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We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours.

We discuss how the model can be used as a template for composite Dark Matter (DM). We

estimate one particular interaction of the DM candidate with the Standard Model : the interaction

through photon exchange computing the electric polarizability of the DM candidate. Finally, we

briefly discuss the viability of the model given the present experimental constraints.
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1. Introduction

The fact that 25% of the energy content of the Universe must beaccounted for by Dark Matter
(DM) is confirmed by several experiments. Many models have been built to describe the Dark Mat-
ter sector of our Universe and are severely constraints by experimental data obtained directly, indi-
rectly, or using colliders. One interesting scenario is theone of Composite Dark Matter where, as in
baryonic sector, the most abundant particles are “composite”. In this work we consider one particu-
lar realization of a composite dark matter model that breakselectroweak symmetry dynamically[1].
The Dark matter candidate is electrically neutral and its interactions with nucleon receive contri-
butions from Higgs-exchange, from the electric dipole moment (which vanishes in the limit of
degenerate fermions), and at higher order in the operator expansion from a two-photon exchange
vertex, as illustrated in Fig. 1. While the two first contributions have already been investigated in
[2], we compute here the latter contribution and estimate the cross section relevant for direct detec-
tion experiments. Note that such an interaction has also be considered on the lattice in the context
of Stealth Dark Matter[4].

Figure 1: Illustration of a two-photon interaction with quarks[3].

The model is based onSU(2) gauge field theory with two fermions in the fundamental repre-
sentation. The Lagrangian reads in the continuum :

L =−
1
4

Fa
µνFa µν +ψ (i6D−m)ψ , (1.1)

whereψ = (u,d) is a doublet of Dirac spinor fields transforming according tothe fundamental
representation and can also be written as :

L =−
1
4

Fa
µνFa µν +ψi6Dψ +

im
2

[
QT (−iσ2)CEQ+

(
QT (−iσ2)CEQ)

)†
]

(1.2)

whereσ2 acts on color indices andC is the charge conjugation matrix. Furthermore, we have
defined :

Q =




uL

dL

−iσ2CūT
R

−iσ2Cd̄T
R


 ,and E =




0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0


 . (1.3)

We have usedqL,R = PL,Rq, q̄L,R = q̄PR,L with PL = 1
2(1− γ5) and PR = 1

2(1+ γ5). The model
exhibits anSU(4) flavour symmetry in the massless limit. The 15 generators of the corresponding
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Lie algebra will be denotedT a=1,...,15. After adding a mass term, the remnant flavour symmetry is
the group spanned by the algebra that preservesET a,T +T a,T E = 0. This relation defines the 10-
dimensional algebra of theSP(4) group. The chiral symmetry breaking pattern is thus expected to
beSU(4)→ SP(4) leading to 5 Goldstone bosons. The model has been investigated on the lattice
in [5], and the chiral symmetry breaking pattern has been proven to be the expected one [6].

As proposed in [1], the Lagrangian Eq. (1.1) can be embedded into the Standard Model in
such a way that it interpolates between composite GoldstoneHiggs and Technicolor models[7, 8].
The two limits are parametrized by a single parameter whose value depends on contribution from
Standard Model loops. In the so-called technicolor limit the model breaks electroweak symmetry
and 3 of the Goldstone bosons provide mass to W’s and Z gauge bosons while the two remaining
Goldstone bosons are stable and can be arranged in a electrically neutral complex scalar field, de-
notedφ ,which is a Dark Matter candidate. As argued in [1], the Dark Matter mass is generated
via loop diagrams involving electroweak bosons and top quarks, they predict that the mass is pro-
portional to the scalefΠ = 246GeV, and we will thus restrict ourselves tomφ < 500GeV. Note
that theSU(2) gauge theory with two fundamental fermions have been used tobuild several Dark
Matter models[4, 9, 10, 11, 12].

