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Abstract  20 

This work reports on the variation in wastewater treatment works (WwTW) influent concentrations of 21 

a wide variety of active pharmaceutical ingredients (APIs), their removal efficiency, effluent 22 

concentrations and potential risks to the aquatic environment. The research is based on data generated 23 

from two large UK-wide WwTW monitoring programmes. Taking account of removal of parent 24 

compound from the aqueous phase during treatment in combination with estimates of dilution 25 

available it is possible to prioritise the APIs of greatest risk of exceeding estimates of predicted no 26 

effect concentrations (PNEC) in receiving waters for all WwTW in the UK. The majority of 27 

substances studied were removed to a high degree, although with significant variation, both within 28 

and between WwTW. Poorer removal (between influent and effluent) was observed for 29 

ethinyloestradiol, diclofenac, propranolol, the macrolide antibiotics, fluoxetine, tamoxifen and 30 

carbamazepine. All except the last two of these substances were present in effluents at concentrations 31 

higher than their respective estimated PNEC (based on measurement of effluents from 45 WwTW on 32 

20 occasions). Based on available dilution data as many as 890 WwTW in the UK (approximately 33 

13% of all WwTW) may cause exceedances of estimated riverine PNECs after mixing of their 34 

effluents with receiving waters. The overall degree of risk is driven by the toxicity value selected, 35 

which in itself is controlled by the availability of reliable and relevant ecotoxicological data and 36 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/131015285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.scitotenv.2017.09.101


consequently the safety factors applied. The dataset and discussion, provides information to assist in 37 

the future management of these types of chemicals.     38 

 39 
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 44 

1. INTRODUCTION 45 

 46 

The use and environmental prevalence of pharmaceuticals increases on an annual basis due to a 47 

variety of reasons including the widening array of medical treatments available, greater availability of 48 

medicines across the world, affordability, population growth, population ageing (in some countries)  49 

and changing perspectives towards, for example, pain (Jelic et al., 2011). Active Pharmaceutical 50 

Ingredients (API) are detected throughout the environment in water, soil, sediment, sludge as well as 51 

in drinking waters in some countries (Kasprzyk-Hordern et al., 2008; Zorita et al., 2009; Wahlberg et al., 52 

2011; Jones et al., 2014; Lees et al., 2016). Although the mere presence of pharmaceutical is not 53 

always associated with harm to the environment or human health, concerns are rising associated with 54 

antimicrobial resistance and chronic impacts on biodiversity including endocrine disrupting effects on 55 

fish (Levado et al, 2004; Jobling et al., 2005; Tyler et al., 2008). The main source of occurrence of 56 

APIs in the river environment is from human use of pharmaceuticals, via the continuous discharge of 57 

effluent from the Wastewater Treatment Works (WwTW) (Gardner et al., 2012; Melvin et al., 2016). 58 

Hence, investigating the occurrence, fate and risk of APIs is currently of great interest to regulators 59 

and the water industry alike, with a focus to better understand the loadings entering WwTW and the 60 

observed within and between works variation in removal efficiencies and concentrations often 61 

observed for APIs (Gardner, 2013). 62 

 63 

The range of concentrations found for pharmaceuticals studied in the UK is similar to that observed in 64 

continental Europe as well as in the USA (Kolpin et al., 2002; Ashton et al., 2004; Hope et al., 2012; 65 

Bradley et al., 2016; Burns et al., 2017). Table 1 provides examples of other reported data for APIs 66 

determined as part of this research, rather than a complete list of all APIs detected in effluent and 67 

receiving waters. Other studies have also shown that there is a clear association between the number 68 

of pharmaceuticals used in a society and the levels of API found in receiving water bodies ranging 69 

from API concentration of typically less than 100 ng/l in the surface and groundwater and below 50 70 

ng/l in treated drinking water (WHO, 2011; Furlong et al., 2017) to higher levels reported adjacent to 71 

production facilities (Phillips et al., 2010). Predicted no effect concentrations (PNECs) have been 72 

reported for some APIs below 1 ng/l and APIs such as diclofenac (CAS 15307-79-6), 17-beta-73 

https://scholar.google.co.uk/citations?user=gAHlZJsAAAAJ&hl=sv&oi=sra


estradiol (E2) (CAS 50-28-2) and 17-alpha-ethinylestradiol (EE2) (CAS 57-63-6) are on the European 74 

Water Framework Directive (WFD) ‘watch list’ (EU, 2013). This requires member states to gather 75 

monitoring data in order to assess risk to the environment, leading to significant sources of APIs 76 

needing to be quantified and factors controlling the discharge of APIs carefully considered along with 77 

impacts on receiving water ecology, including effects of mixtures (Bound and Voulvoulis, 2006). 78 

79 



Table 1.  Average aquatic concentrations for APIs of interest to this research found in river 80 

                             water, as well as usage, excretion and removal in WwTW. 81 

 82 
API Therapeutic Class Upstream  

(µg/l) 

Influent 

(µg/l) 

Effluent 

(µg/l) 

WwTW 

removal 

(%) 

Down 

stream 

(µg/l) 

UK 

consumption 

(ton/year), 

2009 and 

2011 

Excreted 

unchanged 

compound 

(%) 

Aspirin 

(acetylsalicylic 

acid) 

Anti-

inflammatory/analgesics 

NA NA NA NA <0.0005b 130d <1b 

Atenolol Beta blocker NA NA NA NA 0-0.56b 28e 90f 

Azithromycin Antibiotic NA 0.163l 0.030l 90l NA NA NA 

Carbamazepine Antiepileptic NA 2.593b 3.117b NDb 0.0005-

0.356b 

48e 3b 

Ciprofloxacin Antibiotic NA 1.090l 0.052l 97l NA NA NA 

Clarithromycin Antibiotic NA 0.524l 0.092l 91l NA NA NA 

Diclofenac Anti-inflammatory <0.020a 0.107-

0.981c 

0.599a 70-92c 0.154a 28e 15f 

Erythromycin Antibiotic <0.010a 2.0k 0.109a 25-91i 0.159a 3d 25f 

Oestrogen 

(E1) 

