Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue

Matthew Chojnacki^{*1}, and Matt W. Telfer².

Manuscript for Submission to Aeolian Research

Special Issue: Aeolian Research Special Issue for the Fourth International Planetary Dunes Workshop

*Corresponding Author: Matthew Chojnacki Lunar and Planetary Lab University of Arizona 1541 E. University Blvd. Tucson, AZ 85721-0063 USA office phone: <u>520-626-0752</u> fax: 520-626-8998 email: <u>chojan1@pirl.lpl.arizona.edu</u>

¹Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, 85721, USA; ²SOGEES, University of Plymouth, Drake Circus, Plymouth, Devon. PL4 8AA. UK.

1	
2	Integrating
3	:, Idaho (see
4	n two and a
5	to Bruneau
6	sits created
7	processes).
8	Earth, Mars,
9	ose of this
10	ew ideas and
11	ng programs,
12	op website
13	
4.4	
14	ome of the
15	an studies of series were
16 17	
18	ian (2014). A
19	also reported sible without
20	us, the other
21	Lori Fenton,
22	ession chairs,
23	and Bruneau
24	
25	ive input and
26	ue, provided
27	nanager, was
28	owledge Tim
29	or the papers
30	nsible for the
31	
22	ud towarts for
32 33	nd targets for dies and the
34	e of repeat-
35	ascent areas
36	bedforms in
37	erasimenko).
38	on planetary
39	vell-attended
	ven attended

40	been widely	
41	connaissance	
42	ext given the	
43	<i>uriosity</i> rover	
44	traterrestrial	
45		
46	horphologies,	
47	ionation. The	
48	the presence	
49	e meeting in Comment [MC	;1]:
50	e of aeolian	
51	n science (by	
52	dune science	
53	marized.	
54		
55	; can reveal a	
56	them. Much	
57	ial analogues	
58	gh-resolution	
59	forms termed	
60	tion between	
61	nose of small	
62	e correlation	
63	e authors to	
64	lust flows of	
65		
66	without easy	
67	anes of Mars.	
68	nent (HiRISE)	
69	e extraction	
70	erived which	
71	e features. As	
72	isors such as	
73	available, this	
74	ong-standing	
75	apotre et al.	
76	provides an	
77	olian science	
78	ploration and	
79	and Johnson	

80	-resolution (1	
81	e field in the	
82	e rientation.	
83	ie field, with	
84	e orientation	
85	ts that, away	
86	rmative wind	
	Infative wind	
87		
99		
88		
89	to be active	
90	11; Chojnacki	
91	h a variety of	
92	1 this special	Formatted: Danish
93	is correlated	Field Code Changed
94	ds over many	
95	as found (i.e.	
96	t devil tracks	
97	tor of dune	
98	vhether early	
99	, 2015) were	
100	ibed 13 active	
101	se dune fields	
102	of crest fluxes	
103	northeasterly-	
104	analysis had	
105		
106	field of White	
107	dunes partially	
108	low density of	
109	nafic rocks (on	
110	s sorting, and	
111	eralogies. By	
112	nsity grains in	
113	possibility of	
114	. ,	
115		
116	illustrate how	Comment [MC2]:
117	environments	
118	The article by	

119	irrent state of	
120	Those authors	
121	ies (e.g., wind	
122	ta and surface	
123	hose missions.	
124	uch as climate	
125	ayed a role in	
126	(2017) take a	
127	the potential	
128	ilarities of the	
129	es of resultant	
130	• collaboration	
131		Comment [MC3]:
132	ts of planetary	
133	ty has studied	
134	candidates on	
135	ose authors go	
136	ם a consistent	
137	pe (e.g., flyby	
138	that planetary	
139	(which, whilst	
140	-up trajectory	
141	llowing a top-	
142	nce of aeolian	
143	ique different	
144		
145		
146	vailable to the	Comment [MC4]:
147	y researchers.	
148	with specific	
149	accumulation,	
150	t despite such	
151	ant dunes and	
152	nizable across	
153	fectiveness of	
154	nes Workshop	
155	ו Special Issue	
156	 International 	
157	ge, Utah (see	
158	next meeting	
159	tion in aeolian	

160	nality) suggest	
161	lian processes	
162		
163		
164	ation of aerial	
165	5 Journal of	
166	551-560.	
167		
168	Chojnacki, M.,	
169	ds in Aeolian	
170	onal Planetary	
171	l <mark>d Data, Lunar</mark>	
172		
470		
173	.4. Preliminary	
174	the 45th Lunar	
175	e, Houston, p.	
176		
177	: Insights into	Formatted: Swedish (Sweden)
178	n Research.	
179		
180	Radebaugh, J.,	
181	on planetary	
182	.2010.04.007	
183	S., Golombek,	
184	Stantzos, N.,	
185	gy 40, 31–34.	
186		
187	s as compared	
188	morphologies,	
189	96–142.	
190		
101		
191	bservations of	
191 192 193	bservations of num, Mars. J.	

194 195 196 197	l III, J.F., 2015. m, Mars; new 1, 275–290.
198 199	sediment flux Research.
200	i Research.
201	D., 2016. Our
202 203	n of dunes on D <mark>1</mark>
204	azin, P., 2016.
205 206	ands National Research.
207	
208	s on Mars. J.
209	
210	dges on Mars.
211	
212	., Becker, K.J.,
213	M., Keszthelyi,
214	Eliason, E.M.,
215	pping of Mars
216 217	hoenix landing
218	olian deposits
219	5.001
220	, Rubin, D.M.,
221	lges, N.T., Des
222).W., Mischna,
223	6. Large wind
224	353, 55–58 .
225	
226	
227	<mark>, R.L., Mellon,</mark>
228	econnaissance

229	Geophys. Res.	
230		
231	unes: Possible	
232		
233	hardson, M.I.,	
234	asavada, A.R.,	
235	tal Monitoring	
236	Bagnold Dunes	
237	sWRF. Icarus.	
238		
239	migration and	
240	o <mark>hys. Res. Lett.</mark>	
241		
242	on a Variety of	
243		
244		
244	ig meter-scale	
245	od analogues?	
246		
247	ssue, and the	
247	230, 1–4.	
248	$250, 1^{-4}.$	
243		
250	<mark>s in planetary</mark>	
251	11, 109–126.	
252		
253	prientation on	
254	lian Research.	
255		
256		Comment [MC5]: