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Abstract. A botnet is a program designed to perform a specific task
using multiple computers connected in a network. In this paper we will
focus on botnets being used to distribute malicious programs. In the real
world, botnets have been shown to exhibit more aggressive and sophi-
sticated behaviour than traditional malware. Botnets are used to infect
computer networks and hence their success depends on the properties of
the networks. We observe the behaviour of mathematical models used
to describe botnets when botnet parameters are varied to understand
if such variation is beneficial to their spread. We also introduce novel
models for depicting botnet behaviour using master equations. These
models, unlike previous ones, address nodes of distinct categories in a
network as a sequence of probability distributions rather than a value
at each time interval. We also contribute visualisations for these models.
This paper is a substantial expansion of unpublished work the first aut-
hor performed while on a Nuffield student research placement, with the
second author the project supervisor.

Keywords: Botnet, differential equation, master equation, visualisa-
tion, complex systems security, security in P2P (peer to peer) systems.

1 Introduction

Despite the primary use of a botnet being a means of distributing malicious
software, they were initially created to distribute computationally intensive tasks
among a variety of devices, as in parallel processing. However, due to their ability
to control large amounts of computer resources they have since become desirable
in the distribution of malicious software. This makes botnets good for deploying
software requiring large amounts of resources to be effective; an example of this
is Distributed Denial of Service (DDoS).

As a result of the diverse capabilities of botnets and subtle, but aggressive,
virus distribution they pose a large threat to modern cybersecurity. An example
of such a case is the TDL-4 botnet [9]. As a rootkit, this modifies the master boot
record of each infected node so that it is always loaded at startup. Such behaviour
makes the botnet more difficult to eradicate than previous TDL generations.
Another example is the Carna botnet [2]. Although Carna was used to collect
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data and not intended for malicious activities it became widespread. Comprised
of around 420,000 nodes, it collected worldwide data regarding the geographical
distribution of the usage of (it was claimed, all) IPv4 addresses.

Thus, as expressed in [1], modelling botnet behaviour and spread is crucial to
preserve security. One method of modelling such spread as a threat is by using
epidemiological models [1]. However, such models are often only comprised of
the susceptible, infected, and recovered states (SIR models), due to the nature
of diseases they are used to model. In contrast, botnets have a distinct lifecycle,
which is described in [1] as follows: the payload (also know as the worm) is
constructed by the botmaster and distributed across a network which proceeds
to infect the maximum number of nodes possible. Each infected node receives
commands from the command and control server of the payload and thus may
begin or stop performing malicious tasks assigned by the botmaster at any time.
After the malicious activities of a node are discovered by its true user, these
activities may be terminated and the node has “recovered”. However, depending
on the botnet, nodes may be re-infected after recovery. Botnet size is often
measured by the number of constituent nodes, from thousands to millions [7, 8].

In terms of effectiveness and efficiency, several authors have proposed botnet
modelling techniques. The work of [10] uses the CodeRed1v2 worm as a case
study to model stochastic botnet behaviour. The work of [4] considers time
zones in global botnet behaviour, and [12] considers interaction and co-operation
between two botnets (and thus, many). Finally [11] considers statistical spread
models of network subgraphs showing, by a search for subgraph isomorphisms
in networks undergoing simulated network attacks, whether such subgraphs are
likely caused by an initial botnet outbreak. Our work shall not consider these
factors, as we wish our approach to be straightforward, focusing on interactions
of nodes in distinct states within networks. The objective of this work is to
firstly observe the behaviour of existing botnet models and then combine them
with alternative epidemiological models. From this we derive more accurate and
interesting probabilistic models describing botnet behaviour. Throughout, we
detail model simulations and visualisations of botnet model results.

1.1 Modelling Contributions of this Paper

3D and 6D probabilistic models: Section 3 introduces a 3D probabilistic
model based on the system of ODEs of [1]. Section 4 extends this, adding addi-
tional node states. This probabilistic approach is practical as it only considers
integer numbers of items in each model state (often difficult with a - continuous
- ODE approach). The approach also provides more information than models
which produce fixed values for the number of nodes in each state on each itera-
tion. This approach may also identify realistic worst and best case scenarios for
any particular population/setting rather than just an expected value.