Natural hormone NA 0.042g 0.011-

0.025g 

58-96g NA NA NA 

Oestradiol 

(E2) 

Contraceptive NA 0.016g 0.0013-

0.0039g 

89-96g NA NA NA 

Ethinylestradiol 

(EE2) 

Contraceptive NA 0.0017g 0.00033-

0.00078g 

53-71g NA NA NA 

Fluoxetine Psychiatric drugs NA 0.070k 0.023j 33-100h NA 6.4m NA 

Ibuprofen Analgesic 0.432a 14.0k 4.201a 90-100i 1.105a 258e 10f 

Oxytetracycline Antibiotic NA 1.09l 0.029l 99l NA NA NA 

Ofloxacin Antibiotic NA 0.081l 0.023l 89l NA NA NA 

Propranolol Antihypertensive 0.010a 0.542b 0.093a 

0.388b 

28b 0.041a 15e <0.5b 

Tamoxifen Anti-cancer <0.010a 0.0002-

0.015c 

<0.010a 32-45c <0.010a NA NA 

 83 
ND = not detected; NA = not available. 

a
Ashton et al., 2006; 

b
Kasprzyk-Hordern et al., 2008; 

c
Zhou et al., 2009; 84 

d
2006 sales data for Wales; Kasprzyk-Hordern et al., 2008;

 e
IMS figure on active ingredient sales; 

f 
WHO, 2011; 85 

g
Heffley et al., 2014; 

h
Clara et al., 2005; 

i
Li et al., 2014;  

j
Gardner et al., 2012; 

k
Gardner et al., 2013;

l
 Singer et 86 

al., 2014; 
m 

Boxall et al., 2014 87 
 88 

Many countries have therefore started monitoring programs to investigate the exposure of APIs in 89 

order to gain a better understanding of their sources, fate and risk (Falås et al., 2012). The Chemical 90 

Investigation Program (CIP) in the UK is a large ongoing investment being undertaken by the water 91 

industry to assist the UK in meeting its obligations under the WFD to monitor concentrations of 92 

priority chemicals including APIs in WwTW influent, intermediate processes and effluent as well as 93 

assessing their risk to receiving waters (Gardner et al., 2013). The first phase of the CIP (named CIP1 94 

here) was a project that ran from 2012-2015 with one of its aims to investigate the fate of trace 95 

substances (including 11 APIs) in influent, effluent and intermediate WwTW processes of 25 WwTW. 96 

Some of results from this program have been reported previously (Gardner et al., 2012, Gardner et al.; 97 

2013, Jones et al.; 2013 and Comber et al., 2014). The £140 million investment in the second phase of 98 

the CIP (labelled CIP2 in this work) program builds on the outputs from CIP1 but extends the range 99 

of WwTW monitored and the number of determinands in order to in some cases measure (for WFD 100 

priority substances and priority hazardous substances) and in some cases predict (for emerging 101 

https://clicktime.symantec.com/a/1/M3ukRC8CaPdLSpM5NvdCuCVGfE3k8UlqK3QrFW4zBgU=?d=2FL3yZ-VLy26Qd_AU0FdaxcHWQCDYtM4PTFMRuRRrovXz2K6FpQ7ydZswOF4b7Q4jGQszEvWweYfKPCd8weekF8r0oD69oRg3r8C5ie433NOdmLlac7A6T_gel_UVVk9x2h3OJHgTnKJZnymF0oVmITpLX6SKc6n96DshS2TI0Dr1HywpjfQjtiCuH2Y6V88bPHrcFb2OrlRMDrYrFpwVFuCZEesePoQg0hUJrjLfXprPWVo9mo7-4gXgXu4xisLW7XRHXIRaMmmQ46DkRkU8VuVtJiglTq1jAk_9LcYfCONJiiv8j-BPVLX1FLLA9xGEtpo1O0z4SOeZV86FhwkYd0pZT3V7Mv1Ihu5e_XVg2YhIMoRoYncdtsM8qKcPI2rnA%3D%3D&u=https%3A%2F%2Fscholar.google.co.uk%2Fcitations%3Fuser%3DgAHlZJsAAAAJ%26amp%3Bhl%3Dsv%26amp%3Boi%3Dsra
https://clicktime.symantec.com/a/1/M3ukRC8CaPdLSpM5NvdCuCVGfE3k8UlqK3QrFW4zBgU=?d=2FL3yZ-VLy26Qd_AU0FdaxcHWQCDYtM4PTFMRuRRrovXz2K6FpQ7ydZswOF4b7Q4jGQszEvWweYfKPCd8weekF8r0oD69oRg3r8C5ie433NOdmLlac7A6T_gel_UVVk9x2h3OJHgTnKJZnymF0oVmITpLX6SKc6n96DshS2TI0Dr1HywpjfQjtiCuH2Y6V88bPHrcFb2OrlRMDrYrFpwVFuCZEesePoQg0hUJrjLfXprPWVo9mo7-4gXgXu4xisLW7XRHXIRaMmmQ46DkRkU8VuVtJiglTq1jAk_9LcYfCONJiiv8j-BPVLX1FLLA9xGEtpo1O0z4SOeZV86FhwkYd0pZT3V7Mv1Ihu5e_XVg2YhIMoRoYncdtsM8qKcPI2rnA%3D%3D&u=https%3A%2F%2Fscholar.google.co.uk%2Fcitations%3Fuser%3DgAHlZJsAAAAJ%26amp%3Bhl%3Dsv%26amp%3Boi%3Dsra


chemicals such as APIs) the impact on receiving waters. The CIP2 determinands include 19 APIs and 102 

