,
we aim to build a synthetic theory of the dimen-
sional change phenomenon by employing a control-
theoretic approach based on state-space models
and model/control order (dimensionality) reduction.
The advantages of this approach is that neuro-
mechanical properties can be explicitly modelled in
the dynamic equations and thus analysed for their
effects [9].

Our approach is based on the following ob-
servations. Firstly, dimensional change must be
viewed as not only a computational mechanism for
state-space exploration, but as a method for pro-
gressively varying controller complexity (through
dimensionality) in order to achieve the goals of
motor learning. Secondly, it has been suggested by
some form of internal models [14], [7] are towards
optimal adaptation and control of behaviour. Lastly,
joint stiffness regulation can also be viewed as
a method for suitably modify dynamic behaviour
during learning, i.e. thereby control accuracy of
internal models during intermediate stages. Here,
dimensionality refers to the size of the state-space
of internal models. Dimensional change is denoted
as a progressive variation in internal model dimen-
sionality. We use the method of nonlinear system
balancing [4] to obtain a progression of forward
models of increasing dimensionality. The accuracy
of such models in intermediate stages of learning
then becomes a measure of effectiveness of the
dimensional change strategy for control. We use this
accuracy measure to propose an optimal stiffness
development strategy for regulating learnability.

Our model is tested on a simulated 2-link kine-
matic chain with muscle-like actuation. Through
comparison of state trajectories of a reduced di-
mensional forward model and the full order system,
we study effect of joint stiffness development on
two kinds of tasks : point-to-point reaching and
via-point reaching. We then compare two kinds of
joint stiffness development strategies, (i) uniform
development, and (ii) proximo-distal development.
Interestingly our results indicate that while uniform
stiffness development is better for overall accuracy,
proximo-distal stiffness development could be eas-
ier to regulate due to the uniformity of the forward
model accuracy landscape.

This paper is organised as follows. In Sec. II we
introduce our mathematical framework in modelling
dimensional change using control dimensionality
reduction. Sec. III presents the simulation model
we employ and details the experiments performed.
The results are then analysed in Sec. IV, followed
by the discussion in Sec. V.

II. FRAMEWORK AND BACKGROUND

Consider the following representation of neuro-
muscular dynamics,

ẋ = f(x) + g(x, u), y = h(x), (1)

in which, x ∈ RS is the denoted the state, u ∈ RI
is denoted the input, y ∈ RO denoted as the
output. In this representation, f(.) represents the
state transition dynamics (or ‘natural’ dynamics)
and g(.) the input dynamics. The output y relates
to the full order state x through the output transfor-
mation h(.). Let us denote this system as F . The
input reflects the activity of motor neurons, which
for vertebrates can number in the thousands, but
may be correlated. Here, I reflects the number of
independent components. In the representation in
Eq. (1), the joint stiffness affects the mechanical
component of the natural dynamics.

Organisms control task trajectories by manipulat-
ing the neural control input u(t). The key question
in both the biological and robotic context is how
task control problem is solved given redundancy
and high dimensionality. The problem can be re-cast
using optimal control theory (OCT) by assuming
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that different trajectories have different fitness for
the organism; where this fitness is quantified by
some form of a cost function J . The trajectory
y∗(t) that minimises cost J∗ , and its corresponding
control u∗(t) are optimal and can be found by
various means.

The OCT models of human behaviour have sug-
gested several possibilities for the cost function J
with energy, time, accuracy, control input norm,
joint torque changes [5] being popular candidates
depending upon the motor behaviour being tested.
Regardless of the actual cost function, the investi-
gations do not address the neural acquisition of this
optimal control u∗(t). Due to phenotypic variations,
it can be expected that individual organisms must
somehow acquire this optimal solution through
some process of reinforcement learning [6] in order
to achieve the task goals. Key to this learning
process is the suitable exploration of the state-
space and therefore large state-spaces can severely
affect the tractability of the iterative optimal control
problem. In biological systems, the exploration of
state-action solutions is is carried out using the
so-called internal models [14], [7], comprising of
forward and inverse models.