Extension to 7D model and applications to GSM networks: In this
paper Section 5 extends the work of Section 4 to a 7D botnet model in order to
allow multiple worms to be distributed simultaneously by a botnet. It then goes
on to show how our work, despite some limiting assumptions inherent in any
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model, may be applied to botnets propagating through GSM (Global System for
Mobile Communications) networks based on the work from [6]. This approach
of allowing a botnet to be able to distribute multiple worms in a population
is advantageous as it has the models derived in Sections 3–4 as a special case.
Therefore this model simulates a more diverse range of scenarios than those
models.

2 Using Sets of First Order ODEs

To begin, we review the ODE model proposed in [1], including suggested exten-
sions/modifications, as a modified epidemiological model applied to botnets.

2.1 Model Setup

The botnet model proposed by [1] was based upon sets of ODEs developed for
epidemiology, and comprises of the following classifications for each node:

S: Nodes vulnerable to infection by the worm being transferred by the botnet;
Sd: Nodes susceptible to the worm, but which are disconnected from the network;
I: Nodes infected by the worm and are able to infect other nodes, but show no

signs of infection;
Id: Infected nodes which are disconnected from the network;
V : Infected nodes which are executing the malicious task provided by the worm;
Vd: Infected nodes which previously executed malicious tasks but are discon-

nected from the network;
R: Previously infected nodes that have now permanently recovered.

The model assumes eleven connections between the possible nodes states.
These are: a susceptible node becoming infected, disconnecting from the network
and possibly reconnecting; similarly, a dormant infected node becomes active,
disconnects or reconnects; an active infected node becomes dormant, temporarily
or permanently recovers, or disconnects; a disconnected active infected node
becomes dormant. As expressed in [1], this extended model is suited to botnets
that transmit worms which mutate upon transmission or that contain multiple
worms. This is highlighted by the transition from state V to S. This model
proposed in [1] has the following parameters:

N , µ: Total population size, switching rate between hidden and active
b: Worm transmission rate

g, ρ: Permanent, temporary recovery rate
p: Apportioning coefficient of infected (dormant) nodes
σ: Switching rate between online and offline states
q: Apportioning coefficient of nodes connected to the network

The work of [1] provided a flow diagram, describing the transitions between
each node in the configuration described above. We omit this in the present
work; however, we may describe this model as a system of ODEs:
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dS

dt
=
−b(I(t) + V (t))

N
S(t) + ρV (t) +

σ

1− q
Sd(t)−

σ

q
S(t) ;

dR

dt
= gV (t)

dI

dt
=
b(I(t) + V (t))

N
S(t) +

µ

p
V (t)− µ

1− p
I(t) +

σ

1− q
Id(t)−

σ

q
I(t) (1)

dSd
dt

=
σ

q
S(t)− σ

1− q
Sd(t) ;

dId
dt

=
σ

q
I(t)− σ

1− q
Id(t) +

σ

1− q
Vd(t)

dV

dt
=

µ

1− p
I(t)−

(
µ

p
+ g + ρ+

σ

q

)
V (t) ;

dVd
dt

=
σ

q
V (t)− σ

1− q
Vd(t)

Although the input parameters are given above, we must consider the initial
numbers of nodes in all classes. The work of [1] showed that I(0) > 0 (i.e., there
are nodes able to infect the network). Further, from parameter experimentation,
it is crucial that S(0) ≥ 0.9N in order for the botnet to be able to grow to a
sufficiently large size. Also, [1] showed the need for V (0) = R(0) = 0, to allow
us to view the entire life cycle of the botnet from its initial network penetration.
This model assumes that all nodes in the population are online and connected
to the network being infected at the start of the simulation, allowing the botnet
to initially enter the population and ensuring it does not necessarily die out
immediately. Hence the starting values Sd(0) = 0, Id(0) = 0, Vd(0) = 0 have also
been used in our model simulations. The simulation was coded in Python, with
the GNUPlot package used to visualise the results in the next subsection.

2.2 Visualisation

In Figures 1–2 the green line represents the proportion of class S nodes, orange
class Sd, dark blue class I, yellow class Id, light blue class V , brown class Vd
and red class R. A simulation output is shown in Figure 1. In this, the model
used example parameters: transmission rate b = 0.5, recovery rate g = 0.25,
hidden-active switching rate µ = 0.1, apportioning coefficient p = 0.1, temporary
recovery rate ρ = 0.01, proportion of online nodes q = 0.9, and online-offline
switching rate σ = 0.09.