4 metabolites at currently 45 WwTW on 20 occasions. In total, over 60 000 samples are to be taken, 103 

with over 2 million determinations. This study reports on the findings for APIs from the CIP1 and 104 

CIP2 programmes. 105 

 106 

WwTWs are primarily designed to serve the purpose of removing pathogens, suspended solids and 107 

gross organic and inorganic matter, rather than the removal of the increasing numbers of modern 108 

chemicals generally present in the µg/l range or less (Melvin, 2016). It has also been observed that 109 

there is a wide variation in removal rates for different substances, both within and between WwTWs. 110 

This difference in removal rate creates large uncertainty factors for the prediction and modeling of 111 

effluent concentrations and therefore creates a challenge in conducting meaningful risk assessments. 112 

There are currently no statutory consents applied to APIs in WwTW effluent, however, there is an 113 

urgent need to better understand the risk posed by APIs in effluents to receiving waters in order to 114 

inform future investment and to design and implement better risk assessment (Gardner, 2013). The 115 

presence of APIs is not measured on a routine basis for most WwTWs owing to cost and lack of 116 

legislative drivers. Consequently, there are a number of previous studies modelling the impact of APIs 117 

based on consumption, WwTW removal and dilution but the cost of analysis generally prevents the 118 

actual measurement of APIs in effluent (Johnson et al., 2013a,b; 2015).  119 

 120 

This study utilizes CIP 1 (11 APIs, from 25 WwTW sampled on up to 15 occasions) and the more 121 

recent CIP2 program (19 parent APIs and 4 metabolites, from WwTW sampled on 20 occasions). 122 

Although the APIs studied represent only a fraction of the total APIs in use, financial and practical 123 

constraints associated with sampling, preservation, analysis and replication meant the number of 124 

determinands needed to be controlled. However, APIs were prioritised on potential risk to the aquatic 125 

environment and all of the main classes of API have been represented (Table A1). Concentrations in 126 

the WwTW effluent have been compared with derived PNECs in receiving waters in order to generate 127 

a priority list of APIs of potential concern.   128 

 129 

2. MATERIALS AND METHODS 130 

2.1 Selection of Pharmaceuticals 131 

The selection of chemicals for CIP1 is discussed elsewhere (Gardner et al., 2012). The list of 132 

candidate APIs for inclusion in CIP2 was based primarily on a prioritization study undertaken by 133 

UKWIR in 2014 (UKWIR, 2014). Unlike many previous prioritisations, which focused on usage and 134 

concentrations detected in surface waters/effluents, problem sites or substances, this study adopted a 135 

risk assessment approach by comparing the estimated environmental concentrations of nearly 150 136 

pharmaceuticals (screened on usage and perceived hazard from a list of thousands of candidate 137 



substances) with data for their respective effect concentrations on a variety of receptor organisms in 138 

the aquatic environment.  139 

 140 

For the purposes of CIP2, this list was further refined by selection of substances that were considered 141 

to have the greatest potential as candidate WFD priority substances. The criteria for this selection 142 

were a) that the risk characterisation ratio (predicted concentration divided by the highest probable no 143 

effect concentration (PEC/PNEC) ranked higher than 1 in the overall 2014 UKWIR prioritisation and 144 

b) that the data supporting the  derivation of a PNEC were relatively reliable and complied with the 145 

WFD approach to PNEC derivation (EU 2011). In effect, this meant that PNECs were derived using 146 

experimental rather than modelled effects, long-term effects in organisms from different trophic levels 147 

were available (though short term exposure was also considered) and assessment factors were applied 148 

according to WFD guidance (EU 2011).  149 

 150 

The APIs prioritised were then further reviewed for their relevance to wastewater treatment, and the 151 

likelihood that the substance might be present in sewage effluents and hence discharged to surface 152 

waters (rather than being partitioned to sewage sludge). This resulted in the list of substances 153 

tabulated in Table A1 of the Electronic Supplementary Information (ESI). For the purposes of 154 

estimating risks, the PNEC values derived in the UKWIR prioritization (UKWIR 2014) were then re-155 

examined and (where available) they were substituted with the latest estimates derived by the EU 156 

Joint Research Centre (JRC, 2015), by the pharmaceutical industry (Astra Zeneca, 2016; NSF, 2016) 157 

or published in the open literature (Murray-Smith et al., 2012). Where no PNEC was available from 158 

these sources, the ecotoxicology data applied in deriving the PNECs reported by UKWIR (UKWIR 159 

2014) were used to deterministically estimate PNECs, according to WFD guidance (EU 2011) (Table 160 

2 and ESI Table A1). It is recognized that as new ecotoxicity data becomes available, substance 161 

PNECs are subject to update, and the estimates of PNECs applied in the present study may not, in 162 

every case, reflect the most up to date applied or proposed PNEC for regulatory purposes (e.g. under 163 

the WFD or European Medicines Agency (EMA) Environmental Risk Assessments. However, the 164 

estimated PNECs reported here were applied in the CIP for the purposes of selection for monitoring, 165 

preliminary risk assessment and prioritization, and so remain relevant in this context, and it is beyond 166 

the objectives of the present study to derive new PNECs for each of the APIs monitored. 167 

 168 

2.2 Sampling programme  169 

 170 

WwTWs were selected for the CIP program on the basis of broadly representing the distribution of 171 

UK WwTWs (A1, ESI), predominantly activated sludge plants (ASP) and trickling biofilters (TF) but 172 

also Membrane bioreactors (MBR) and oxidation ditches (OD) (Table A2 of ESI). 173 



 174 

 175 

 176 

Data used for this research were (Table A2 of ESI): 177 

 CIP1 program: 25 WwTW data for primary, secondary and tertiary process for 11 APIs. 178 

Sampling for this element of the programme was conducted over a two-year period between 179 

2011 and 2013. In this part of the programme two samples (spaced more than 4h apart to 180 

provide a degree of replication) were taken on between 10 and 15 occasions.  181 

 CIP2 program: 19 APIs and 4 metabolites were sampled on 20 occasions at 45 WwTWs in 182 

the influent and effluent (not intermediate process stages, unlike CIP1) over a two-year period 183 

between 2015 and 2017.  184 

Samples were collected on a stratified/random spot sampling basis (i.e. grab samples taken at discrete 185 

times rather than multiple integrated sampling), with sampling occasion spaced at approximately 186 

monthly intervals. A minimum of 15% of samples was taken at non-working hours (evenings and 187 

weekends) to ensure a wide a range possible of sampling intervals. 188 

 189 

2.3 Sampling and analysis 190 

The samples were collected in stainless steel samplers, stored in glass container and transported at 4° 191 

C to the analysis laboratories. The samples were stored a maximum of 5 days prior to analysis. This 192 

period was shown to be appropriate as not leading to more than a 20% change in determinand 193 

concentration; as confirmed before the start of the CIP sampling programme by undertaking tests of 194 

sample stability. Samples for the determination of steroid oestrogens were preserved by adding 30% 195 

hydrochloric acid and copper nitrate (Gardner, 2012). All analysis was by laboratories with ISO17025 196 

accreditation. Prior to the programme candidate laboratories were required to undertake tests of 197 

analytical performance to demonstrate that they met the stated programme requirements for limit of 198 

detection, precision and recovery in relevant sample matrices at relevant concentrations – that is, 199 

proof of performance was required, rather that methods being stipulated. Methods used for the 200 

determination of pharmaceuticals were all based on variants of High Performance Liquid 201 

Chromatograph–Mass Spectrometry (HPLC-MS) or Gas Chromatography-Mass Spectrometry (GC-202 

MS). Quality assurance/quality control (QA/QC) procedures, including the use of field blanks, were 203 

observed and reported for sample collection. Within laboratory QC sample pre-treatment and analysis 204 

for both laboratory tests and field sampling. Laboratories also took part in a bespoke proficiency 205 

testing scheme for pharmaceuticals. Details of the proficiency testing scheme used to ensure quality 206 

assurance is provided in A2 of the ESI. Where reported concentrations were below LOD (for the 207 

majority of substances apart from ibuprofen and tamoxifen this applied to fewer than 10% of the 208 

approximately 1000 results reported), the result was substituted at half face value - as stipulated in the 209 



relevant daughter Directive (EC, 2009) of the WFD. There were significant instances of inter-210 

laboratory bias or inter-regional variation, which would otherwise indicate if there was a bias in the 211 

procedure of sample handling and analysis methodology.  212 

 213 

 214 

Table 2. Determinand abbreviations and required limits of detection and total error  215 

  Concentration (µg/l)  

Code Determinand 
PNEC

1
  Required LOD 

effluent  

Required 

LOD river 
P%

2
  

ATNL Atenolol 148 0.01 0.01 50 

ATOV Atorvastatin   1.7 0.01 0.01 50 

ATOVo Ortho-hydroxy-atorvastatin  1.7 0.01 0.01 50 

ATOVp Para-hydroxy-atorvastatin  1.7 0.01 0.01 50 

AZMY Azithromycin 0.09 0.005 0.005 50 

CBAZ carbamazepine  2.5 0.1 0.1 50 

CBAZe 10,11- epoxy-carbamazepine 2.5 0.1 0.1 50 

CIPR Ciprofloxacin 0.089 0.01 0.01 50 

CLMY Clarithromycin  0.13 0.01 0.01 50 

DCF Diclofenac 0.05 0.01 0.01 50 

ERMY Erythromycin 0.2 0.1 0.1 50 

ERMYn Norerythromycin 0.2 0.1 0.1 50 

E1 Oestrone 0.003 0.001 0.001 50 

E2 17β oestradiol 0.001 0.0003 0.0003 50 

EE2 17α ethinyloestradiol 0.0001 0.00003 0.00003 50 

FLXT Fluoxetine 0.047 0.01 0.01 50 

IBPF Ibuprofen 0.01 0.01 0.01 50 

METF Metformin 13.45 0.1 0.1 50 

PRPL Propranolol 0.1 0.01 0.01 50 

RNTD Ranitidine  0.31 0.1 0.1 50 

SERT Sertraline 0.121 0.01 0.01 50 

SERTn Norsertraline 0.121 0.01 0.01 50 

TMXF Tamoxifen 0.49 0.005 0.005 50 
1 
Estimated PNEC (ESI Table 1). 

2
The target maximum tolerable error is equal to:  216 

 [(𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑂𝐷)2 + (
𝐴×𝑃%

100
)
2

]

1

2
 217 

 218 
Where the target maximum LOD and P% are given in the table and A is the determinand concentration in the 219 
sample. Performance testing should seek to demonstrate that the tolerable total error limit is achieved by 220 
showing that precision (2 x standard deviation) and bias are respectively no larger than half the target maximum 221 
total error. Thus, for example, for a total error limit of 100 units, standard deviation should be shown not to be 222 
larger than 25 and bias should not exceed 50. LOD was defined as 3.3x the standard deviation of blank-223 
corrected results of determinations made on a sample containing essentially no determinand (where possible in a 224 
relevant sample matrix) (Thompson and Ellison, 2013) In many cases, it was not possible to find effluent 225 
samples free from determinands in which case a synthetic sample was used.)  226 
 227 

2.4 Data handling and analysis 228 

The data handling and the statistical analysis were conducted with either Microsoft Excel (2016) or 229 

IBM SPSS Statistics software (version 20).  230 



 231 

In the data handling, the replicates were averaged and this value was then used for further statistical 232 

calculations. Mean, median, maximum, minimum and percentiles were calculated from the daily 233 

average. Fraction remain was calculated from the influent concentration as a fraction of the various 234 

stages of the process. The removal was calculated as percentage from the concentration (C):  235 