Within this control-theoretic state-space frame-
work, we interpret the notion of dimensional change
simply as a progressively increase in dimensionality
of the forward model. Now, the full-dimensional
forward model is simply a formulation of the dy-
namics in the form of Eq. (1), since it relates
the input signals u(t) to the state x(t) and output
trajectories y(t). This is task-specific since it is
dependent on specification of the task variables y.

A reduced dimensional state xr ∈ RSr is then
taken to be the map xr = Px defined by the pro-
jection operator P ∈ Sr×S. We use the method of
nonlinear system balancing [4] in order to compute
the projection matrix P . This process is based on
collecting datasets of system behaviour and then
computing controllability and observability Grami-
ans – measures for quantifying the importance of
each of the state variables to the control problem.
A dimension reduction of this forward model can

then be obtained by the Galerkin projection,

ẋr = Pf(PTxr) + Pg(PTxr, u),

y = h(PTxr),
(2)

we can then denote this system as Fr. In order to
investigate a dimensional change, we assume that at
intermediate stages of learning, the dimensionality
of forward model state-space xr progressively in-
creases in the range Sr = [1 . . . S]. This therefore
yields a family of forward models of increasing
complexity which can then be represented by Fr ⊂
[F1,F2, . . .F ].

Now, since the reduced dimensional forward
models only correspond to a projection of the
dynamics, an iterative optimal control computed on
such a system only yields a suboptimal solution,
and control. However through progressive increase
of state-space complexity, the optimal solutions may
be found in a tractable manner as the dimensionality
is increased to a sufficiently large degree [9]. Never-
theless, it is important to ensure that solutions com-
puted at intermediate stages of learning minimise
the error. This entails maximising the accuracy of
the various intermediate forward models Fr.

We examine the hypothesis that through careful
and appropriate regulation of the joint stiffness K,
the accuracy of the intermediate stages of learning
can be maximised. This approach then yields a
dimensional change strategy that ensures optimality
of the motor behaviours along with a speed up
of the learnability. We examine this hypothesis by
quantifying the forward model error by,

εr = ‖F − Fr‖ = ‖y(t)− yr(t)‖2, (3)

where we assume ‖.‖ is some error operator while
‖.‖2 is the standard 2 norm on the sequences y(t)
and yr(t) that are obtained in response to some
(task-specific) control input u(t). Consequently, at
intermediate stages of learning, the optimal stiffness
development K is chosen in order to minimise,

K∗ = argmin
K

εr, (4)

where Kmin ≤ K∗ < Kmax. Since the forward
model accuracy now depends on joint stiffness as
well as dimensionality S, we analyse the accuracy
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Fig. 1. Simulation setup : A two-link kinematic chain actuated
by muscle-like actuators generating torque from a first-order
response to activation. The output is the Cartesian position at
the end of the chain. Tasks modelled are straight line point-to-
point, and viapoint reaching, with zero terminal velocities.

as a 2D surface that we denote as the forward model
accuracy landscape. Finding an optimal stiffness
development strategy therefore is reduced to a ques-
tion of finding an optimal path in this 2D surface
as seen in the results in Sec. IV.

The simulation setup and experiments performed
are introduced next.

III. EXPERIMENTS AND RESULTS

The dimension change problem was studied using
a simulated 2 link planar kinematic chain model
of a human limb with passive joint stiffness as
represented by,

M(Θ)Θ̈ +N(Θ, Θ̇)Θ̇ +Kj(Θ−Θ0) = µαα,

α̇ = (
1

τs
)(u− α)

(5)
where Θ = [θ1, θ2]T is a vector of joint an-

gles, M(Θ) is the mass-inertia matrix, N(Θ, Θ̇)
the Coriolis and viscous damping matrix, Kj the
passive joint stiffness, µα is a muscle force scaling,
α = [α1, α2]T is a vector of muscle activations,
Θ0 is a vector of rest angles, and τs is the muscle
activation time constant.

