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ABSTRACT: We investigate the spectrum and IR properties of the SU(3) “sextet” model
with two Dirac fermions in the two-index symmetric representation via lattice simula-
tions. This model is a prime candidate for a realization of Walking Technicolor, which
features a minimal matter content and it is expected to be inside or very close to the lower
boundary of the conformal window. We use the Wilson discretization for the fermions
and map the phase structure of the lattice model. We study several spectral and gradient
flow observables both in the bulk and the weak coupling phases. While in the bulk phase
we find clear signs of chiral symmetry breaking, in the weak coupling phase there is no
clear indication for it, and instead the chiral limit of the model seems compatible with an
IR-conformal behavior.
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1 Introduction

The discovery of a new scalar state in 2012 was a tremendous success for the Large Hadron
Collider and for the Standard Model. The properties of this new scalar state have since
been studied by the ATLAS and CMS collaborations and they are in general agreement
with the SM prediction for an elementary Higgs boson.

Although it is an economical description, from a theoretical standpoint the Higgs
sector is unappealing. In fact, the Higgs sector is by many regarded as a model of sponta-
neous EW symmetry breaking, rather than a true dynamical explanation. Moreover, the
electroweak scale is not protected against quantum corrections, which makes the model
unnaturally fine-tuned.

The discovery of the Higgs boson, with properties closely resembling the SM elemen-
tary Higgs, excludes a large number of BSM models, such as the “Higgsless models”, and
the traditional Technicolor theories, based on QCD-like dynamics. However, a wide class
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of composite Higgs theories, in which EW symmetry is broken dynamically by a new
strong force, are still compatible with the experiments.

The two most interesting realizations of composite Higgs models are Walking Tech-
nicolor (WTC) [1–13] and pNGB Higgs models [14–19]. In such models the Higgs is re-
garded as the pseudo Nambu-Goldstone boson (pNGB) of an approximate global sym-
metry, which explains the little hierarchy between the mass of the Higgs and the other
resonances of the strong sector. This extra symmetry is a global flavor symmetry in the
case of pNGB Higgs models, or an approximate scale invariance symmetry in the case of
Walking Technicolor.

Walking Technicolor models are asymptotically free models which can be considered
as a small deformation of a conformal field theory in the infrared. Such models share
several important features, which makes them good candidates for a composite Higgs
model. This includes the possible emergence of a light 0++ scalar state, associated to the
approximate scale invariance, that can play the role of the Higgs boson, with a light mass
and couplings similar to the SM Higgs. The strong coupling might evolve slowly with the
energy scale (i.e. it walks), and if the model also has a large mass anomalous dimension
γ ∼ 1− 2, SM fermion masses could be generated without large Flavor Changing Neutral
Currents. Furthermore, models with only two EW gauged fermions are favored as they
have a smaller S-parameter and do not violate constraints on EW precision tests [12].

Another reason to consider WTC models is that any four-dimensional fundamental
realization of the composite pNGB Higgs admits a Technicolor-like limit and fine-tuning
is needed to align the vacuum in the Goldstone Higgs direction [20].

Here we study the so-called “sextet model”, a WTC model based on an SU(3) gauge
theory with a doublet of Dirac fermions in the two-index symmetric (sextet) representa-
tion. From perturbation theory this model is expected to be inside the conformal win-
dow [21], although the large anomalous dimension could trigger chiral symmetry break-
ing, pushing the model outside [12].

Non-perturbative calculations are required to settle this issue and confirm or exclude
this model as being phenomenologically viable. If the model is chirally broken, a non-
perturbative determination of the mass of the lightest scalar state and the spin-1 reso-
nances will provide crucial input for searches at the LHC. If the theory is conformal, the
existence of four-fermion interactions can drive the theory away from conformality [22–
24].

The sextet model has been studied previously by several groups [25–36]. The non-
perturbative β-function for the model has been calculated, in similar schemes, both using
staggered fermions and improved Wilson fermions. The results for the two kind of dis-
cretizations are in tension, with the Wilson fermion simulations pointing to the existence
of an IR fixed point. Results for the non-perturbative β-function in (near) IR conformal
model should, however, be taken with extreme care. In fact, close to an (approximate)
IR fixed point very large volumes are needed for a reliable continuum extrapolation, as
pointed out in [38, 39].

Recent studies of the spectrum with improved rooted staggered fermions have a pref-
erence towards chiral symmetry breaking. Several states in the spectrum were studied,
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including the Goldstone sector, the vector and axial vector mesons, the nucleon and both
the isosinglet and isotriplet scalars.

A striking property of the spectrum is that, while hadron masses and decay constants
depend strongly on the quark mass, ratios like mX/ fPS, where mX is the mass of a hadron
and fPS is the pseudoscalar decay constant, appear to be approximately independent of
the quark mass. This would indicate an IR conformal behavior. However it was shown
that the numerical data for the spectrum is not well described by the leading order scaling
behavior expected in the IR-conformal hypothesis.

On the other hand, it seems possible to fit the observed Goldstone spectrum by using
rooted staggered chiral perturbation theory and the spectral density of the Dirac opera-
tor shows a plateau at small eigenvalues. However it is unclear if the value of the chiral
condensate from the GMOR relation and the one from the Banks-Casher relation are com-
patible.

A light 0++ scalar state is present in the spectrum, which is in fact lighter than the
would-be Goldstone boson over the entire range of light quark masses explored. This
casts doubts about the applicability of chiral perturbation theory to model the numerical
data.

Not many studies for the spectrum of the model are available which use the Wilson
discretization. Given the tension between studies with staggered and Wilson fermions, we
started a more thorough investigation of the spectrum with Wilson fermions [40, 41]. Here
we present our final results for the spectrum. In Section 2 we describe our lattice setup for
the numerical computation, in Section 3 we report our findings for the phase structure of
the lattice model, and finally in Section 4 we discuss the spectrum of the model.

2 Lattice formulation

The non-perturbative simulations are performed after introducing a UV and IR cutoff in
the form of a space-time lattice of finite extent L3 × T. The Euclidean formulation of the
theory is used and the path integral is thus reduced to an ordinary integral over a large
number of degrees of freedom. In this section we outline our simulation strategy, the
simulated action, and the calculated observables.