In this model the two quark(UL,DL) are arranged in aSU(2)L doublet with hypercharge 0,
and the two remaining (Weyl) fermions are singlet ofSU(2)L with hypercharge±1/2. The electric
charge matrix of the fermions isQ = diag

(
1
2,−

1
2,−

1
2,

1
2

)
.

2. Electromagnetic properties

Since the underlying fermions are not electrically neutral, the effective theory describing the
composite (Goldstone) Dark Matter candidate is expected togenerate a two-photon coupling. The
goal of this work is to investigate that particular contribution. The low energy coupling constant
that enter into the processφφ → γγ is called the polarizabity (measured in[ fm]3) and enter in
the compton cross section which can be computed in chiral perturbation theory. In order to per-
form a lattice calculation, a different approach is followed. As shown in [13], the polarizability
also characterizes the response of the mass of a spin-0 neutral bound state to a classical constant
electromagnetic field according to the following small fieldexpansion :

m(E ) = m0+
1
2

4παEE
2+ . . . , (2.1)

whereαE is the electromagnetic polarizability. The latter relation suggests a first principle approach
to calculate the polarizability and has been used in QCD to determine polarizabilities of various
hadrons, see for instance [14]. We briefly sketch the method in the following. In order to fulfill the
’t Hooft condition[15], the electric field needs to be quantized according to

E = (ea2)−1 2πn
QNtNL

≡ (ea2)−1E , (2.2)

wheree is related to the electromagnetic coupling constantα = e2/(4π), a is the lattice spacing,
Q the charge of fermion,n is an integer, andNt ,Nl are the temporal and spatial lattice extent. Note
furthermore that we have introduced the dimensionless lattice field E. The gauge links are then
multiplied by a position dependent fieldU (E)

µ defined as follows :

U (E)
µ = eiQAµ (x)eiQENt x3δµ ,4δx4,Nt−1, where Aµ(x) = (0,0,−Ex4,0) , (2.3)
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Q is the electric charge of the fermion,Nt is the lattice temporal extent. In our calculation, the
electromagnetic background field is included only in the valence which leads to a systematic un-
certainty. We however expect the calculation to provide an order of magnitude estimate of the
polarizability.

In our model the dark matter candidate has the same quantum numbers as the following di-
quark operatoruTCγ5σ2d. The mass as function of the electric field can be estimated bycomputing
the effective mass corresponding to the following two-point function :

CE
2pt(t) = ∑

~x

〈φ(x)φ†(0)〉 =CE ,π0

2pt,conn.(t) . (2.4)

The last equality -which relatesCE
2pt(t) to the connected part of the neutral pion two-point function-

can be derived using properties of the Wilson-Dirac operator for a two-color theory in a presence
of a background field.

Note that by inspecting the corresponding effective theory, we concluded that a polarizability
operator is generated at orderO(E6) by an operator of the formm2

φ FµνFµνφ∗φ . The polarizability
is thus expected to vanish in the chiral limit. Note thatFµνFµν∂ρφ∂ ρ φ also appears in the effective
theory. The latter is not expected to vanish in the chiral limit and will thus dominate the cross
section for very light DM mass. We will disregard that contribution in this preliminary study.
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Figure 2: Effective masses forβ = 2.2, L= 163×

32 andm0 =−0.65 for values of the electric field
corresponding ton = 0, . . . ,10.
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Figure 3: α̃E assuming a quadratic or a quartic
fit ansätz as a function of the number of points
included in the fit forβ = 2.2, L = 163×32 and
m0 =−0.65

3. Results

The simulation are performed using two flavour Wilson fermions with the plaquette action.
Two lattice spacing are used in this work and the pseudoscalar decay constantfPS is renormalized
perturbatively. Furthermore since the we are considering only the caseθ = π/2 (technicolor limit),
the scale is set by imposingFΠ = 246GeV.
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In Fig. 2 we show the effective mass defined by solving the equation

C(t −a)
C(t)