Fig. 1. Simulation results of the current model for 2000 iterations where N = 100.

Figure 1 shows a distinct peak where around 64% of the population are
dormant infected nodes (class I). These nodes then tend to recover at a shallower
rate than their infection. This is a combined result of the low values of parameters
µ, ρ and g compared to b and the assumption that nodes can only recover once
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they have moved into class V . In addition, a single region of growth, followed by
decay, for class I nodes is shown. This non-repetitive behaviour is caused by the
small values of parameters ρ and σ compared to g, which causes most nodes to
move from class V to class R, rather than iterating through any previous states.

To observe scenarios that the current model depicts we begin by varying
some of the more influential parameters of this simulation. However, as stated
in [1], it is clear that model behaviour is independent of population size, and so
the most interesting variables concern the transition speeds (b, g, ρ, p and q)
between each class. The functions used in our simulations will be examples only.
At this stage, we focus on the parameters concerning the initial infection and
recovery of nodes in the model. Thus we assume the botnet has a constant level
of aggression (p is constant) and the variables b, g, ρ, q are functions of time, t.

First, we vary the parameter b using fractal Brownian motion (fBm) initia-
lised with value noise with time as seed. This definition is more suitable than
a simple constant as the propagation of botnets across a network depends on a
number of clearly variable factors (e.g., network traffic). We initialise the fBm
with value noise as opposed to (the more common) Perlin noise as we require
a 1D noise function (b(t) has one parameter). Also, to produce results more
applicable to real-life botnets we, as suggested in [1], consider user response to
the presence of a botnet. We model this by having a different proportion, qv, of
online class V nodes and assume the infection of a node is only detected when
the node is active. As the number of class V nodes increases so do the number of
users being informed, spreading the word and informing a given (for simplicity,
fixed) number of other infected users how to recover nodes.

These people then recover nodes and exhibit the same behaviour as their
predecessors. This shows, as in standard population growth models, exponential
growth in the number of people recovering nodes. Assuming each user corre-
sponds to a single node and that the first user attempt to recover nodes is by
removal from the network, the proportion of infected (active) nodes that are not
online is exponential in Vn (the normalised number of class V nodes) and the
proportion of online node users, qv, decays exponentially. We use the function

qv(t) = exp (−100V (t)/N) (2)

to simulate this relationship. Figure 2a illustrates a simulation using (2). We
extend this approach by assuming that progressively fewer users are able to
temporarily and permanently repair (recover) nodes respectively. For this we
use exponential functions to describe both relationships, meaning they exhibit
similar behaviour to qv. However, in order to represent the difference in difficulty
of temporarily and permanently recovering a node we give each function distinct
coefficients. We formalise this by the (example) equations

ρ(t) = exp (V (t)/N − 1) and g(t) = 0.5 exp (V (t)/N − 1), (3)

and implement equations (2)–(3) in Figure 2b. Both results indicate a decrease
in the peak number of infected nodes. Observe that Figure 2a also contains fewer
class S nodes (in green) when in stable equilibrium than Figure 2b. This means
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the ability to recover an infected node, even temporarily, is more advantageous
in reducing overall infection of the network than just disconnecting the node.

(a) (b)

Fig. 2. The result of 2000 model iterations with b being fBm using value noise. On the
left equation (2) is used, and on the right equations (2)–(3) are used.

Of course, this model may be considered constrained by its fixed population
size as it assumes no node is destroyed and that the botnet does not expand
to other networks or populations. The model is also restricted by its lack of
consideration of individual nodes; treating the total population as a single entity
and consequently allowing for non-integer numbers of nodes in all classes.

3 A 3D Botnet Model

We now apply a simplified version of the Section 2 model to multidimensional
probabilistic modelling.

3.1 Multidimensional Modelling

So far we have used ODEs from a single type of biological model. However, pro-
ducing a more realistic and accurate botnet behaviour model requires alternative
approaches. One such approach, [5], constructs a multidimensional probability
distribution of all possible combinations of node states a population may contain
at any time. However, the model of [5], in the form of a master equation, was
designed to consider epidemics conforming to a standard SIR progression, mea-
ning each node is in one of those three states. Hence this model is not directly
applicable to botnets due to its limited number of states. However, by extending
the number of model states, and so the number of dimensions in the probability
distribution, we produce a distinct type of botnet model to that of Section 2.

3.2 Model Explanation

This model is expressed and then simulated using a master equation. Under
master equation notation, the number of equations to be evaluated is a function
of population size, N . That is, a master equation acts as a generalised equa-
tion for each combination of S, I and V values that may exist within a given
population. In order to produce a suitable master equation, we must consider
a reduced set of possible transitions that occur between node states defined in
the model of Section 2. We also allow for a variable-sized population. To do
so, we use the following assumptions analogous to [5]: each time a new node
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is added to the population it is susceptible to the botnet, and each node may
die or be removed from the population regardless of type. Using these additio-
nal transitions, shown in the flow diagram (Figure 3), the following events may
occur within the model. A node may be added to the population, a susceptible
node becomes infected (dormant), an infected (dormant) node becomes active,
an infected (active) node becomes dormant, an infected (active) node recovers
from the infection; or finally, a node in either the S, I or V category dies.

Fig. 3. Flow diagram showing the inter-class transfer rates for the current model.

Expressing transitions as equations requires two new parameters from [5].
The first is the rate, B, at which new population nodes are added, and the
second is the rate, D, at which nodes die or are removed. Each such transition
changes the probability that each S, I, V combination occurs in the population,
and so the master equation includes terms describing each event. In reality if any
such transition occurs to a node combination then a new node combination is
produced, represented in our model by reduction of the likelihood of the original
combination occurring and increase of the likelihood of the resulting combination
occurring. Thus each S, I, V combination (Table 1) has pairs of terms, one
representing the source decreasing the probability and the other its source of
increase. Each term has a coefficient of the likelihood of its parent S, I, V
combination occurring. Thus, when the likelihoods of new S, I, V combinations
are calculated, the probability of each parent combination is considered (each
iteration of the model depends upon the last). Each parent combination that
results in a new combination, along with the causal event, are listed below.

A node is added to the population S-1, I, V
A susceptible node becomes infected (dormant) S+1, I-1, V

An infected (dormant) node becomes active S, I+1, V-1
An infected (active) node becomes dormant S, I-1, V+1

An infected (active) node recovers from the infection S, I, V+1
A susceptible node is removed from the population S+1, I, V

An infected (dormant) node is removed from the population S, I+1, V
An infected (active) node is removed from the population S, I, V+1

Table 1. Relative S, I and V combination of each event corresponding to a source of
increase in probability for each unique combination of node types in a population.
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The node combinations in Table 1 represent the original combination of nodes
that each transition occurs to in order to produce the node combination: S, I, V .
For example, if a node was added to the population, then the number of nodes
would increase by 1. In addition, every time a new node is added it is added
to the susceptible category. Thus the number of nodes in class S will increase
by 1 and the other classes would remain unaffected. In order to produce the
final combination of S, I, V we subtract 1 from the S term. This is so that we
compensate for the addition of 1 to S caused by this transition, hence producing
the original combination S−1, I, V . Using the flow rates from Section 2 and the
new parameters from Section 3 we produce a master equation to describe the
transitions (the inputs and outputs for each S, I, V combination) shown below.

dPS,I,V
dt

= −
(
bS(I + V )

N
+

µ

1− p
I +

µ

p
V + gV +BN +DS +DI +DV

)
PS,I,V

+
b(S + 1)(I − 1 + V )

N
PS+1,I−1,V +

µ

1− p
(I + 1)PS,I+1,V−1 (4)

+
µ

p
(V + 1)PS,I−1,V+1 + g(V + 1)PS,I,V+1 +B(N − 1)PS−1,I,V

+D(S + 1)PS+1,I,V +D(I + 1)PS,I+1,V +D(V + 1)PS,I,V+1

When simulating the current model we set P45,5,0 to one and the probability
of all other S, I, and V combinations to zero. This was so that the number
of infected nodes in the population is sufficiently large that the botnet is able
to grow to a reasonable size and that the constraints explained in Section 2
are satisfied. In addition, as the current model allows for dynamically sized
populations, the additional constraints: S + I + V ≤ N and S, I, V ≥ 0 will
be applied to all corresponding simulations. This is so that the population size
in the simulation is bounded above and below, making it easier to simulate.
Therefore the parameter N will now denote the maximum population size in all
further simulations. A simulation output of the current model is shown in Figures
4a–4c, with transmission rate b = 0.5, recovery rate g = 0.1, hidden-active
switching rate µ = 0.1, apportioning coefficient p = 0.5, population increase rate
B = 0.0005 and population decrease rate D = 0.0005.