2.1 Action

The choice of a discretized action on the lattice is not unique, nor is the use of boundary
conditions. For the gauge field we use the standard plaquette action [42]

SG[U] = − β

Nc
∑
x

∑
µ<ν

Re Tr Pµν(x), (2.1)

where Nc is the number of colors and β = 2Nc/g2 is the inverse bare coupling. The
elementary plaquette Pµν(x) in the (µ,ν)-plane at position x is defined as

Pµν(x) = Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x). (2.2)

– 3 –



We impose periodic boundary conditions on the gauge field in all directions. For the
fermions we use the the unimproved Wilson-Dirac operator [42]

DW [UR] = m0 +
1
2 ∑

µ

{γµ(∇µ +∇∗µ)− a∇∗µ∇µ}, (2.3)

where m0 is the bare quark mass and a is the lattice spacing. The operators∇µ and∇∗µ are
the discretized forward and backward covariant derivatives, respectively.

∇µψ(x) = UR
µ (x)ψ(x + µ̂)− ψ(x) (2.4)

∇∗µψ(x) = ψ(x)−UR
µ (x− µ̂)†ψ(x− µ̂) (2.5)

In these definitions UR
µ (x) is the parallel transporter (link) from a site x to its neighbor

at x + µ̂ in the representation R. In the case of two mass degenerate flavors, the fermion
action can be written as

SF[UR, ψ̄, ψ] = a4
2

∑
f=1

∑
x

ψ̄ f (x)DW [UR]ψ f . (2.6)

For the fermions we impose periodic boundary conditions in the spatial directions and
anti-periodic boundary conditions in the temporal direction.

With this choice of discretization, the action only depends on two bare parameters:
the inverse gauge coupling β and the (dimensionless) quark mass am0. While the link
variables Uµ(x) appearing in the gauge action are in the fundamental representation of the
gauge group, the links in the Wilson-Dirac operator UR

µ (x) are in the same representation
R as the fermion fields.

For the two-index symmetric representation, the mapping between the fundamental
and the represented links is given by

(UR)ab = Tr[eaUebUT], (2.7)

where {ea} is the orthonormal basis for the representation (see Appendix A).

2.2 Algorithm

The results presented in this work are obtained using our own simulation code first de-
scribed in [43]. The algorithm used is the standard Hybrid Monte Carlo (HMC) algorithm
[44] together with various improvements, such as even-odd preconditioning [45], mass
preconditioning [46], second order OMF integrator [47], and chronological inversion [48].

For some of the simulations we use a GPU accelerated version of the code, however,
because the GPU implementation lacks support for parallelism its use has been limited to
smaller volumes and/or heavy masses.

2.3 Observables

We report in this section the definition of the observables used when studying the model.
The simplest observable measured is the average value of the plaquette Pµν(x) over all
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space-time points and possible orientations

〈P〉 = 1
6NcV

∑
x

∑
ν<µ

Re Tr Pµν(x) . (2.8)

Mesons

To extract the masses of the isotriplet mesons, their decay constants, and the quark mass
as defined from the Partially Conserved Axial Current (PCAC) relation, we consider two-
point functions at zero momentum.

CΓΓ′(t) = ∑
x
〈(O†

Γ(x, t)OΓ′(0)〉 (2.9)

The interpolating operator is given by OΓ(x, t) = ψ̄1(x, t)Γψ2(x, t) where ψ1 and ψ2 repre-
sent two different flavors of mass-degenerate fermion fields, and Γ is a generic matrix in
the Clifford algebra. For the hadronic quantities used in this work, Γ and Γ′ range over the
choices {γ5, γ0γ5, γk, γ5γk} for the pseudoscalar, axial, vector and, axial-vector currents,
respectively. After Wick contracting the fields, the correlator can be written as

CΓΓ′(t) = −∑
x

Tr{γ5ΓS(x, t)Γ′γ5S†(x, t)}, (2.10)

where S(x, t) = D−1(x, t) is the propagator from (0, 0) to (x, t).
Numerically we use point-to-all propagators to estimate the two-point functions with

the noise-reduction technique described in [49] by taking a stochastic average over the vol-
ume of the point source. This method has the additional advantage that spin-dilution can
be used to calculated all channels with only four inversions. Masses and decay constants
for the isotriplet mesons are extracted from the asymptotic behavior of the correlators CΓΓ′

at large Euclidean time as described in [50].
For the two-point correlators we furthermore apply a trick to cancel the backward

propagating states [51]. In practice this allows us to double the extent of the correlators,
at the cost of doing an additional set of inversions for each source. With this method we
define the propagator as

S±(x, y) = SA(x, y)± SP(x, y), (2.11)

such that the correlator reads

C±ΓΓ′(t) = −∑
x

Tr{γ5ΓS±(x, t)Γ′γ5S†
±(x, t)}. (2.12)

The propagator SP(x, y) is calculated with periodic boundary conditions in time and
SA(x, y) with anti-periodic boundary conditions in time. With these definitions the first
correlator C+

ΓΓ′(t) gives the forward propagating part from 0 to T and the second correlator
C−ΓΓ′(t) gives the backwards propagating part from 2T to T.

We apply this method because our effective masses in some cases decay too slowly to
reach a proper plateau. With the extended correlators the results are significantly better,
but a proper plateau might still not be fully reached. For this reason we always calculate
the effective masses in two ways.
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1. Fit a “possible” plateau for the effective mass to a constant.

2. Fit the effective mass to the function m(t) = m∞ + ae−bt and use m∞ as the result.

With the extended correlators both methods generally agree within errors. However, the
second method usually returns a slightly smaller value, affected by larger uncertainties,
such that the difference between the two methods is statistically insignificant.

In the case of the decay constants fPS and fV , we use the second method above, as this
results in smaller systematic errors from finite volume effects (see Sect. 4.1 below). For all
other observables we use first method.

All the spectral quantities considered in this work are bare (i.e. not renormalized)
quantities.

Baryons

To extract the mass of the lightest baryon state, we use the following interpolating opera-
tor for the spin-1/2 baryon with positive parity.

ON = ξabc{uaCγ5db}uc, (2.13)

Here C = γ0γ2 is the charge conjugation matrix. The contraction symbol ξabc is defined in
Eq. (A.9) in Appendix A, but the operator is otherwise identical to the one used in QCD.

Because the color contractions are symmetric for this model, the operator formally
describes a baryon belonging to the MS flavor representation, as oppose to QCD, where
the equivalent operator describes a baryon in the MA flavor representation. This distinc-
tion is, however, not important because the operator describes the same state regardless
of the flavor representation.

To calculate the baryon correlators we use ordinary point sources, which require 24
inversions for each propagator. The correlator is defined as

C±(t) = ∑
x

Tr{P±〈ŌN(x, t)ON(0)〉}, (2.14)

where P± = 1
2 (1± γ0) projects onto positive and negative parity states. Space-time re-

flection symmetries of the action and the anti-periodic boundary conditions in the tem-
poral direction for the quark fields imply, for zero-momentum correlators, that C+(t) =

−C−(T − t). Therefore, in order to decrease errors we average correlators in the forward
and backward direction

C(t) =
1
2
[C+(t)− C−(T − t)] . (2.15)

In the following we only consider the positive parity state, as the negative parity state is
too noisy to be accurately determined.

Gradient flow

Following [52] we consider the gradient flow for the gauge field. Formally the gradient
flow is defined through the equation

∂tBµ(t, x) = DνGνµ(t, x), (2.16)
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where Gµν = ∂µBν − ∂νBµ + [Bµ, Bν] is the field strength tensor and Dµ = ∂µ + [Bµ, ·] is
the covariant derivative. The initial condition is Bµ(t, x)|t=0 = Aµ(x). The fictitious flow
time t should not be confused with Euclidean time. For the Wilson action, the discretized
flow equation reads

d
dt

Vµ(t, x) = −g2{∂x,µSG(V)}Vµ(t, x), (2.17)

with the initial condition Vµ(t, x)|t=0 = Uµ(x). While the gradient flow has several ad-
vantages, we will simply use it to measure how the lattice spacing changes as a function
of the bare parameters. In literature, two related scale-setting observables [52, 53] have
been introduced.

E(t) = 〈t2E(t)〉 (2.18)

W(t) = t
dE(t)

dt
(2.19)

Here E = 1
4 Ga

µνGa
µν is the action of the flowed gauge field. On the lattice we use the sym-

metric clover discretization for this observable. In both cases the scale setting is performed
by choosing a fixed reference value, such that

E(t0) = Eref, (2.20)

W(w2
0) =Wref. (2.21)

Keeping the reference value fixed, the change in t0 and w0 is then related to the change in
lattice spacing, as a function of the change in the bare parameters.

3 Phase structure

In this section we discuss the phase structure of the lattice model. In particular we com-
pare the behavior of the model when simulated in the weak and strong coupling phase,
respectively.

To properly understand the lattice model and reveal its non-trivial phase structure,
we performed an extensive scan, comprising more than 200 simulations, in the parameter
space of the bare coupling β and the bare quark mass m0. For this scan we use either 84 or
163 × 32 lattices, depending on the observable. To check for finite volume effects, some of
the simulations have been repeated on 243 × 48 lattices. We show in Fig. 1 an overview of
the simulations used for scanning the (β, m0) plane.

From the scan we are able to determine different phases of the lattice model. In Fig. 2
we show the resulting phase diagram, where we identify four different regions separated
by either first order transitions (dashed lines) or continuous transitions (solid lines).

On the figure, the solid blue line is a continuous crossover identified by looking at
the peak of the plaquette susceptibility, as a function of the bare coupling, in the region
of positive PCAC mass. This line separates the “weak coupling phase” from the “strong
coupling phase”. The plaquette susceptibility is defined as

χP =
∂〈P〉
∂β

. (3.1)
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Figure 1. Overview the simulations used for scanning the lattice phase diagram. Some parameters
have been simulated twice with different initial configurations (random or unit).
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Figure 2. Phase diagram for the lattice model showing four different regions. Region I is a strong
coupling bulk phase, region II and III are weak coupling phases with positive and negative PCAC
mass, respectively, and region IV is an unphysical artifact region.

– 8 –



4.6 4.8 5 5.2 5.4 5.6 5.8
0.1

0.2

0.3

0.4

0.5

0.6

β

χ
P

 

 

♠✵ ❂ �✿��

♠✵ ❂ ✦✶✿��

♠✵ ❂ ✦✶✿✷�

Figure 3. Plaquette susceptibility for positive PCAC mass at three different values of m0. The
location of peak determines the crossover transition line between the “weak coupling phase” and
the “strong coupling phase” (solid blue line in Fig. 2) .

We plot in Fig. 3 the plaquette susceptibility for three different values of the bare mass.
The susceptibility shows a clear peak, whose maximum value increases when decreasing
the bare masse, i.e. when approaching the limit of vanishing quark mass. The maximum
of the plaquette susceptibility seems to be volume independent, which indicates that the
transition is a smooth crossover which becomes sharper at lower quark masses.

At strong coupling a line of first order transition is present (the dashed red line in
Fig. 2) with an endpoint around β ≈ 5.1 as indicated by the black point. This transition
line is identified by discontinuous jumps in the average value of the plaquette. We show in
Fig. 4 an overview of the average plaquette for different values of β in the strong and weak
coupling phases. A discontinuity is clearly visible indicating the first order transition.

At strong coupling, hysteresis cycles appear in simulations started from different ini-
tial configurations, as shown in Fig. 5. All data points on this figure have been obtained
from independent simulations started from either a unit configuration (blue points) or a
random configuration (red points). At very strong coupling we are unable to run simu-
lations for bare masses below m0 ≈ −1.9, which is why the hysteresis cycles in top most
panel are not closed. As we approach the weak coupling region, the hysteresis cycles dis-
appear, as seen in the panel at the bottom. At β = 5.2 one can still observe a small signal
for the transition, while at β = 5.3 it is absent.

For the study of hysteresis cycles, we used small 84 lattices, since the presence of
strong metastabilities on large lattices makes it difficult to perform numerical simulations
across the transition. To check for the persistence of the first order transition, we have
repeated the simulation at β = 5.0 and m0 = −1.5 on the three volumes 84, 163 × 32
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Figure 4. Average value of the plaquette 〈P〉. At strong coupling a first order transition is observed
as a jump in the plaquette average.

and 243× 48, and confirmed that the average plaquette value is independent of the lattice
volume. As an illustration, in Fig. 4 several of the points on the hysteresis cycles are from
a small 84 volume and one of the larger volumes. The difference in the average plaquette
are not visible at this scale.

