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Abstract. On our crowded roads, drivers must compete for space but cooperate
to avoid occupying the same space at the same time. Decision-making is
strategic and requires mutual understanding of other’s choices. Fully autono-
mous vehicles (AVs) will need risk management software to make these types
strategic decisions without human arbitration. Accidents will occur, and what
constitutes rational and ‘safe’ decisions will be scrutinized by the legal system.
It is far from clear how AV-Human and AV-AYV interactions should be man-
aged. Game Theory provides a framework for analyzing mutual ‘games’ with 2
or more players. It assumes that players mutually optimize their outcomes
according to Nash equilibria (NE), but do humans follow Nash equilibria in
Human-Human interactions? We implemented simple two-player competitive
games to see whether people played rationally according to Nash equilibria. On
each of 100 trials, each player was instructed to maximise their reward by
pressing one of three buttons labelled “4”, “6”, and “12”, without knowing the
other players choice. If players pressed different buttons, they received a reward
of 4, 6, or 12 points accordingly. If players pressed the same button, the reward
was reduced depending on the game type. Results showed that players did not
follow NE, but played a probabilistic game that included the “4” button, even
though pressing this button is always suboptimal. We suggest that this may be
an evolutionary strategy, but it clearly shows that people do not follow the
‘rational’ Nash strategy. It seems that AV-human interactions will be proba-
bilistic. In AV-AV interactions, software may be playing itself, and may also
require probabilistic optimal evolutionary-type strategies. We doubt that the full
implications of autonomous decision-making have been fully worked out.
Whether probabilistic decisions will tolerated legally and actuarially is doubtful.
One way to avoid them would be to allow regulated AV-AV communications,
and force software decisions to be deterministic according to some protocol.
However, AV-Human interactions seem likely to remain problematic.
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1 Introduction

We are on the cusp of a brave new world of fully autonomous robots including drones,
missiles, ships, cars, and software robots. The future is difficult to predict, but driverless
cars appear to be imminent and very much in the public eye. Hardly a month goes by
without a car manufacturer or a software enterprise announcing their intention to
develop an autonomous vehicle (cars) (AV). Initially, AVs will be semi-autonomous,
but as technical and legislative issues are sorted out, AVs will become fully autono-
mous probably in 2020s. The commercial market is enormous with billions of AVs at
stake, and competition among manufacturers will be fierce.

At the heart of a fully autonomous agent is the necessity to make decisions
autonomously without direct arbitration by a human controller. Decision will be in
real-time and have real life consequences, not only economically (cost, energy con-
sumption, time, etc.) but also in terms of human injury. There are two broad categories
of decisions: non-strategic and strategic games. In non-strategic games (sometimes
called ‘games against nature’), the agent makes a decision based on expected proba-
bilities of outcomes. Any other agents are assumed to act independently. The traditional
approach is to ‘rationally’ choose deterministically the alternative that optimises some
decision criterion, such as maximising expected utility or payoff, or minimising
maximum loss, etc. Non-strategic decision-making is dominant in low-density traffic
where encounters with other vehicles are infrequent. The goal is to navigate the road,
avoid obstacles, stop at traffic lights, and generally obey the rules of driving. There is a
trade-off between journey time, safety, and risks from violating rules.

In strategic games, a decision needs to take into account the decisions of other
agents (human or robot) who simultaneously make decisions based on the agent’s
expected decision. Such decisions are dominant in high-density traffic where there is
contention for road space (slots in a moving queue). Such competition must be tem-
pered with some degree of cooperation amongst drivers to avoid having (or causing)
and ‘accident’. Competition is most fierce when joining a queue at roundabouts,
junctions, slip roads, and lane changes. Competition for road space lead to other
frequency effects. A particular route may be the fastest and optimal, but if all drivers
select the same route, it may become the slowest and suboptimal. Waiting at re-fuelling
(re-charging) stations increases with the number of vehicles. Traditionally, analysis of
strategic games comes under the rubric of “Game Theory”, where agents are assumed
to be rational and fully informed. The optimal decisions attempt to maximise individual
gains in a stable way by finding Nash Equilibria (NE), which are the choices for which
all agents cannot improve their outcomes (but not necessarily Pareto optimal). Solu-
tions to strategic games may be deterministic, but may also be probabilistic (‘mixed
strategies’). Probabilistic plays are particularly relevant and intriguing. Should an AV
manufacturer program random plays, and if so, how will the legal courts interpret
liability in the event of an unlucky outcome?