3.3 Visualisation

The current model produces a 3D probability distribution, and would require
a 3D output device in order to display all data produced in its raw form. We
thus reduce the 3D distribution by effectively removing V combinations from the
data. This is done by summing the probabilities assigned to positions with the
same S and I combination but different V combinations. We repeat this process
with the remaining combinations of node classes to produce three separate 2D
probability distributions (effectively projections). Results are shown for suscep-
tible and dormant infected nodes (Figure 4a), susceptible and active infected
nodes (Figure 4b), and dormant infected and active infected nodes (Figure 4c).

Although the distributions of Figures 4a–4c contain a significant number
of entries with negligible probability it does not contain any zero elements. In
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(a) (b)

(c)

Fig. 4. The resulting distributions of the current model on iteration 2670 where N = 50
for each S and I combination (top left), each S and V combination (top right), and
each I and V combination (bottom). The heat map corresponds to the probability of
a given combination occurring in the population.

addition, each of the node types in this distribution has a distinct concentration.
Specifically, in Figures 4a and 4b the susceptible nodes have a standard deviation
of approximately 5.21. In Figures 4a and 4c the infected (dormant) nodes have
a standard deviation of around 4.61. Also, the infected (active) nodes in Figures
4b and 4c have a standard deviation of around 2.71. The higher variation of
nodes in class S, in comparison to classes I and V , is likely to be a result of
the initial conditions and population increase rate used in the simulation. This
model shows a very different approach to botnet modelling than the previous
model, as it is probabilistic. Consequently, modelling real life botnets with this
model may require more discipline. In addition, the current model is somewhat
restricted by its simplicity and may be extended to include more node states.

4 A 6D Model
We now extend the model from Section 3 to allow nodes to temporarily connect
and disconnect from the network/population being targeted by the botnet.

4.1 Model Explanation

The new model implements the more diverse behaviour exhibited by the model
from Section 2 by making use of additional classifications of nodes. However,
in order to do so we must change the number of dimensions of the probability
distribution that we produce (since each node type is represented across an axis
perpendicular to all others). As a result we produce a 6D master equation as
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there are six different node states being modelled. Making identical assumptions
about the behaviour of offline states to the model of Section 2, we describe how
the states in the current model transition to and from one another (Figure 5).
Just as when deriving the model of Section 3 we need to consider all possible
events or transitions that may occur within the model and their corresponding
relative S, Sd, I, Id, V and Vd combinations (Table 2).

Fig. 5. Flow diagram describing transitions between node states for the current model.

Using the flow rates for each of the events (defined in Sections 2–3) we for-
malise the model as a 6D master equation (5), describing the inputs and outputs
for each state combination. In this equation we use the notation PS+1,Sd−1,∗, for
example, to mean that the states S and Sd have changed and all other states
stay the same, and P∗ = PS,Sd,I,Id,V,Vd

.

dP∗
dt

= −

 σ
1−qSd + σ

q S + bS(I+V )
N + σ

1−q Id + σ
q I

+ µ
1−pI + µ

pV + ρV + σ
q V + σ

1−qVd + gV

+DS +DSd +DI +DId +DV +DVd +BN

P∗
+

σ

1− q
(Sd + 1)PS−1,Sd+1,∗ +

σ

q
(S + 1)PS+1,Sd−1,∗ (5)

+
b(S + 1)(I − 1 + V )

N
PS+1,I−1,∗ +

σ

1− q
(Id + 1)PI−1,Id+1,∗

+
σ

q
(I + 1)PI+1,Id−1,∗ +

µ

1− p
(I + 1)PI+1,V−1,∗ +

µ

p
(V + 1)PI−1,V+1,∗

+ρ(V + 1)PS−1,V+1,∗ +
σ

q
(V + 1)PV+1,Vd−1,∗ +

σ(Vd + 1)