The line of first order transition continues as a continuous transition line (solid red
line in Fig. 2) in the weak coupling regime. This line is identified as the line where the
PCAC mass vanishes, when approaching from positive bare mass.

Finally we identify one more line (solid green line in Fig. 2) in the phase diagram. This
line is defined as the point where the slope of the PCAC mass changes sign. We discuss
the significance of this line in Subsection 3.1.

The outlined phase diagram shares a number of features with the phase diagram of
the SU(2) gauge theory with two Dirac fermions in the adjoint representation, first studied
in [54], which is a model known to be inside the conformal window [43, 54–66].

The common features includes a first-order phase transition at strong coupling, with
an endpoint which then becomes a continuous transition line where the quark mass van-
ishes. We will show below that similar behaviors of the spectral quantities both at strong
and weak coupling are also observed.

In simulations with many fundamental flavors, the same first-order phase transition
at strong coupling is also observed [67], indicating that this might be a general feature for
Wilson fermions for models inside or close to the conformal window.
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Figure 5. Hysteresis cycles around the first order phase transition. The red (blue) points indicate
simulations started from a random (unit) configuration. At strong coupling we are unable to run
simulations for bare masses below m0 ≈ −1.9. As we approach the weak coupling phase, the first
order transition disappears.
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Figure 6. Left: Behavior of mV , mPS, and mPCAC when crossing the first-order transition at β = 4.8.
The lines extending furthest the right (left) are simulations in Region I (Region IV). We observe
that the slope of the PCAC mass has opposite sign in Region IV. Right: At β = 5.5 there is a
continuous transition between Region II, III and IV, and we clearly see that the slope of the PCAC
mass changes sign around m0 ≈ −1.42.
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Figure 7. The ratio mV/mPS as a function of the PCAC mass and inverse coupling β. Left: Inside
the bulk phase (Region I) the ratio diverges in the chiral limit, as expected from chiral symmetry
breaking. The gray line is a fit to the data at β = 3.0 and β = 4.0. Right: In the weak coupling
phase (Region II) the ratio is constant in the chiral limit, as expected in a conformal model.

3.1 Spectrum

Having understood the phase structure of the discretized lattice model, we now turn our
attention to several interesting observables, starting from the light meson spectrum.

In Fig. 6 we show how the PCAC, pseudoscalar, and vector mass change as a function
of the bare quark mass across different phases. In the strong coupling region at β = 4.8
(left panel), where a first-order transition is visible, we observe a hysteresis region and
discontinuous jumps for the masses. In the figure, the lines extending furthest to the left
(right) are from simulations started from a unit (random) configuration. In particular the
PCAC mass jumps from a positive to a negative value across the transition, implying that
the chiral limit cannot be reached in the strong coupling Region I.
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In the right panel of Fig. 6 we show the same observables for β = 5.5 in the weak
coupling phase. As the transitions separating the different regions in phase space are all
continuous at this weaker coupling, we observe no jumps in the measured observables.
The PCAC mass smoothly approaches zero, becomes negative before its slope changes
sign around m0 ≈ −1.42 to increase again until it vanishes for a second, more negative,
value of the bare quark mass. The border between Region III and IV is defined at the
point when the slope of the PCAC mass changes sign. This defines Region III as the part
of the phase diagram at weak coupling where the chiral transition line can be approached
from negative PCAC masses and where we observe a qualitatively similar behavoir for
the meson masses when compared to the positive PCAC mass case in Region II.

In the rest of this paper we will focus our attention only on Region I and II, where one
can approach the chiral line from positive PCAC mass values.

In Fig. 7 we show how the ratio mV/mPS changes when moving from Region I (the
strong coupling phase) to Region II (the weak coupling phase) as a function of the PCAC
mass. In the strong coupling phase (left panel of the figure), where hysteresis exists, we
show the ratio of masses as obtained from simulations starting from random configura-
tions. This ratio clearly increases towards the chiral limit and we observe a clear splitting
between the vector and pseudoscalar meson masses, which is consistent with the expec-
tation of chiral symmetry breaking. This is not surprising, as lattice artifacts always break
chiral symmetry at strong coupling. We also note that, since the first order transition be-
comes stronger and the metastable states are more stable at stronger couplings, we are
able to reach much lower positive PCAC masses for stronger couplings.

When moving to weak couplings in Region II (right panel) we observe that the ratio
becomes almost constant towards the chiral limit and the two states remain almost degen-
erate over the entire range of quark masses investigated here. Most of the results in the
right panel of Fig. 7 are obtained on a 163× 32 lattice volume, but we also include our data
from large volume simulations at β = 5.4 and β = 5.5 which we use later in the paper for
a more detailed analysis of the spectrum at weak coupling. There is a small difference in
the ratios obtained over the two volumes, due to finite size effects.

If persisting to arbitrarily small quark masses and weak couplings, this flat behav-
ior would indicate the absence of spontaneous chiral symmetry breaking and it would
be consistent with the expected hyperscaling behavior of an infrared conformal model
[61, 68, 69]. This drastic change in the qualitative behavior of the model shows a sharp
transition between the strong and the weak coupling phases.

3.2 Gradient flow

As our scan of the parameter space includes many different values of the bare coupling,
in order to understand how the lattice spacing changes, we measure the scale setting
observables introduce in Section 2.3. The reference values used in this work are Eref =

Wref = 1 and 0.15, which, although different from the usual values used in QCD, give a
reasonable definition in the sextet model. We choose two, quite different values, to show
that any reasonable choice of the reference values gives the same qualitative behavior.
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Figure 8. Determination of the t0 observable for two different bare couplings. The left panel at
β = 4.0 is in the strong coupling region (Region I), while the right panel at β = 5.3 is in the weak
coupling region (Region II). The observable has a negligible quark-mass dependence in Region
I, but a very strong quark-mass dependence in Region II. The dashed horizontal lines are the
reference values Eref = 1 and Eref = 0.15. The quark mass dependence in the two regions is not
influenced by the choice of the reference value.

In Fig. 8 we show E(t) and the determination of t0 for a range of bare masses at β = 4.0
in the strong coupling phase (left panel) and β = 5.3 in the weak coupling phase (right
panel). As before, results in the strong coupling phase are obtained from simulations
starting from a random gauge configuration. From the comparison between the two, it is
evident that, while E(t) in the strong coupling region shows an almost negligible small
quark-mass dependence down to the smallest quark mass which is possible to reach, at
weak coupling a very strong quark-mass dependence is observed. In particular the value
of t0 seems to diverge when approaching the chiral limit. A very similar behavior is also
observed for the w0 observable.

This divergent behavior is shown in Fig. 9 where we plot
√

t0 and w0 as a function of
t0m2

PS (left panel) and w2
0m2

PS (right panel). In the strong coupling region the extrapolation
towards the chiral limit is mild, as expected from previous studies in QCD. In contrast, in
the weak coupling phase the strong quark-mass dependence of the two quantities w0 and
t0 is clearly seen as a turnaround of the curves in Fig. 9 for β & 5.0. This indicates that t0

and w2
0 are diverging faster than 1/m2

π when approaching the chiral limit.
The observed behavior is clearly in contrast to the expectations in a chirally broken

model [70]. We also observe that the measure of t0 and w0 is not affected by finite-volume
effects. This is illustrated in Fig. 9, where for one of the masses at β = 5.2 we included a
comparison with a larger 243 × 48 volume (the cross symbols in the figure).

4 Weak coupling phase

Having studied the lattice phase diagram of the model, we focus here on the weak cou-
pling phase and, in particular, on the light quark-mass region. The qualitative features
which emerged from the phase diagram indicate that in the weak coupling phase no clear
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Figure 9. Behavior of t0 and w0 as a function of t0m2
PS (left panel) and w2

0m2
PS (right panel) respec-

tively. The observed turnaround is caused by the very strong quark mass dependence of both t0
and w0 in the weak coupling region. Finite size effects are negligible on both t0 and w0, as can be
seen in the figure by looking a the cross symbols which are obtained on a larger lattice volume of
243 × 48. The top and bottom rows are the results for two different choices of the reference scale.

signs of chiral symmetry breaking are visible. The aim of this section, is to understand
in more detail if the model shows signs of conformal scaling instead of chiral symmetry
breaking in the massless limit. We know from the numerous previous numerical studies
of near conformal models that the many systematic effects, which are necessarily present
in a lattice simulations, can easily obscure the expected behavior, both in the case of IR
conformal and chirally broken models. One should therefore always try to control all the
systematics in the best possible manner.

The strategy that we use, is to look at the infinite volume limit of all observables
considered, i.e. at each given quark mass we use a large enough volume so that finite-
volume corrections are under control. A preliminary comment is in order. In the weak
coupling phase and at light masses, the sextet model considered here is known to be
affected by a severe topological freezing problem. We report our results for the topology
in Appendix C, see also e.g. [34] for simulations with staggered fermions. The weak
coupling results presented in this section for light masses are obtained from simulations
at zero topological charge. We consider the fixed topology as an additional source of finite
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Figure 10. Left: Overview of the spectral quantities considered for the analysis in section 4.2. Right:
The same quantities normalized to fPS.

volume corrections.
All the data used in this section, were obtained at bare coupling β = 5.4 on lattice

volumes of either 243 × 40 or 323 × 48 for the two lightest quark masses.

4.1 Finite volume effects

We have studied the finite volume effects for the observables considered in this work. We
show in Fig. 11 the finite volume effects on mPCAC, fPS, mPS, fV and mV for the second
lightest point considered in this section, corresponding to a pseudoscalar meson mass
of mPS = 0.293(1). To quantify the finite volume effects we use three different spatial
volumes with L = {16, 24, 32} and the temporal extent fixed to T = 48 in all cases. To
parametrize the finite volume corrections we use an exponential function of the form

m(L) = m∞ + a exp(−bL), (4.1)

with {m∞, a, b} as free parameters, which fits out data very well. On the largest volume,
the finite volume effects are negligible and in all cases much smaller than the statistical
errors. We also note that, in the case of the pseudoscalar decay constant, the finite volume
corrections have an opposite sign when compared to the expected behavior of a chirally
broken theory. From these results we conclude that the systematic errors stemming from
the finite simulation volume are under control for the spectral quantities considered in
this section.

4.2 Spectrum

It is in principle possible to distinguish between the two scenarios by studying the particle
spectrum in the chiral limit. The most dramatic difference between the two scenarios is
that in the IR conformal case all meson masses and decay constants will vanish in the
chiral limit, while in the more familiar chirally symmetric broken case only the mass of
the Nambu-Goldstone bosons will become zero. In both cases analytical predictions are
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Figure 11. Measure of finite volume effects at β = 5.4 on the second lightest point available for
this study. All finite volume effects are controllably small on the largest lattice used 323 × 48.

available for the behavior of meson masses and decay constants, which will be reported
below. Because both predictions are perturbative expansions around the quark mass, they
are only expected to work sufficiently close to the chiral limit.

Here we analyse the spectral quantities fPS, mPS, fV , mV , mA and mN as a function of
mPCAC. We show in Fig. 10 an overview of all the quantities considered here (left panel)
and the same quantities normalized to fPS. The numerical values obtained in our simula-
tions are reported in Table 1 and 2 in Appendix B.

As noted previously in Section 3.1, we observe that all the spectral quantities consid-
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ered have a strong dependence on the quark mass and the ratios to fPS seem to converge
to a finite value in the chiral limit. In particular this is also the case for the ratio mPS/ fPS

which slightly increases towards the chiral limit. This kind of behavior has been observed
in all previous studies of conformal and near conformal models, such as e.g. the SU(3)
model with n f = 8 fundamental Dirac fermions [71, 72] and the sextet model considered
here [36].

If such a behavior would persist for arbitrarily small quark masses, the theory would
be IR conformal. On the other hand if the mass of mPS vanishes while all the other spec-
tral quantities remain finite, the theory would be chirally broken. As all the quantities
show a strong dependence on the quark mass, a careful analysis is required to distinguish
between the two cases.

As we will show below, similarly to all other numerical studies of (near) IR conformal
models, the expected leading order behavior for both scenarios is only attained for very
small quark masses. Therefore corrections to the leading order behavior must be included
in the analysis.

We now study how well each of the two hypothesis for the chiral behavior of the
model fit our data.