How to program risk management in an AV is far from clear. Initially, most
interactions will be between AVs and human drivers (AV-H interactions). The problem
for the AV manufacturer is to be able predict the decisions of human decision-makers
contingent on the AV decision options. Do humans follow Nash equilibria? Evidence,
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based mostly on the prisoner’s dilemma game and the ultimatum game, is mixed. Sone
humans tend to be cooperative and do not follow NE, others are more individual and do
follow NE. There is also considerable complication in interpreting results from games
that are played more than once against the same ‘opponent’ (iterative games), as
opposed to one-shot games. AV-H interactions are one-shot, although similar scenarios
may arise with different opponents.

As AVs proliferate, interactions will become increasingly between AVs (AV-AV
interactions). AVs with the same manufacturer (model) and software will presumably
inherit the same decision making strategy leading to the strange situation where a
decision strategy will effectively play itself — reminiscent of evolutionary game theory,
where members of a species inherit the same strategy [1].

Nature has been making strategic decisions for eons via natural selection, and one
wonders whether we could learn from her. An example is foraging where the gain from
competition for resources decreases with number of competitors due to sharing or
fighting. This is a simple frequency dependent game. When there are alternative food
sources, animals distribute themselves probabilistically across the sources rather than
all competing for the same source — called the matching law (ML) [2]. Thus, Nature
seems to prefer a probabilistic solution. Some have argued that the ML is an evolu-
tionary stable equilibrium strategy [3—6]. We are not aware of any game-theoretic
studies on how humans compete for limited resources. We therefore set up a simple
experiment to see how pairs of humans make Game Theoretic decisions in a simulated
competition. Of course driving is much more complicated, but such games are simple
and directly address the question of whether humans compete or cooperate and make
deterministic or probabilistic decisions?

2 Implementation of Foraging Games

We implemented the foraging games in the following way. Two computers were
synchronized via Ethernet. On each computer monitor, three buttons were displayed
labelled “4”, “6”, and “12”. On each trial, each player was instructed to choose a button
to press (via a mouse). If players pressed different buttons they received the corre-
sponding reward of, 4, 6, or 12 points. If both players pressed the same button (a clash),
the reward was reduced depending on the type of game, which we call ‘SPLIT’ and
‘ZERO’. Once both players had made a choice, the trial ended, and each player’s
running total of points was incremented and displayed to the player. Each player could
only see their own display and their own total points — not the other player’s points.
The game was iterated over 100 trials. Eighty psychology undergraduate students were
recruited, and randomly allocated to 40 pairs. Each pair played only once, either the
SPLIT or ZERO game. The game type was randomly determined at the beginning of
the game resulting in 21 SPLIT games and 19 ZERO games.

In the SPLIT game, when players clashed their reward was reduced by a half,
receiving 2, 3, or 6 points depending on which button was pressed. Thus a clash is
moderately expensive (e.g. sharing food, reduced journey time when same route is
chosen). The payoff bimatrix is shown in Table 1. As can be seen for Player A, the
maximum gain is maximised by choosing button 12 for any strategy by Player B.
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Table 1. Top: Bimatrices of games. Bottom: Nash equilibria.
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Similarly, for Player B, the maximum is also to choose 12 (the game is symmetric).
Thus, the NE is [12, 12] with payoff (6, 6), which is also Pareto efficient. There are,
however, two addition NE: when player A plays 6 and player B plays 12 [6, 12]; and
vice versa: Player A plays 12 and player B plays 6 [12, 6]. Clearly, if player B never
wavers from the 12 play, player A could also play 6 with same result. If player B does
waver from the 12 play, then player A should not play 6, but only 12. It is also obvious
that Nash players should never press the 4 button.

In the ZERO game, players received no reward when they pressed the same button.
Thus, a clash is very expensive (e.g. fighting and being disabled, choosing the same
traffic slot and crashing). In this case there is no dominant strategy but two pure NE at
[6, 12] and [12, 6], which are contentious. Both playing 12 at [12, 12] is no longer
optimal. There are also 3 additional mixed strategies (probabilistic) that are NE.

3 Results

In both game types (SPLIT and ZERO), the sequential pattern of button presses were
highly variable across games (Fig. 1). Within a game, some players were highly
variable and seemed to press all three buttons in a haphazard way (Fig. 1a), but others
were much more consistent (Fig. 1b) with some pressing the “12” button on almost
every trial. Across all games, a player’s button press was significantly dependent on the
players previous button press and also dependent on the other player’s previous button
press (%%, p—0). Thus, players’ responses were contingent on the other players’.

We next computed the frequency of button presses for each button for each player
and plotted them on triangle plots for comparison with the NE (Fig. 2). The majority of
players did not align with an expected NE.

Plotting each player’s strategy revealed some distinct patterns: (a) some played
“12” mostly, “6” occasionally, and “4” rarely; (b) few played “6” more than “4” or
“12”; (c) few played “4” more than “6” or “12”; (d) most played “4”, “6” and “12” in
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Fig. 1. Two examples of games played. Left: a typical game involving variable play. Note “4”
button is frequently pressed. Right: a game with consistent play by one player, and intermediate
variability by the other.