Each joint is supplied with torques from indi-
vidual muscle-like actuators with linear first order
dynamics driven by the input signals u = [u1, u2]T .
The parameters of the model are chosen to loosely

mimic an adult human arm [15] with the fol-
lowing parameters. The link masses are chosen
as m1 = 0.75m, m2 = 0.5m, link lengths as
l1 = l2 = 0.4m. The joints are affected by viscous
friction with a coefficient of 0.15N/m/sec and the
muscles use a time constant of τs = 0.01sec. The
muscle torques are scaled by a magnitude of 1.6
and 0.4 at the first and second joint respectively.
The passive joint compliance has a rest length of
Φ0 = [π/8, π/4]T respectively, and the arm is
initialised to these joint angles to start at rest.

The arm model and the experimental scenario can
be seen in Fig. 1. Two kinds of tasks are studied,
that of point-to-pint reaching (T1) and via-point
reaching (T2). In both cases, the final objective is
to reach the point P = [0.4, 0.2]T in space within a
duration of 2.5secs. The experimental methodology
is as follows :

1) First using the full dimensional plant model,
an inverse controller of full order is derived in
the form of ud(t). This is used to benchmark
the forward model accuracy.

2) Next using the approach of system balancing
[4] reduced dimensional (forward) models of
the plant are derived. Since the full order
plant is of order R = 6, this entails a set
of 6 models of dimensionality S ⊂ [1 . . . 6].
The obtained forward models belong to the
set Fr ⊂ [F1,F2, . . .F6]

3) The forward model accuracy εr is estimated
in each case from the response to the controls
signal ud(t) from the normed difference in the
outputs as described by Eq. (3).

4) The forward model accuracy landscape is then
calculated as a 2D interpolate in order to
uniformly represent the region under analysis.

5) This process is iterated for the joint stiffness
Kmin ≤ K∗ < Kmax.

The dimensional change problem was then stud-
ied for two kinds of stiffness change strategies : (i)
Uniform stiffness change : the stiffness of both the
joints were uniformly varied within the range; (ii)
Proximo-distal stiffness change : the stiffness of the
proximal joint was fixed to a nominal (final) value
and the distal joint stiffness was varied within the
full range (Kmin = 0.1, Kmax = 0.6).
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Fig. 2. Joint stiffness variation and dimensional change in
point-to-point reaching : Joint stiffness was varied on the distal
joint, and fixed on proximal joint to 0.3N/rad (Proximo-
distal development); The resulting (a) Forward model accuracy
landscape, and the optimal joint stiffness development (blue
line); (b) Cartesian trajectories of the optimal stiffness candidates
at individual stages of dimensional change (i.e. corresponding to
the blue circles in (a)).

IV. RESULTS

The proximo-distal experiment results are pre-
sented in Fig. 2. The forward model accuracy
landscape Fig. 2a as explained earlier plots the
difference between the full dimensional system
response and the respective reduced dimensional
forward models. The errors are large to the left

of this area, since a 2 dimensional system cannot
accurately capture the dynamics. To the right edge,
the errors drop to 0 magnitude since the source
plant is of dimensionality 6, i.e. the model is at
full accuracy. From the distribution of errors in
this landscape, the optimal stiffness development is
indicated by the blue line. This result is qualitative
identical to the some experimental observations
[13], [2]. The Cartesian trajectories of the optimal
development strategy at various stages of learning
(corresponding to dimensional increase) and the full
dimensional plant can be seen in Fig. 2b. Clearly,
as dimensionality increases, the model performance
improves until the 6th dimension which is identical
to the full order system in its response.

The task independent nature of the optimal so-
lution can be seen in the results from the second
experiment depicted in Fig. 3. In this case, even
though the task is that of via-point reaching, the
obtained accuracy landscape in Fig. 3a is quali-
tatively similar to the point-to-point case. This is
because even though the tasks are different, the
chosen task output variables are identical, i.e. that
of the endpoint position (x, y). It must however be
noted that the magnitude of errors is greater than
the previous case (especially towards the left half
of the landscape), as seen in Fig. 3b, due to the
dynamic nature of the trajectory. Clearly a great
number of dimensions are necessary in order to
suitably capture the dynamics.