1− q
PId−1,Vd+1,∗

+g(V + 1)PV+1,∗ +D(S + 1)PS+1,∗ +D(Sd + 1)PSd+1,∗

+D(I + 1)PI+1,∗ +D(Id + 1)PId+1,∗ +D(V + 1)PV+1,∗

+D(Vd + 1)PVd+1,∗ +B(N − 1)PS−1,∗

Using previous constraints gives P9,0,1,0,0,0=1 and a zero probability of all
other combinations initally. As in Section 3 we apply S+Sd+I+Id+V +Vd ≤ N
and S, Sd, I, Id, V , Vd ≥ 0 to bound the numbers of nodes in each class. A
simulation output is shown in Figure 6a, with rates b = 0.5, g = 0.1, µ =
0.1, B = 0.0005, D = 0.0005, ρ = 0.01 and σ = 0.09 (c.f. Section 2.1). The
apportioning coefficient was p = 0.5 and proportion of online nodes was q = 0.9.
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Node added to population S − 1, Sd, I, Id, V , Vd

Susceptible node switches to being in an offline state S + 1, Sd − 1, I, Id, V , Vd

Offline susceptible node switches to online S − 1, Sd + 1, I, Id, V , Vd

Susceptible node becomes infected (dormant) S + 1, Sd, I − 1, Id, V , Vd

Offline infected (dormant) node switches to being online S, Sd, I − 1, Id + 1, V , Vd

Online infected (dormant) node switches to being offline S, Sd, I + 1, Id − 1, V , Vd

Infected (dormant) node becomes active S, Sd, I + 1, Id, V − 1, Vd

Infected (active) node becomes dormant S, Sd, I − 1, Id, V + 1, Vd

Infected (active) node temp. recovers from botnet payload S − 1, Sd, I, Id, V + 1, Vd

Infected (active) node switches to being offline S, Sd, I, Id, V + 1, Vd − 1
Offline inf. (active) node becomes offline inf. (dormant) S, Sd, I, Id − 1, V , Vd + 1

Infected (active) node permanently recovers from infection S, Sd, I, Id, V+1, Vd

Susceptible node is removed from the population S + 1, Sd, I, Id, V , Vd

Offline susceptible node removed from population S, Sd + 1, I, Id, V , Vd

Infected (dormant) node removed from population S, Sd, I + 1, Id, V , Vd

Offline infected (dormant) node removed from population S, Sd, I, Id + 1, V , Vd

Infected (active) node removed from population S, Sd, I, Id, V + 1, Vd

Offline infected (active) node removed from population S, Sd, I, Id, V , Vd + 1
Table 2. Relative S, Sd, I, Id, V and Vd combinations for each event corresponding to
a source of increase in probability of each unique combination of nodes in a population.

4.2 Visualisation

To visualise model simulations we found it best to view them as a combination
of two-dimensional distributions, as in Section 3. However, this gives

(
6
2

)
= 15

distinct 2D distributions. So we decided to only view the distributions containing
an online and offline state pair, producing only three images, but at the same
time allowing us to view each node state. Figures 6a–6c show these visualisations.

(a) (b)

(c)

Fig. 6. The probability distribution on iteration 2670 of the current model (N = 10)
of each S and Sd combination (top left), each I and Id combination (top right), and
each V and Vd combination (bottom).
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Here the number of class I nodes has a larger standard deviation (1.71) than
the number of class V nodes (1.47). But, unlike the results of Section 3, the
number of class S and Sd nodes have much smaller standard deviations than
any other classes (1.13 and 0.22 respectively). The extended number of node
states makes this model more general than that of Section 3. The current model
also uses a discrete approach so that only integer numbers of nodes can exist in
certain states (as per Section 3). The combination of these two characteristics is
absent in the other models derived in this paper, meaning the current model may
more realistically model botnet behaviour. However, the data produced may be
more difficult to visualise and interpret than previous model data.

5 Extensions

Although the work of Sections 3 and 4 introduced new models, they only focussed
on the behaviour of a botnet transferring a single worm propagating through
a network. This section extends the model of the last section so that it will be
capable of modelling botnets that transmit multiple worms through a population.