Player A Player B

Fig. 2. Triangle plots of proportion of responses for each player A and B in the two game types.
Black lines and white circles show Nash equilibria (NE). NE joining vertices are pure
(deterministic) strategies; NE from edges are mixed (probabilistic) strategies. Small circles show
each player’s proportion of button presses for the “4”, “6”, and “12” buttons; thin lines join
players in the same game. Note that most players do not align with NE.

increasing bands (Fig. 2). Patterns a and b were consistent with NE. Pattern ¢ was
clearly not consistent with NE. However, Pattern d seemed to approximate the ML with
an increase in probability with button value.

3.1 Matching Law

Herrnstein’s original matching law relates rate of behaviour to obtained reinforcement.
We therefore plotted the proportion of button presses against the actual points awarded
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per button press (i.e. taking clashes into consideration) (Fig. 4a). There was a clear
linear trend consistent with the ML.

Fig. 3. Categorization of clusters of individual player strategies (see text).
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Fig. 4. Plot of proportion of button presses against actual obtained reward per button press for
all pattern d responses across both game types (see Fig. 3). Plot is collapsed across the three
buttons. Note approximate linear trend as expected from the matching law. Line is linear robust
regression.

3.2 Evolutionary Game Theory Equilibria

An important insight can be gleaned from evolutionary game theory (EGT). The basic
assumption is that strategies are inherited, and that successful strategies will dominate
the gene pool through natural selection (presumably AVs will also inherit from their
manufacturers). A consequence is that players will tend to adopt the same strategy.
There may actually be a small set of stable strategies, but for the sake of argument, let us
assume that players A and B share the same genes and always have the same strategy
(Fig. 5). What is their optimal strategy? First consider the SPLIT game (Fig. 6a).
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Fig. 5. Schematic to show how an equilibrium can be reached when players adopt the same
strategy. At equilibrium, the slope of expected reward (dashed lines) become equal so that
switching to a new button offers no advantage. The optimum strategy is then determined since the
sum of probabilities (vertical dashed lines) add to unity.

If a player presses the “12” button with increasing probability, the expected payoff
will increase as a compressive function such that the slope (rate of increase in reward
with probability) decreases. This is because the other player is also pressing “12” with
increasing probability. As the probability of playing “12” increases, there comes a point
where the players are better off switching to the “6” button because the slope on the “6”
button is greater than the “12” button. (This is equivalent to switching habitats in EGT).
The slope of the “6” button will also decrease and eventually it will pay to switch to the
“4” button. The process will stabilise when the slopes of buttons become the same,
since then there is nothing to be gained by switching. Because the sum of probabilities
must always add to unity, the final equilibrium point is given by the horizontal line in
Fig. 6a. For the SPLIT game, the equilibrium strategy is (0, 0.33, 0.67) (for both
players). Thus, it still does not pay to press “4”, but the equilibrium point is very close
to zero and any fluctuations would involve the “4” button.

For the ZERO game, the equilibrium is different and is (0.25, 0.33, 10/24)
(Fig. 6b), and does require “4” presses. These equilibria are optimal but not at a NE. In
Fig. 6, these optimal strategies are plotted on dual triangles and compared to observed
strategies (pattern d in Fig. 3). They are mixed strategies and similar to, but not
precisely the same as, the ideal ML (4/22, 6/22, 12/22). There is some agreement, but it
is not perfect especially for the ZERO game. However, there is considerable variability
in observed data, and clearly the optimal strategy would depend on how well players
could determine their expected payoffs.

This is based on the EGT assumption of identical strategies, which is open to
question for human behaviour. However, it demonstrates the key point that when
expected reward for each choice is a compressive function (decreasing slope) of
probability/frequency of play (Fig. 6), it may pay to switch to a less rewarding choices
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‘Split” Game

12 ‘Zero’ Game

Fig. 6. Optimal strategy when players have same strategy (dark blue line) and the ideal
matching law (light blue line) compared to observed players’ strategies (for pattern d). (Color
figure online)

(depending on their slopes). This will lead to non-NE mixed strategies. It must be
emphasised, though, that players do not simply play a fixed mixed strategy independent
of the other player, but their choices do depend on the opponent’s choices. Thus, a
player’s expected reward would need to depend on the other player’s choices. At
present we do not know how players derive expected reward, but if it is based on past
experience, then it is plausible that stable compressive functions similar to that in Fig. 3
could emerge. This is a complex problem that we have not yet explored.