=
e−meff(t)(t−a)+ e−meff(t)(T−(t−a))

e−meff(t)t + e−meff(t)(T−t)
, (3.1)

for values of the electric field withn = 0, . . . ,10. The results show clear plateaus and the masses
are obtained by fitting the effective masses fort/a larger than the vertical dotted line. Once the
mass has been determined for each value ofn, the dimensionless electric field dependence is fitted
according to :

aM(E) = aM0+
1
2

4πα̃E E2+O(E4), where α̃E =
αE

4παa3 . (3.2)

The relation betweeñαE and αE can be derived by matching Eq. (2.1) and using the definition
Eq. (2.2). We show in Fig. 3 the fitted value ofα̃E assuming a quadratic or a quartic fit ansätz as
a function of the number of points included in the fit (Npoints). For Npoints, the two estimations of
α̃E are of the same order of magnitude indicating that the contribution from the quartic coefficient
is small. Also, the value of̃αE does not depend strongly onNpoints and the fit is thus stable. Note

furthermore that the expansion variable of Eq. (2.1) :(eE )2

m4
PS

∼ 0.03n2 is small even for the smallest
quark mass used in our setup.

In Fig. 4, we show the dependence ofα̃E as a function ofmPSL for two ensembles at fixed
β = 2.2. Note that the lightest fermion mass is included in the plot(m0 =−0.75). Since our results
do not depend significantly of the volume, we conclude that finite volume effects are negligible in
our results. In Fig. 5, we show the dimensionless quantityαEmPSf 2

PS as a function ofm2
PS≡ m2

φ
at two different lattice spacing. We choose that particularcombination because we expect it to
cancel the leading order behaviour ofαE . Note that the results obtained atβ = 2.0 show that our
results are not significantly affected by latticeO(a) effects. They are thus safely neglected in the
following. We performed a polynomial fit ofαEmPSf 2

PS imposing thatαEmPSf 2
PS vanishes in the

chiral limit as required by the effective field theory. The best fit value obtained at fixedβ = 2.2 is
depicted by a dotted line. Using the relation betweenfPS andmPS from our previous work [5], we
deduce a prediction forαE(m2

φ ).
Following [4], the effective interaction Lagragian between DM and photons can be written

L = παEFµνF µνφ∗φ and the cross section per nucleon for a given target with atomic and mass
number(Z,A) can be written as follows :

σnucleon(Z,A) =
Z4

A2

9πα2µ2
nφ (M

A
F)

2

R2 α2
E , (3.3)

where µnφ is the reduced mass,α is the electromagnetic coupling constant,R = 1.2A1/3 and
1 < MF

A < 3 which enters in the nuclear part of the cross section. We refer to [4], for a detailed
discussion of the assumption made to estimate the cross section.

Using our prediction ofαE(m2
φ ) we plot by a blue band, whose width is determined by the large

uncertainty on the matrix elementMF
A , the cross section per nucleon for Xenon in Fig. 6. In the fig-

ure, we also represented by a grey area the latest constraints obtained by the LUX experiments[16].
The orange filled area is the region of cross section were experiments are not able to discriminate a
nucleon-DM event from a coherent neutrino recoil [17]. We conclude that, within our assumption,
the cross section due to two photon exchange is orders of magnitude too small to be detected.
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Figure 4: α̃E as a function ofmPSL for two en-
sembles atβ = 2.2, including the lightest fermion
mass used in our simulation.
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Figure 6: Prediction of the nucleon-DM cross section per nucleon for Xenon (blue band), con-
straints set by the LUX experiments[16], and region were experiments are not able to discriminate
from coherent neutrino recoil[17].
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4. Conclusion

We considered the interesting framework of a unified composite Higgs and technicolor models.
We argued that in the technicolor limit the model features a DM candidate. Because of its composite
nature, the DM candidate is sensitive to electromagnetic interaction via the electric polarizability
of the DM. We performed a lattice calculation in isolation ofthe SM of the electric polarizability
using the background field method. We concluded that the expected cross section is to small to
be accessible via direct detection. In future works we plan to investigate what happens beyond the
technicolor limit of the model and to study the effect of electroweak corrections to the nucleon-DM
cross section.
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