In order to model multiple worms in a network there are several assumptions
that have been made on how the botnet assigns worms to infected nodes. So far
we have considered each node in the population to be only distinguishable by
their state within each model; hence, each I state node is indistinguishable to the
Botmaster. In this extension we assume that all infected nodes will be assigned a
worm independently of one another. In addition, this extension also preserves the
previous assumption that only class I nodes may be told to execute malicious
activities by the C & C server. So, in this model each infected (active) state
will be unable to directly transition to one another. As a result of the above
assumptions, this model will not contain state V as used in previous models.
Instead we use V1, V2, . . ., Vn to denote all the possible infected node states
considered in this extended model. As a result the parameters p, ρ and g are no
longer used and instead each Vi state has its own associated pi, ρi and gi values.
Using the new states and parameters, we may construct Figure 7 (and so a 7D
master equation, omitted) for the special case n = 2 of this extended model.

This model demonstrates one of the many ways in which the models from
Sections 3–4 may be generalised to produce more diverse botnet models. Howe-
ver, the models introduced in this paper are only suitable for modelling perfect
populations in which network parameters remain constant. In the next sub-
section we detail an implementation of the above extended model to depict a
botnet propagating across a GSM network.

5.1 Simulation setup

We now use this model to simulate a botnet that operates on mobile phones.
In particular this botnet will use multiple worms, will be transferred over WiFi
and has the objective of disruption of the GSM network to which the infected
phones are connected. The botnet uses the strategy described in [6], which is
to send excessive numbers of requests to the home location register (HLR) in
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Fig. 7. Flow diagram describing transitions between node states for the current exten-
ded model in the special case when n = 2.

the network. The HLR within a GSM network is a database of the details of
everyone authorised to use the network. All requests within the network need to
interact with the HLR in order to be processed, making it a clear attack target.

Here, the V1 state represents a worm that excessively issues insert call

forwarding requests to the HLR. This was chosen as, according to [6], this is
the most effective request for attacking an HLR. However [6] also shows this
request has a low occurrence in a typical GSM network, making any infected
devices easily identifiable. To complement this, the V2 state represents a worm
that excessively issues update location requests to the HLR. The results of [6]
indicate this request is less strenuous on the HLR. However, [6] also indicates
that in a typical GSM network the number of insert call forwarding re-
quests issued is approximately one seventh of the number of update location

requests. So, we reasonably assume that seven times more malicious devices
issuing insert call forwarding requests are identified and recovered (tem-
porarily or permanently), as they are more conspicuous, than devices issuing
update location requests (ρ1 = 7ρ2 and g1 = 7g2). We also assume it is easier
to temporarily recover an infected device than to recover it permanently (giving
constraints ρ1 > g1 and ρ2 > g2). As a result, the values ρ1 = 0.7, ρ2 = 0.1,
g1 = 0.35 and g2 = 0.05 were used.

The objective of this botnet is to exceed maximum total HLR throughput on
the targeted network. Here this is equivalent to maximising the number of nodes
in classes V1 and V2. However, the commands being issued and hence the strain
put on the HLR by nodes in classes V1 and V2 are different. Interpreting Figure
5 in [6], nodes in class V1 are approximately 1.5 times more strenuous on the
HLR than nodes in class V2. Therefore the objective of the botnet is to maximise
1.5V1+V2 on each iteration of the simulation. Hence a suitable objective function
of this botnet is Vobj = 1.5V1 + V2. This function will be used to produced a
probability distribution from the results of the current model in the visualisation
subsection. By Figure 5 of [6], it is also reasonable to assume that in this case
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p1 = 1.5p2. In this example we have p1 = 0.3 and p2 = 0.2. All the remaining
parameters are identical to those of Section 4. For the simulation, using the same
constraints as previously gives the starting condition P9,0,1,0,0,0,0 = 1 and the
constraint S + Sd + I + Id + V1 + V2 + Vd ≤ N with non-negative summands.