4 Discussion

It is clear from this simple experiment that humans do not as a rule adopt NEs. For either
the SPLIT or ZERO games, players did not adopt the same strategy, and most pairs of
players did not converge on any Nash equilibrium. In the SPLIT game, 5 pairs
approximately played the optimum [12, 12] strategy, and 2 pairs approximated the [12, 6]
or [6, 12] NE, but 10 pairs appeared to choose a mixed strategy with no NE alignment
(Fig. 2) (there are no mixed NE in this game). For the ZERO game, there are two pure
NE, [6, 12] and [12, 6], which were approximated by 4 pairs. The remaining pairs,
however, chose a mixed strategy. In this game, there are mixed NE (see Table 1); two
involved playing the “4”, but no pairs adopted these. The other required a mixture of 6
and 12, and it is possible that some pairs approximated this strategy, but we are doubtful
as players also approximated this strategy in the SPLIT game which is not a NE. Thus, we
conclude that some but most do not adhere to NE.
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It could be argued that one-shot NEs are not applicable to iterative games (many
trials with the same players), but this is not the case for our games. It is easy to see that
for the SPLIT game, playing “12” is always the optimal strategy regardless of the other
player’s strategy. Playing “6” is risky as the reward could drop to 3 points if the other
player also plays “6”, and playing “4” is always suboptimal. We also thought that this
optimal strategy would be obvious to any player, but evidently this was not the case. In
the ZERO game, the optimal strategy is less obvious and requires negotiation between
playing “6” and “12”: if one player chooses “12”, the other should choose “6” and vice
versa. So it possible that a player could learn the other’s preference and adapt to it or
interfere with it. Playing “4” is always suboptimal (for two players).

A few players chose “4” with the highest probability. It is possible that it was
strategic if the player assumed that the other player would play “6” or “12” and
believed that “4” was the safest option. This would fail, of course, if the other player
adopted the same strategy.

In both game types, most players clustered around a mixed strategy with increasing
frequency with “4”, “6”, and “12”, although some chose “6” more often than “12”.
This pattern is reminiscent of the Matching Law, and there is clear trend of a button
being pressed increases with the amount of actual reward obtained (Fig. 4a). The ML
has long been a contentious issue, and often considered as irrational, or at least a
non-maximising strategy.

4.1 Implications for AVs

We need to consider AV-H and AV-AYV interactions separately. Based on the results of
this experiment with human-human interactions, we cannot assume that a human will
act deterministically or even follow a mixed Nash equilibria. Instead, humans appear to
adopt probabilistic decision-making at is, an alternative with low expected pay-off is
sometimes chosen, but there are individual differences. It seems that Nature prefers
probabilistic plays. Should we, therefore, be bioinspired and incorporate such a strategy
in decision-making software? There are two problems.

First, we do not know why humans (and animals) are probabilistic. It may be an
evolutionary stable strategy, but we cannot be sure. If we assume that it is nevertheless
an optimal strategy, there is no guarantee that it would optimal for a man-made AV
machine. That is, is it optimal for any decision-making machine or is it peculiar to
biological organisms (see Harris [7]). Given that unlucky outcomes are likely to have
serious health and financial outcomes, perhaps the gamble of bio-inspiration is a step
too far. This brings us to the second problem. A probabilistic strategy will inevitably
have unlucky outcomes. Will it be acceptable by the legal system and insurance
companies that an ‘accident’ is perceived to have occurred because of a random
number generated in AV software? It is doubtful. The problem for AV risk manage-
ment software is predicting what a human will do. It will need to make some legally
defensible assessment of human behaviour and arrive at a defensible deterministic
decision. An AV’s speed of processing and response to external events will be much
faster than a human’s. This may provide some advantage for an AV evading a collision,
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but it may influence the ongoing human decision-making process and possibly cause
unexpected human behaviour.

A different scenario occurs in AV-AV interactions, which will become increasingly
common in the next 20 years. AVs will have the same (or similar) technology and
decision-making strategies (presumably depending on the AV brand). Their interac-
tions will inevitably be different from AV-human interactions. Presumably, AVs will
need to broadcast their autonomous status so that other AVs can make decisions
accordingly. Vehicles that do not broadcast will be assumed to have human drivers.
A potential problem arises when AVs make the same decision in a conflict scenario, so
that the decision-making software plays against itself, as in evolutionary game theory.
It is not possible to predict the outcome at present, but deterministic decisions could be
uneconomic as all AVs could make the same error. One way to avoid this scenario
would be for AVs to communicate with each other in order to resolve competitive/
conflict situations. However, this would need enforcement via some a regulatory body,
as seen in air traffic control.

AV-H and AV-AV interactions will be inevitable in the near future. Although
currently challenging, it seems likely that autonomous non-strategic driving will
become at least as safe as human driving. On the other hand, how autonomous strategic
decision-making in high density traffic will evolve remains unclear and could remain
persistently problematic until the game - theoretic implications are better understood.
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