4.3 Test of conformal scaling

We first consider the case of an IR conformal model. In an IR conformal theory the RG
equations can be used to show that all masses Mx and decay constants Fx scale in the same
way as a function of the quark mass [61, 68, 69], in a neighbourhood around the IR fixed
point. The scaling behaviour is described by a hyperscaling relation of the form1

Mx = Axm1/(1+γ) + Ãxmω ,

Fx = Bxm1/(1+γ) + B̃xmω ,
(4.2)

where m is the quark mass, x is a label for a specific channel, and γ is the the anomalous
dimension of the mass at the IR fixed point which is related to the universal leading scal-
ing exponent. The second term in each expression is the dominant sub-leading correction
to scaling, where the dominant subleading exponent ω is also universal and bigger than
1/(1 + γ). In particular, this scaling behaviour predicts that the ratio of any two observ-
ables is constant up to higher order corrections and that all particles are massless in the
chiral limit.

We show in Fig. 12 the result of the combined fit to all the channels available in this
study. The fit to Eq. (4.2) (solid line in the figure) describes the data well over a range
of quark masses up to mPCAC ∼ 0.10 with a χ2/dof = 7.04/16 = 0.44. The fitted value
for the anomalous dimension of the mass is γ = 0.25(3) and the subleading exponent is
ω = 2.71(76). We note that in this case subleading corrections are crucial to obtain a good
fit, mainly because they give a large contribution to the decay constants.

1For the decay constants we only consider fPS and fV which have the same scaling exponents as the
masses.
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Figure 12. Combined conformal fits for β = 5.4 with and without subleading corrections. The
dashed line is the leading order conformal fit to the three lightest points in all channels. The
solid line is an independent fit with subleading scaling corrections, to the five lightest points in all
channels. The data used, reported in Table 1, is from simulations at β = 5.4 and infinite volume.
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We also show the result of the best fit to the leading order behavior (dashed line in the
figure), where we reduce the range of masses included in the fit to mPCAC < 0.05. Over
this reduced mass range the fit to leading order behavior also provides a good description
of our data with χ2/dof = 4.62/11 = 0.42. The best fit value for the mass anomalous
dimension extracted from this fit is γ = 0.27(3) which is in very good agreement with the
value obtained considering corrections to scaling. This is an indication that subleading
corrections are indeed a small correction at small quark masses, which we also verified
explicitly. We have also investigated the stability of the fit to Eq. (4.2) when changing
the range of masses included in the fit. We found that including heavier points makes
the subleading corrections dominant even at small quark masses, which we consider un-
acceptable. On the other hand, if we reduce the range of fitted masses, the fit remains
stable.

4.4 Test of chiral symmetry breaking

We now turn to the case of spontaneous chiral symmetry breaking. The CCWZ formalism
can be used to write down an effective low energy Lagrangian in the chiral limit, as done
in chiral perturbation theory. Because the sextet representation is complex, the pattern of
chiral symmetry breaking is SU(2)L × SU(2)R → SU(2)V , i.e. the same as in two-flavor
QCD. The quark mass dependence of the pion mass and the pion decay constant has been
calculated to next-to-next-to-leading (2-loop) order in [73]:

M2
π = M2

[
1 +

M2

F2 (aML + bM) +
M4

F4 (cML2 + dML + eM)

]
,

Fπ = F
[

1 +
M2

F2 (aFL + bF) +
M4

F4 (cFL2 + dFL + eF)

]
.

(4.3)

Here M2 = 2Bm is the leading order pion mass from the GMOR relation, F is the leading
order pion decay constant, and L is short-hand notation for the chiral logs:

L =
1

16π2 log
(

M2

µ2

)
. (4.4)

The coefficients {aM, aF, cM, cF} are known in the continuum limit and have values

aM =
1
2

, aF = −1, cM =
17
8

, cF = −5
4

, (4.5)

but the remaining coefficients are combinations of unknown low-energy constants. On
the lattice, the coefficients {aM, aF, cM, cF} will receive O(a) corrections.

On a qualitative level, chiral perturbation theory predicts massless pions in the chiral
limit (they are the Goldstone bosons) but with a non-zero decay constant. The remaining
particles in the spectrum are expected to have a finite mass. The chiral perturbative ex-
pansion is expected to work in the regime where the pion is the lightest state in the model
and it is expected to converge in the limit of small expansion parameter M2/(4πF)2 � 1.
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Figure 13. Chiral fits for β = 5.4. Top: Result at NLO order with free coefficients for the log terms.
Middle: Result at NNLO order with continuum logs. Bottom: NLO fit with free coffiecients and
with an additional O(a2) shift M2 = 2Bm + δ.
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We stress that the applicability of chiral perturbation theory to our data is question-
able since over the entire range of quark masses explored in our study the mass of the
vector meson is almost the same as the ”pion”. Additionally, in all other studies of (near)
IR conformal models, such as the ones previously cited, it has been shown that a light
scalar resonance, analogous to the f0(500) in QCD, is present, which can be as light (or
even lighter) than the pion.

Despite these problems, we try to use Eq. (4.3) to fit our numerical results. We find
that the expected next-to-leading order behavior with the coefficients aM and aF fixed to
their continnum values does not fit the numerical data.

Instead we perform two other fits which provide a good description of our results: a
next-to-leading order fit with aM and aF as free coefficients; and a next-to-next-to-leading
order fit with the coefficients in Eq. (4.5) fixed. We show in Fig. 13 the resulting best fit for
both the next-to-leading (top row) and the next-to-next-to-leading (middle row) formula.
In both cases the same mass range mPCAC ≤ 0.17 for the fit is used. In the NLO case, the
fit has a χ2/dof = 5.76/6 = 0.96 and we find F = 0.027(10) and B = 0.20(1). For the
NNLO case we obtain χ2/dof = 2.08/4 = 0.52 with F = 0.036(20) and B = 0.29(6). The
values obtained from the two fits for F are in good agreement, while, in the case of B, the
poorer agreement reflects the very large uncertainty on the leading order behavior of the
data.

By changing the fitted mass range, we find that the values for F are relatively stable
around F ≈ 0.03 with large errors, while B seems to decrease, also significantly, if we
reduce the mass range to smaller quark masses.