 236 

Removal (%) = (Cinfluent-Ceffluent)/ Cinfluent  237 

 238 

For the purpose of this research the term ‘removal’ relates to the loss of specified compounds from 239 

the aqueous phase between influent and effluent (and intervening process steps where quoted). It 240 

should be noted that the term removal does not necessarily mean degradation of the API; the loss of 241 

the parent compound may be a result of a combination of partitioning to particulates and/or 242 

degradation to metabolites.  243 

 244 

2.5 Risk assessment approach 245 

2.5.1 Face value risk ranking 246 

A “face value” exceedance is one in which the mean effluent concentration is greater than the relevant 247 

estimated PNEC; a “high confidence” exceedance is one for which the lower part of the 90% 248 

confidence interval about the mean effluent concentration is greater than the estimated PNEC i.e. 249 

there is 95% confidence that the mean is larger than the estimated PNEC.  250 

 251 

2.5.2 Refined risk assessment based on estimated available dilution 252 

Previous research has used a combination of modelled average river flows (Comber et al., 2013) and 253 

average WwTW discharge volumes to estimate dilution of effluent with receiving water. Effluent 254 

flow data was derived from measured values for larger WwTW, but estimated for works serving less 255 

than 2000 population equivalent based on water company estimates of connected population and 256 

per capita wastewater discharge to sewer (200 l/head/day- including an allowance for runoff) 257 

(Comber et al., 2007). A matrix (Table 3) of available dilution was then generated. 258 

 259 

  260 



Table 3.      Estimated dilutions available for UK WwTW 261 

 262 

 

Dilution ratio band  Total 

no. 

works 

 

0-1 1-2 2-5 5-10 10-15 15-20 20-50 50-100 100+ 

Midpoint dilution 1 1.5 3.5 7.5 12.5 17.5 35 75 100  

Combined dist’ dil’
1 

 0
2
 4.4 10.6 23.6 36.5 35 70 150 200  

Population served   

<250 86 75 54 54 11 21 86 86 2656 3127 

251-500 0 6 0 6 25 0 50 81 605 774 

501-2000 0 5 20 20 51 46 351 285 544 1322 

2001-10000 17 25 151 160 130 84 202 93 130 993 

10001-50000 82 67 160 103 24 30 48 15 18 548 

50001-200000 54 29 27 12 5 12 20 5 0 164 

200001-1m 74 0 11 0 0 0 0 0 0 85 

>1m 4 4 0 0 0 0 0 0 0 7 

Total 316 211 423 355 246 194 756 564 3954 7020 

% 5 3 6 5 4 3 11 8 56 

   1 Values used to calculate PECs in river using a Combined Distribution simulation (see A3 and Table 263 
A3). 2 A worst case scenario of zero dilution. 264 
 265 

The next step was to generate a cumulative percentile distribution of effluent concentration data (in 266 

10%ile intervals between 10 and 100%). This was achieved by averaging the effluent concentrations 267 

for each of the 45 WwTW sampled as part of the CIP2 survey. Step three was to divide each 268 

percentile concentration by the dilution available (using the value from the combined distribution 269 

estimate – See A3 of the ESI) to generate a PEC. The PEC can then be compared with estimated API 270 

PNECs to determine the number of WwTW at risk of exceeding the PNEC for any given each dilution 271 

band and percentile effluent concentration. An example of the risk assessment is provided in Table 272 

A4 of the ESI.      273 

 274 

3. RESULTS and DISCUSSION 275 
 276 

3.1 Removal efficiency for APIs  277 
 278 
The CIP1 study generated removal data for APIs across all stages of treatment, influent, after primary 279 

settlement, secondary biological treatment and where applied, post tertiary treatment. To gain a better 280 

understand of the fate of the 11 pharmaceuticals through the treatment train, the fraction of API 281 

remaining in the effluent after treatment was calculated across all 25 WwTW in the CIP1 program 282 

(Table 4). 283 

 284 

Each cycle of sampling was treated as an isolated entity (averaging the samples within the same day), 285 

thus simplify the ability to compare APIs removal across the diverse range of works. As seen from the 286 



data in Table 4, most APIs are removed in the secondary biological treatment process and very little 287 

through further tertiary treatment. This corresponds well with previously published data (Stockholm 288 

Vatten, 2010). The absolute effluent concentrations (Table 4) also correspond well with those reported 289 

elsewhere for predominantly UK effluents (Table 1).  290 

 291 

Table 4.  CIP1 data for API fraction remaining throughout the process stages in the WwTW, as 292 
well as the absolute effluent concentration 293 

 294 
 Fraction of API remaining in effluent after treatment  

API Primary Process Secondary Process Tertiary Process Effluent Concentration 
(µg/l)  

 Median 5-
%ile 

95-
%ile 

Median 5-
%ile 

95-
%ile 

Median 5-
%ile 

95-
%ile 

Median 5-%ile 95-%ile 

Diclofenac (DCF) 0.76 0.40 1.6 0.52 0.18 1.2 0.44 0.16 1.0 0.20 0.084 0.51 

Erythromycin 
(ERMY) 

0.79 0.26 1.7 0.52 0.11 1.2 0.44 0.08 1.1 0.43 0.052 2.0 

Ethinylestradiol 
(EE2) 

0.96 0.36 2.4 0.54 0.13 1.9 0.49 0.10 3.5 0.0003 0.0001 0.0020 

Oestrone (E1) 1.0 0.59 2.1 0.28 0.02 2.4 0.10 0.01 1.2 0.0048 0.0007 0.058 

Oestradiol (E2) 0.97 0.44 1.6 0.11 0.01 0.8 0.05 0.01 0.80 0.0009 0.0001 0.012 

Fluoxetine (FLXT) 0.79 0.38 1.5 0.48 0.08 1.2 0.46 0.09 1.1 0.032 0.0050 0.066 

Ibuprofen (IBPF) 0.83 0.39 1.3 0.04 0.00 0.2 0.01 0.00 0.21 0.19 0.0050 2.9 

Ofloxacin (OFLX) 0.88 0.12 2.2 0.45 0.08 1.4 0.34 0.05 1.0 0.016 0.0050 0.14 

Oxytetracycline 
(OXTCY) 

0.66 0.13 1.6 0.16 0.00 0.6 0.13 0.01 0.54 0.21 0.019 1.1 

Propranolol 
(PRPL) 

0.91 0.52 1.4 0.68 0.14 1.2 0.65 0.16 1.2 0.14 0.042 0.32 

Salicylic acid 
(SLCYA) 

0.85 0.28 1.6 0.01 0.00 1.1 0.01 0.00 0.33 0.18 0.017 3.8 

 295 
 296 

ERMY, DCF, FLXT and OXTCY were all shown to have similar removal efficiencies throughout the 297 

primary and secondary treatment processes based on the CIP1 dataset. The primary process relies 298 

mostly on removal of APIs through adsorption onto sludge (Stockholm Vatten, 2010) as retention 299 

times are relatively low and so this fits well to the data found for OXTCY, as it is previously known 300 

to adsorb strongly onto solids (Verlicchi, 2012) and found at higher concentration (4 mg/kg) in sludge 301 

compared with other APIs such as DCF, ERMY and FLXT (0.07, 0.05 and 0.12 mg/kg, respectively) 302 

(Jones et al., 2014). PRPL had overall poor removal of 35% and 26% (0.65 and 0.74 fraction 303 

remaining) between influent and effluent for CIP1 and CIP2 respectively (Table 4 and 5), which also 304 

corresponded well with previously published data of 28% removal efficacy (0.72 fraction remaining) 305 

in WwTW (Kasprzyk-Hordern et al., 2008). 306 

 307 

In the CIP2 data set (Table 5) there was high total removal (based on comparison of influent and 308 

effluent API concentrations) of IBPF, METF, E2, ATNL, ATOVp, E1, ATOV, CIPR, ATOVo, which 309 

all had fraction remaining ratios of 0.2 or lower (i.e. better than 80% removal efficiency) (Figure 1, 310 



and Table A5). This suggested either rapid biodegradation of the parent compound and/or adsorption 311 

to sludge. None of the substances are considered sufficiently volatile to suggest any significant loss to 312 

the atmosphere. The intermediate set of APIs consisting of SERTn, RNTD, CLMY, EE2, FLXT, DCF 313 

and ERMY, which all had fraction remaining below 0.6 (i.e. greater than 40% removal efficiency). 314 

PRPL, CBAZe, ERMYn, AZMY and CBAZ all showed poor removal through the WwTW process 315 

(Figure 1 and Table A5).   316 

 317 

Figure 1.       Fractional removal for APIs in CIP2 318 

 319 
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Table 5. Summary concentration values for CIP2 APIs (45 WwTW sampled on 20  occasions) 321 
 322 

 Influents (µg/l)  Effluents (µg/l) 

Substance 

Median of 

WwTW 

average 

values  25%ile 75%ile  

Median of 

WwTW 

average 

values  25%ile 75%ile 

E1 0.038 0.030 0.049 

 

0.004 0.002 0.014 

E2 0.014 0.011 0.019 

 

0.001 0.0003 0.002 

EE2 0.00051 0.00041 0.00097 

 

0.00020 0.00014 0.00040 

DCF 0.54 0.40 0.76 

 

0.29 0.20 0.41 

IBPF 18.13 12.08 21.32 

 

0.11 0.02 0.56 

ATOV 0.61 0.41 1.01 

 

0.10 0.06 0.16 

ATOVo 1.33 0.81 1.76 

 

0.17 0.08 0.29 

ATOVp 1.33 0.82 2.03 

 

0.21 0.12 0.35 

PRPL 0.260 0.171 0.354 

 

0.174 0.119 0.245 

ATNL 2.600 1.872 3.297 

 

0.323 0.210 0.463 

ERMY 0.733 0.551 1.161 

 

0.350 0.190 0.558 

ERMYn 0.060 0.050 0.091 

 

0.050 0.027 0.050 

AZMY 0.351 0.171 0.748 

 

0.202 0.095 0.425 

CLMY 0.953 0.684 1.564 

 

0.400 0.265 0.711 

CIPR 0.861 0.385 1.510 

 

0.147 0.067 0.276 

METF 129 104 208 

 

4.8 1.7 15 

RNTD 2.35 1.68 3.06 

 

0.529 0.286 0.730 

CBAZ 0.60 0.43 0.84 

 

0.641 0.477 0.756 

CBAZe 0.18 0.11 0.42 

 

0.117 0.072 0.292 

SERT 0.18 0.12 0.27 

 

0.063 0.037 0.081 

SERTn 0.12 0.10 0.21 

 

0.033 0.016 0.045 

FLXT 0.10 0.07 0.15 

 

0.051 0.036 0.079 

TMXF 0.0034 0.0026 0.0047 

 

0.0025 0.0025 0.0028 

TXP 0.0050 0.0028 0.0052 

 

0.0050 0.0026 0.0050 

BZT 2.16 1.60 3.97 

 

1.38 1.08 2.62 

TZT 1.59 1.19 2.60 

 

1.27 0.88 1.96 

 323 

 324 
Figure 2 below represents mean concentrations in the influent and effluent for selected APIs with the 325 

others shown in Figure A2 and demonstrates the degree of variability for APIs between WwTW.     326 

 327 



 328 

 329 

 330 

 331 

Figure 2.  Graphic representation of mean concentrations of APIs in influent and effluent of 332 
individual CIP2 WwTWs 333 