5.2 Visualisation

As in Section 4, we display several of the 2D projections of the resulting 7D
distribution. We produce plots of S with Sd and I with Id. We also present a plot
of Vobj with Vd, to allow comparison to the results of the Section 4 model, and a
plot of V1 with V2 to allow comparison of both worms being transferred. Figures
8a–8d show outputs for transmission rate b = 0.5, recovery rates g1 = 0.35 and
g2 = 0.05, hidden-active switch rate µ = 0.1, population increase/decrease rate
B = 0.0005 (D = 0.0005), apportioning coefficients p1 = 0.3 and p2 = 0.2,
temporary recovery rates ρ1 = 0.7 and ρ2 = 0.1, proportion of online nodes
q = 0.9 and offline-online switch rate σ = 0.09.

(a) (b)

(c) (d)

Fig. 8. The probability distributions on iteration 2670 of the extended model (N = 10)
of each S and Sd combination (top left), each I and Id combination (top right), each V1

and V2 combination (bottom left) and each Vobj and Vd combination (bottom right).

These results show significantly larger variation in the number of class S and
Sd nodes, with standard deviations 2.25 and 0.93 respectively, in comparison
to the Section 4 results. This may result from the larger values of ρ1 and ρ2
used, as it causes more infected nodes to become susceptible again. Although
Figures 8a–8d allow us to compare this model to that of Section 4, they show
little information about the new states introduced. To address this we refer to
Figures 9a–9b, which are distributions from the same simulation on iteration
540. These results indicate that the simulation parameters cause the infection to
progress through the population faster than simulations of Sections 3 and 4. This
is clear from the fact that on iteration 2670 the distribution for all classes except
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S and Sd approaches zero. This indicates the population has reached a stable
equilibrium by iteration 2670, in which infected nodes are no longer present. In
addition, Figure 9b shows a higher expected number of class V2 nodes (0.32) in
comparison to those in class V1 (0.20). This would suggest that the large values
of ρ1 and g1 in comparison to ρ2 and g2 respectively are more influential in this
simulation than the larger value of p1 compared to p2.

(a) (b)

Fig. 9. The probability distribution on iteration 540 of the current model (N = 10) of
each I and Id combination (left), and each V1 and V2 combination (right).

This implementation gives one illustration of how to make the models derived
in this paper more applicable to real world scenarios. However, in order to asses
how accurate the current model is, it is recognised that it needs to be compared
to real world data.

6 Conclusion and Further Work

This work introduced the use and visualisation of 3D, 6D and 7D probabilis-
tic master equations to depict a botnet lifecycle and to evaluate the likelihood
of a given result occurring, given certain parameters. Section 3 highlights how
the ability to recover infected nodes (temporarily or permanently) is far more
advantageous than simply disconnecting them when attempting to reduce the
damage caused by a botnet. The extensions of Section 5 also emphasise that the
models introduced in this paper are constrained by their ideal nature. The work
also shows how models may be tailored to more specific networks or scenarios.

To extend this work we will consider how the behaviour of the population
changes when individual nodes or sections of a population have different proper-
ties to each other. This ability would account for the scenario in which offline
botnets fail to receive updated instructions from the Botmaster and hence have
different properties to the rest of the population when they come back online.
We could also consider links between offline states other than to and from their
corresponding online states. The work may also be extended by a comparison to
publicly-available data obtained from real life botnet infections (e.g., [3]). Using
a genetic algorithm (GA), for example, the model parameters given in this work
could be adjusted to fit a specific real world data set such as this. A possible
cost function for such a GA could be derived as follows.

Denote X as a state in the model, A as the set of all model states, E[X]
as the expected number of nodes in class X, and X1 as the actual number of
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nodes in class X from the data set being used. Clearly for all X ∈ A we wish to
make E[X] − X1 as close to zero as possible. This is equivalent to minimising∑
X∈A

[(E[X] − X1)2] (the squaring operation solves potential negativity issues).

However, the number of nodes in class X varies with time, t, and so for all t ∈ R+

we wish to minimise
∑
X∈A

[(E[X(t)] − X1(t))2]. This is equivalent to wishing to

minimise the integral

∫ ∞
0

∑
X∈A

[(E[X(t)]−X1(t))2] dt.

Using this GA approach with suitable mutation and crossover operators may
yield a suitable parameter fitting method. This may allow for an assessment of
how the dynamic properties of the system vary in actuality and would assist in
making this theoretical work even more representative of real life botnets.
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