In the next experiment, we compare the the al-
ternative joint-stiffness variation strategy of uniform
development. In this case, the stiffness of both joints
are simultaneously varied and the forward model
accuracy landscape is presented in Fig. 4a. In this
case, the landscape is clearly different from the
results of the proximo-distal joint stiffness devel-
opment strategy in Fig. 2a. For the stiffness range
that was evaluated, a different optimal joint stiffness
development profile is obtained as a result as seen
in the blue line. Also, in this scenario, the peak
magnitude of the accuracy errors is less than half
of the proximo-distal strategy, implying that this
strategy is preferable if only accuracy in reaching
at intermediate stages is desired. Nevertheless, the
landscape is clearly not as uniform as the proximo-
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Fig. 3. Joint stiffness variation and dimensional change in via-
point reaching : Joint stiffness was varied on the distal joint,
and fixed on proximal joint(Proximo-distal development); The
resulting (a) Forward model accuracy landscape, and the optimal
joint stiffness development (blue line) which is identical to
point-to-point reaching; (b) Cartesian trajectories of the optimal
stiffness candidates at various stages of dimensional change (i.e.
corresponding to the blue circles in (a)).

distal case. It can be expected that with paramet-
ric variation corresponding to individual pheno-
types, this strategy may not be that conducive to
a smooth well-defined joint-stiffness development.
We believe that this gives additional support to
the predominating observations of proximo-distal
strategies in both children and in adults in learning
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Fig. 4. Joint stiffness variation and dimensional change
on point-to-point reaching : Joint stiffness varied uniformly
across both joints (Uniform development); (a) Forward model
accuracy landscape has lower magnitudes than proximo-distal
development, but the error surface is non-uniform. (b) Cartesian
trajectories of the optimal stiffness candidates at various stages
of dimensional change (i.e. corresponding to the blue circles in
(a))

new skills [13], [2]. Nevertheless, it can be expected
that the proximo-distal development approach need
not be the best on a task-independent basis and fur-
ther analysis on various tasks an might be needed.
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V. DISCUSSION

In this paper, we presented an approach for
quantifying the nature of dimensional change oc-
curring during development in an organism from
the control-theoretic viewpoint of dimensionality
reduction. We then analysed the role played by
joint stiffness towards dimensional change as a
mechanism for regulating learnability. Using the
approach of nonlinear system balancing, we mod-
elled dimensional change as a progressive vari-
ation in dimensionality of a forward model of
the sensorimotor behaviour. Using the accuracy of
the model at intermediate stages of learning as a
benchmark, we compared two strategies for joint
stiffness development, that of uniform and proximo-
distal development. Our results indicate that on
one hand, uniform joint stiffness development is
more beneficial from the perspective of maximis-
ing accuracy while regulating learnability, whereas,
proximo-distal development might be easier due to
the regularity of the accuracy landscape.

Developmental plasticity is concerned with the
irreversible changes that the newborn phenotype un-
dergoes as it matures and develops, which typically
takes a considerable fraction of the phenotype’s
lifetime. In either case, it seems likely that there
should be a premium on learning as quickly as
possible for a given level of competence and task
complexity. It can be expected that any strategy that
has evolved for speeding up of learning exploits
the nature of the embodiment through the morpho-
logical properties. The joint stiffness development
mechanism we present in this paper is an effective
method for controlling the learnability.

The results we present have two key implica-
tions for artificial systems. Firstly, model-based
reinforcement or adaptive learning strategies could
be facilitated in their tractability for complex robot
morphologies. Secondly, our method presents a
strategy for harnessing variable compliance at the
joints to expedite learning. Such a strategy can then
be used in conjunction with existing methods fo-
cussing on utilising muscle-like actuation for energy
harvesting and control robustness. This might pave
the way towards developmental acquisition of motor
abilities in complex anthropomimetic robots.
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