 334 

In some cases there appears to be an increase in API concentrations in the effluent compared with the 335 

influent (Figure 2 and A2 of ESI). There are three main reasons for this:  336 

1) The hydraulic retention time (HRT) within a WwTW means that samples of influent and 337 

effluent collected at the same time (a practical requirement of the work) may not reflect actual 338 

removal efficiency owing to within works management practices, e.g. batch flow, sludge 339 



return pumping, taking place at the time of sampling. Given HRTs vary vastly between works 340 

and types of works it was not practical to calculate nor practically sample WwTW based on 341 

their HRTs.    342 

2) The APIs were detected at ng/l levels in a highly complex matrix (particularly the influent) 343 

therefore analytical errors may lead to apparent increase in concentrations during treatment 344 

(Jelic et al., 2011). 345 

3) In some cases this is a real effect, for example E1 is a degradation product of E2 (Heffley et 346 

al., 2014) and so if the rate of loss of E1 during treatment is less than that of E2, then an 347 

apparent increase in E1 will occur.  348 

 349 

3.2 What is the environmental risk of the APIs being discharged in WwTW effluent? 350 

The median and interquartile concentration values of pharmaceuticals in influents and effluents are 351 

summarised in Table 5. Figure 3 shows a summary risk ranking of the CIP pharmaceutical group of 352 

substances in relation to the estimated predicted no-effect concentrations applied in CIP (CIP 353 

PNECs). A “face value” exceedance is one in which the mean effluent concentration is greater than 354 

the relevant estimated PNEC; a “high confidence” exceedance is one for which the lower part of the 355 

90% confidence interval about the mean effluent concentration is greater than the estimated PNEC i.e. 356 

there is 95% confidence that the mean is larger than the estimated PNEC. Substances not shown do 357 

not figure as noteworthy exceedances.  358 

 359 



 360 

Figure 3.  Risk ranking of CIP2 APIs  361 

 362 

Figure 3 above illustrates the severity of potential non-compliances for pharmaceuticals as the ratio of 363 

the observed concentrations in effluents to the relevant estimated PNEC. This ratio represents the 364 

dilution that would be required to achieve compliance, assuming zero upstream concentrations. An 365 

important proportion of UK wastewater treatment discharges are not subject to very much greater than 366 

a twofold dilution so the potential for downstream non-compliance with PNEC values does exist on 367 

the basis of a single effluent discharge alone. Table 3 shows that over 500 WwTW has estimated 368 

dilutions of less than 2, 8% of all the WwTW in the UK. Added to this concern must be a 369 

consideration of the pharmaceutical concentrations already present in a receiving watercourse 370 

upstream of the discharge. Whilst the CIP2 programme did not include the determination of 371 

pharmaceuticals in upstream river samples such analysis was undertaken for a range of Priority 372 

Substances, including trace organic compounds that like pharmaceuticals, are primarily discharged as 373 

a result of domestic inputs to wastewater. The evidence obtained from these investigations is that the 374 

burden of upstream contamination is far from irrelevant and that discharges in the higher parts of a 375 

river catchment, for example from septic tanks and small WwTW, can raise concentrations to values 376 



that subsequent discharges lower in the catchment only serve to maintain (Phillips et al., 2015). This 377 

is an aspect that deserves careful future examination in the context of pharmaceuticals.  378 

 379 

Figure 4 shows that several pharmaceuticals have been shown to be present in effluents at 380 

concentrations close to, or in many cases in excess of, values that might form the basis of future 381 

regulatory limit values.  382 

 383 

 384 
 385 

 386 
Figure 4.   Required within river dilution of WwTW effluent for API concentrations to be 387 

                    less than  their estimated PNEC.  388 
                       Note median effluent concentration for ibruprofen (IBPF) as a ratio of estimated PNEC is 11.  389 

 390 

Applying a more realistic risk assessment using estimates of available dilution for UK WwTW 391 

effluents discharged to receiving waters, combined with the measured API concentrations from the 392 

CIP2 dataset generates a similar priority ranking list in terms of the number of WwTW potentially 393 

exceeding downstream estimated PNECs after the effluent has mixed with receiving water (Figure 5). 394 

For IBPF this equates to 890 WwTW or 13% of all WwTW in the UK. This estimate is also based on 395 

the assumption that there are no significant inputs of API upstream of the WwTW in question.  396 
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  398 

Figure 5.   Number of WwTW at risk of exceeding estimated PNEC downstream of receiving 399 
                  water  400 
 401 

DCF, AZMY, CLMY, EE2, PRPL, CIPR, RNTD and E1 are all predicted to exceed downstream 402 

PNECs in over 200 WwTW. Required mean removal efficiency for any tertiary treatment would 403 

range from 35% to 61% depending on the API (Table A6 of ESI). Whether the same tertiary treatment 404 

technology could be applied to all of the APIs largely depends on their physico-chemical 405 

characteristics. The use of granulated activated carbon (GAC) would require an API to have a 406 

reasonable affinity for carbon (i.e. a relatively high octanol:water coefficient - logKow) which may 407 

not always be the case for APIs with a high degree of polarity, particularly those that are charged at 408 

typical effluent pH (pH 7.5) which would include DCF, IBPF, ATOV and to a degree CIPR (pKa = 409 

6.09). Furthermore, as can be seen from Figures 1 and 2, there are considerable variations in the 410 

removal rates between WwTW and so it may be expected to observe a similarly wide variation in 411 

removal rates and/or final effluent API concentration, if additional tertiary treatment were to be 412 

applied. This would obviously lead to a degree of uncertainty regarding possible compliance with any 413 

given in river PNEC or water quality standard. 414 

 415 

Figures 1 and 2 show that WwTW in general, have a high (but variable) removal rate for most 416 

substances with only E2, EE2 propranolol, the macrolide antibiotics, carbamazepine fluoxetine and 417 

tamoxifen exhibiting poor removal. It is clear (and unsurprising) that more complex factors, such as 418 

the contaminant load on the WwTW, residence time in the works, overall strength of the influent, 419 

questions of operation and maintenance as well as the presence of absence of tertiary treatment “add-420 

ons”, combine at each location to result in the observed treatment performance (Zorita et al., 2009; 421 