Finally we tried a modified version of Eq. (4.3) in which we introduce an O(a2) shift
in the leading order pion mass squared: M2 = 2Bm + δ. This functional form is inspired
by Wilson chiral perturbation theory (WChPT). We show in Fig. 13 (bottom row) the result
of the fit which describes our data well. Also in this case we obtain a value of F = 0.039(8)
which is compatible with the values above, while the best fit value of B is, not surprisingly,
substantially increased to B = 0.88(12).

In Fig. 13 we also show the size of the different loop order terms to mPS and fPS.
It is clear, given the large size of higher order corrections, that the perturbative series is
not convergent in the fitted mass range. Even for our best fit, inspired by WChPT, the
NLO terms are clearly dominating the LO terms over the whole range of mass explored.
Therefore, even if one believes that Eq. (4.3) give a correct description of the system, our
numerical data are not within its range of applicability.

In view of these results, althought it is possible to use a functional form inspired by
chiral perturbation theory to describe our numerical data, we conclude that little physical
meaning can be extracted from this analysis. If the model is chirally broken, substantially
lighter quark masses are needed to make contact with ChPT.

5 Conclusions

We presented a detailed study of the SU(3) “sextet” model with two Dirac fermions in
the two-index symmetric representation of the gauge group. The main phenomenological

– 22 –



motivation to consider such a model stems from the possibility that it is a realistic candi-
date for a Walking Technicolor model if it sits just below the sill of the conformal window.
The precise location of the conformal window is also an interesting theoretical question,
which many groups have investigated on the lattice. For the sextet model this issue is still
controversial [33–37].

In this paper we studied the infrared properties of the model by focusing on the phys-
ical spectrum. The most precise results for the spectrum of the model have, so far, been
obtained with the use of the staggered fermion discretization. In this work we chose the
Wilson discretization for a comparison.

We mapped out the phase diagram of the lattice model and located several distinct
regions in the parameter space, see Fig. 2, which show qualitatively very different behav-
iors. In particular, we locate a strong coupling “bulk” phase in which the model shows
the qualitative features expected from spontaneous chiral symmetry breaking, such as a
significant splitting between the would-be Goldstone boson mass and the vector meson
mass. However in this strong coupling phase, vanishing pion masses cannot be reached
because of a first order transition that occurs at small quark masses.

At weak couplings this first order line disappears, so that one can identify a chiral line
where the quark mass vanishes. However in this weak coupling phase, we do not observe
the qualitative features expected from a chirally broken model, e.g. the ratio between the
pseudoscalar and vector meson masses remain close to one and constant over the entire
range of masses explored in this study.

A similar abrupt change in behavior is seen in the scale setting observables t0 and w0,
which are almost insensitive to the quark mass in the strong coupling phase, but strongly
depend on it in the weak coupling phase where they seem to diverge in the chiral limit.

We have checked that these qualitative features are free of finite volume effects and
they would imply that the model is IR conformal, if they persists to vanishingly small
quark masses. We therefore studied in more detail the chiral limit of the model in the
weak coupling phase. We performed simulations at eight different quark masses and
measured fPS, mPS, fV , mV , mA and mN and studied the behavior of these observables as
a function of mPCAC. We compare our numerical data to the predicted behavior for both
the case of an IR conformal and a chirally broken model.

We find that it is possible to fit our data to the functional forms predicted in both
cases. However, in the case of IR conformality the best fit function is consistent with the
theoretical expectations that subleading terms are small compared to the leading order
scaling behavior. In particular, a fit to the simple leading order scaling behavior near the
chiral limit is consistent with the fit which includes scaling corrections on an larger mass
range. In contrast, for the case of the chiral symmetry breaking, although we used sev-
eral functional forms inspired by chiral perturbation theory, which describe our numerical
data well, in all cases higher order corrections to the leading behavior are very dominant
over the whole range of masses explored. This implies that the use of ChPT is question-
able and significantly smaller quark masses are needed to observe a possible breaking
of chiral symmetry. The validity of ChPT is also questioned by the presence of a “light”
vector resonance and possibly an even lighter scalar resonance, as shown by studies with
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staggered fermions.
We conclude that the simplest interpretation of our data is that the model is IR con-

formal. The possibility remains that the model is “walking” and it will eventually show
signs of chiral symmetry breaking at much lighter quark masses than the ones used here.

In the future we plan to use an improved Wilson fermion setup to repeat the numer-
ical study in the light quark region. This will allow for the use of coarser lattices and
larger physical volumes, which are the main limiting factor in exploring the chiral limit of
“walking” or IR conformal models.
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A Sextet representation

Fermions in the two-index symmetric representation can be written as

ψcd = (ψ̃aea)cd, (A.1)

where {ψ̃a} are the six Grassmann-valued degrees of freedom and {ea} is the orthonormal
basis for all real and symmetric 3 × 3 matrices. For simplicity we only write the color
indices, since the spinor indices are independent of the representation. Because this a
symmetric representation we necessarily have ψab = ψba and for this reason the spinor
field must transform as

ψ→ UψUT (A.2)

where U is an element of SU(3) in the two-index symmetric representation. An interesting
feature of this model, is the existence of a baryon spectrum analogous to that of QCD.
This can be seen by working out the color structure of a three-quark state, which contains
a neutral color singlet.

6⊗ 6⊗ 6 = 1⊕ 2× 8⊕ 10⊕ 10⊕ 3× 27⊕ 28⊕ 2× 35.

The flavor structure for the baryons is equivalent to the flavor structure in QCD and it
results in two doublets with mixed symmetry and a symmetric quadruplet.

2⊗ 2⊗ 2 = 2× 2⊕ 4
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The quadruplet corresponds to the spin-3/2 baryons, the equivalents of the ∆ baryons.

〈 3
2 , 3

2 | = uuu

〈 3
2 , 1

2 | =
uud + udu + duu√

3

〈 3
2 ,− 1

2 | =
ddu + dud + udd√

3
〈 3

2 ,− 3
2 | = ddd

(A.3)

The two doublets are equivalent representations of the spin-1/2 baryons. The first doublet
is the mixed-antisymmetric (MA) representation

〈 1
2 , 1

2 | =
udd− dud√

2
,

〈 1
2 ,− 1

2 | =
udu− duu√

2
,

(A.4)

and the second doublet is the mixed-symmetric (MS) representation.

〈 1
2 , 1

2 | =
udd + dud− 2ddu√

6
,

〈 1
2 ,− 1

2 | = −
duu + udu− 2uud√

6
.