Le-Minh et al., 2010; Deegan et al., 2011). In the wider context, the persistence of pharmaceuticals in 422 

surface waters will be determined by the degree of upstream contamination from other (in this case, 423 



presumably WwTW) inputs higher in the river catchment. As has been seen in elements of the CIP2 424 

programme dealing with Priority Substances, upstream contamination and lack of headroom for 425 

downstream discharges can often be more important than the local impact of a given WwTW. The 426 

likely importance of upstream inputs for pharmaceuticals is unclear. Whilst upstream inputs are 427 

inevitable in all sites except those at the top of catchments (where there may still be influences from 428 

septic tanks) the effect of such inputs is not known, but if smaller WwTW are less efficient than the 429 

predominantly larger works selected for the CIP programmes, then the risk to surface waters of 430 

exceeding estimated PNECs for APIs may be significant. Persistence and the degree and rate of 431 

breakdown in the environment are critical in this context. To fulfil their purpose pharmaceuticals need 432 

to be absorbed by the patient, to remain for sufficient time to have the desired effect and then be 433 

excreted. This means that in terms of their structure and hence fate and behaviour, pharmaceuticals 434 

tend to occupy a middle ground between substances on the one hand that are non-polar, hydrophobic, 435 

insoluble, and persistent and those that are highly polar, soluble, mobile and relatively readily 436 

biodegradable. This suggests that some degree of degradation in-river might mean that input of 437 

pharmaceuticals upstream may not be as great a risk as it is for other persistent, highly mobile priority 438 

substances such as some metals, persistent pesticides and industrial compounds.  439 

 440 

It should, however, be noted that this assessment is based on the mixing of single APIs in effluent and 441 

receiving water under average flow conditions for a fraction of the APIs currently available and used. 442 

During summer months river flows are significantly lower than average values, yet effluent flows will 443 

remain relatively stable (accepting rain events contributing to flow in combined sewerage systems) 444 

leading to generally lower dilution available and therefore higher concentrations of effluent derived 445 

contaminants in receiving waters. Seasonal pattern of use for some APIs, antihistamines in summer, 446 

flu vaccines in winter etc, would also lead to a variable distribution of APIs in WwTW effluent and 447 

hence variable risk to receiving waters. The potential risk of mixtures is complex and requires detailed 448 

knowledge of ecotoxicology for the APIs of interest. Such assessments along with determining 449 

temporal variations in risk, require more a significantly detailed dataset (not necessarily currently 450 

available) and as such is beyond the scope of this broader risk assessment.     451 

 452 

Whilst the objective of this research has not been to estimate costs for compliance, drawing on 453 

previous estimates of costs for API treatment based on fitting sand filters and granulated carbon 454 

sorption technology, the whole life cost (based on 2007 data) for achieving downstream compliance 455 

with the estimated IBPF PNEC would approximately £9bn (Comber et al., 2007). So for illustrative 456 

purposes it is evident that achieving compliance for all API estimated PNECs would be a substantial 457 

investment by the water industry. These estimates are only based on mixing downstream of receiving 458 

water and effluent and do not take account of any biodegradation or sorption to particulates leading to 459 



reduced exposure which would need to be considered as part of a more detailed risk assessment prior 460 

to considering any remedial action regarding removal of APIs from WwTW effluent.   461 

 462 

Much in relation to future compliance (and therefore cost to the water companies) will depend on the 463 

derivation method and data used to set water quality standards. The outputs of the CIPs in this case 464 

constitute a valuable risk assessment of the likely impact of whatever regulations might be introduced 465 

in the future. Of the pharmaceuticals / likely future Priority Substances, the so-called WFD watch list 466 

substance diclofenac, the steroids as well as possibly ibuprofen appear to be at risk of causing 467 

widespread exceedances of estimated PNECs in UK rivers. With respect to these substances, options 468 

of regulated use and control of patient behaviour relating to disposal of unused medicines might be 469 

enough to make a substantial difference. However, wastewater treatment solutions might turn out to 470 

be essential for the steroids, at least in the case of EE2.  471 

 472 

4. CONCLUSIONS  473 

As has been observed for the CIP1 program there are a high variability in the removal of APIs 474 

observed between and within the individual plants. This variation may be due to many factors such as 475 

process technology as well as regional variation. Rates of removal in wastewater treatment have also 476 

been determined. The majority of substances studied are removed to a high degree, but with a wide 477 

variation in performance. Those that are less substantially reduced in concentration are 478 

ethinyloestradiol, diclofenac, propranolol, the macrolide antibiotics, fluoxetine, tamoxifen and 479 

carbamazepine. All except the last two of these substances are present in effluents at concentration 480 

higher than their estimated respective PNECs.  481 

 482 

If the PNECs applied in the present study were all implemented as regulatory quality standards under 483 

the WFD, the risk assessment undertaken suggests that over a 10 times dilution would be required, to 484 

ensure that some APIs (ibuprofen in this case) meet their downstream quality standards, assuming no 485 

upstream contribution to background concentrations. This could entail treatment at up to 890 WwTW 486 

to meet current PNECs.   487 

 488 

Much in relation to the need for future action by dischargers depends on whether or not these 489 

substances are regulated and the water quality standard chosen, but if the CIP estimated PNECs are a 490 

guide to regulatory limits, then there is potential for localised non-compliance in surface waters; at 491 

least in the case of ethinyloestradiol, diclofenac, ibuprofen, propranolol and the macrolide antibiotics. 492 

Further monitoring of pharmaceuticals in surface waters to determine the temporal variations in river 493 

concentrations associated with changing river flows (and hence dilution), the persistence, and the 494 

bioavailability of APIs needs to be considered. 495 
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