(A.5)

With the group-theoretical knowledge of the model we can construct gauge invariant me-
son and baryon states. The meson states are constructed by contracting color indices with
two Kronecker deltas.

δacδbdψ̄abψcd → δacδbdU∗aa′U∗bb′Ucc′Udd′ ψ̄a′b′ψc′d′

= (U†U)a′c′(U†U)b′d′ ψ̄a′b′ψc′d′

= δa′c′δb′d′ ψ̄a′b′ψc′d′
(A.6)

The baryon states can similarly be constructed by contracting the color indices with two
Levi-Civita tensors.

εaceεbd f ψabψcdψe f → εaceεbd f Uaa′Ubb′Ucc′Udd′Uee′U f f ′ψa′b′ψc′d′ψe′ f ′

= det U det Uεa′c′e′εb′d′ f ′ψa′b′ψc′d′ψe′ f ′

= εa′c′e′εb′d′ f ′ψa′b′ψc′d′ψe′ f ′
(A.7)

For later convenience we work out the baryon color structure in terms of the fermionic
degrees of freedom.

εabcεa′b′cψaa′ψbb′ψcc′ = εabcεa′b′c′(ψ̃iei)aa′(ψ̃jej)bb′(ψ̃kek)cc′

= [εabcεa′b′c′(ei)aa′(ej)bb′(ek)cc′ ]ψ̃iψ̃jψ̃k

≡ ξ ijkψ̃iψ̃jψ̃k

(A.8)

Here we define a new contraction symbol ξ ijk with {i, j, k} = 1 . . . 6. This tensor is sym-
metric in all indices and it has four independent elements.

ξ ijk = εabcεa′b′c′(ei)aa′(ej)bb′(ek)cc′ (A.9)
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B Numerical results

We show in Table 1 and 2 the numerical results for the large volume simulations at β = 5.4.

−m0 L3 × T mPCAC mPS fPS mV fV mA mN

1.2750 243 × 40 0.2268(1) 1.0157(4) 0.483(8) 1.095(1) 0.67(1) 1.47(3) 1.80(1)
1.3000 243 × 40 0.1613(2) 0.8401(6) 0.348(12) 0.905(1) 0.48(3) 1.15(2) 1.45(1)
1.3125 243 × 40 0.1269(4) 0.727(2) 0.272(13) 0.781(3) 0.38(3) 0.99(2) 1.26(1)
1.3250 243 × 40 0.0909(2) 0.586(1) 0.200(10) 0.629(2) 0.28(1) 0.78(2) 1.00(1)
1.3325 243 × 40 0.0682(2) 0.481(2) 0.150(10) 0.514(3) 0.20(2) 0.66(2) 0.85(2)
1.3400 243 × 40 0.0436(3) 0.350(3) 0.101(9) 0.369(6) 0.14(2) 0.46(3) 0.63(2)
1.3425 323 × 48 0.0351(1) 0.293(1) 0.081(5) 0.308(2) 0.11(1) 0.40(3) 0.52(2)
1.3450 323 × 48 0.0266(1) 0.235(1) 0.071(4) 0.249(2) 0.10(1) 0.35(2) 0.43(2)

Table 1. Bare quantities from the large volume simulations at β = 5.4.

−m0 mPS/ fPS mV/ fPS mA/ fPS mN/ fPS fV/ fPS mV/mPS mA/mPS mPSL

1.2750 2.10(4) 2.27(4) 3.01(11) 3.73(3) 1.38(3) 1.078(2) 1.45(3) 24.4
1.3000 2.41(7) 2.59(9) 3.24(13) 4.16(3) 1.39(8) 1.077(3) 1.36(2) 20.2
1.3125 2.68(16) 2.88(17) 3.64(19) 4.62(4) 1.39(13) 1.075(6) 1.37(2) 17.6
1.3250 2.94(15) 3.14(14) 3.84(21) 5.00(7) 1.41(9) 1.073(4) 1.34(3) 14.1
1.3325 3.21(23) 3.40(24) 4.30(33) 5.65(13) 1.36(15) 1.068(7) 1.37(4) 11.5
1.3400 3.41(30) 3.60(34) 4.32(35) 6.18(19) 1.37(18) 1.056(17) 1.31(2) 8.4
1.3425 3.58(19) 3.75(20) 4.71(23) 6.45(22) 1.34(11) 1.052(8) 1.36(3) 9.4
1.3450 3.28(18) 3.44(22) 4.61(45) 5.98(26) 1.39(13) 1.059(11) 1.47(6) 7.5

Table 2. Derived quantities from the large volume simulations at β = 5.4.

C Topology

As mentioned in the paper, in the weak coupling phase this model suffers from topo-
logical freezing to a much larger extent than QCD. In Fig. 14 we show the history of the
topological charge for the four heaviest masses in the large volume simulations at β = 5.4.
For sufficiently heavy masses we do observe some fluctuation in the topological charge,
but as we approach the chiral limit, the topological charge freezes completely.

In the strong coupling phase, this does not appear to be a problem. In Fig. 15 we show
the history of the topological charge for the lightest available mass at three different bare
couplings. This is again an indication that something drastic happens when moving from
the strong to the weak coupling phase.

– 26 –



0 100 200 300 400 500 600 700 800 900 1000
−8

−6

−4

−2

0

2

4

6

8
✲ ❂ ✺✿✹❀ ♠✵ ❂ ✦✶✿✷✼✺�

MDU

T
o

p
o

lo
g

ic
a

l 
c
h

a
rg

e

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4
✲ ❂ ✺✿✹❀ ♠✵ ❂ ✦✶✿✸���

MDU

T
o

p
o

lo
g

ic
a

l 
c
h

a
rg

e

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
✲ ❂ ✺✿✹❀ ♠✵ ❂ ✦✶✿✸✶✷✺

MDU

T
o

p
o

lo
g

ic
a

l 
c
h

a
rg

e

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
✲ ❂ ✺✿✹❀ ♠✵ ❂ ✦✶✿✸✷✺�

MDU

T
o

p
o

lo
g

ic
a

l 
c
h

a
rg

e

Figure 14. History of the topological charge for the four heaviest masses in the large volume
simulations at β = 5.4. For all lighter masses, the topological charge is always zero.
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