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Abstract
It is increasingly being realised that many real world time series are not stationary and

exhibit evolving second-order autocovariance or spectral structure. This article introduces a

Bayesian approach for modelling the evolving wavelet spectrum of a locally stationary

wavelet time series. Our new method works by combining the advantages of a Haar-Fisz

transformed spectrum with a simple, but powerful, Bayesian wavelet shrinkage method.

Our new method produces excellent and stable spectral estimates and this is demonstrated

via simulated data and on differenced infant electrocardiogram data. A major additional ben-

efit of the Bayesian paradigm is that we obtain rigorous and useful credible intervals of the

evolving spectral structure. We show how the Bayesian credible intervals provide extra

insight into the infant electrocardiogram data.

1 Introduction
For a real-life time series it is sometimes difficult to determine whether the underlying process
is really stationary using only observations from a section of the process. Often, the spectral
behaviour of a real-life time series can change from one time point to another and nonstatio-
narity may only become apparent with continued observation. If we disregard the stationarity
assumption, there are an abundance of different models that can be considered. One class of
nonstationary models, which we consider here, are the locally stationary processes with slowly
evolving second-order structure. Two prominent sub-classes are the locally stationary (Fourier)
processes due to [1] and the locally stationary wavelet (LSW) processes due to [2]. However,
nonstationary Fourier processes have a long history see, e.g. [3–5]. Reviews can be found in [6]
and [7]. The second-order structure of a time series can be assessed via the (auto-)covariance
or spectrum, and accurate specification and estimation of these quantities is particularly
important to improve our understanding of the data.

This article assumes that a time series can be modelled by a LSW process and considers the
estimation of the associated evolutionary wavelet spectrum (EWS). As is the case for stationary
spectral estimation obvious ‘raw’ estimators are not statistically consistent and require smooth-
ing. For example, [2] introduced a kind of ‘method of moments’ spectral estimator and used
wavelet shrinkage to smooth it and [8] used kernel smoothing to produce estimates for

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 1 / 24

a11111

OPEN ACCESS

Citation: Nason G, Stevens K (2015) Bayesian
Wavelet Shrinkage of the Haar-Fisz Transformed
Wavelet Periodogram. PLoS ONE 10(9): e0137662.
doi:10.1371/journal.pone.0137662

Editor: Leontios Hadjileontiadis, Aristotle University
of Thessaloniki, GREECE

Received: March 31, 2015

Accepted: August 19, 2015

Published: September 18, 2015

Copyright: © 2015 Nason, Stevens. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper. The infant ECG data used in the
paper as an example can be found in the
WaveThresh package which is a freeware package
available for the R statistical package on the CRAN
repository at http://cran.r-project.org, detailed in the
paper.

Funding: Kara Stevens was supported by a
studentship funded by the SuSTaIn Science and
Innovation Award grant EP/D063485/1. Guy Nason
was partially supported by EPSRC grants from EP/
I01687X/1: “The Energy Programme, an RCUK
cross-council initiative led by EPSRC and contributed

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137662&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://cran.r-project.org


forecasting. See also [9] who introduce a pointwise estimator. [10] introduced a powerful new
approach based on Haar-Fisz transformation of the raw wavelet periodogram and essentially
using universal thresholding [11] on the Haar-Fisz coefficients.

This article builds on the [10] work by using Bayesian wavelet shrinkage to bear on the Haar-
Fisz coefficients and does so for two reasons. First, recent Bayesian wavelet shrinkage techniques
based on the Berger-Müller prior and empirical marginal maximum likelihood determination,
such as [12], show dramatic performance improvements over earlier concepts such as universal
thresholding. The Bayesian approach uses priors well-adapted to the knownmathematical theory
underlying wavelet coefficients of a wide class of functions from Besov scales. Secondly, the coher-
ent Bayesian approach permits rational and effective quantification of credible intervals for the
EWS. Our simulation results and results on real data show good performance and new insights.

Section 2 reviews the locally stationary wavelet model and the associated evolutionary wave-
let spectrum and the wavelet periodogram. Section 3 briefly reviews the Haar-Fisz transforma-
tion at establishes notation for subsequent Bayesian wavelet shrinkage. Section 4.2 first reviews
wavelet shrinkage and Bayesian wavelet shrinkage and then describes each of the components
of our Bayesian wavelet shrinkage method adapted for the Haar-Fisz-transformed spectral
coefficients. Section 5 outlines some implementation issues, presents a simulation and analyses
an infant electrocardiogram (ECG) data set and compares it to earlier analyses. Finally, section
6 concludes and provides some ideas for further developments.

2 Locally Stationary Wavelet Processes
Locally stationary wavelet (LSW) processes were introduced by [2], and extended to encompass
a larger range of processes in [9] which we use here. As in [2] assume that the wavelets used are
[13] compactly supported, and that the length of the support for any wavelet ψj,0 is equal to Lj:
= jsupp(ψj,0)j. Therefore, if we have J scales, where 1 is the finest scale, then jsupp(ψj, k)j = Lj =
(2j − 1)(L1 − 1) + 1 8 j� 1. Here N is the set of natural numbers {1, 2, 3, . . .}.

Definition 1 (The Locally Stationary Wavelet Process) A LSW process is a sequence of dou-
bly indexed stochastic processes, {Xt, T}t = 0, . . ., T−1, where T = 2J for some J 2 N. This process has
the representation

Xt;T ¼
X1
j¼1

X1
k¼�1

wj;k:T cðsÞ
j;k�t xj;k; ð1Þ

where cðsÞ
j;k�t is a discrete non-decimated family of wavelets for scale j 2 N, location k 2 Z based

on a mother wavelet, ψ(t), of compact support, which we shall refer to as the synthesis wavelet;
and ξj, k is a Gaussian random zero mean orthonormal increments sequence. The component wj,

k:T ξj, k can be thought of as a random amplitude of the oscillation cðsÞ
j;k�t .

The quantities in Eq (1) possesses the following properties:

a. E[ξj, k] = 0, 8 j 2 N, k 2 Z () E[Xt] = 0).

b. E[ξj, k, ξj0 , k0] = δj, j0 δk, k0, 8 j, j0 2 N, k, k0 2 Z.

c. For each j 2 N there exists a function Wj(z) for z 2 (0,1), that possesses the following
properties
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i.

X1
j¼1

jWjðzÞj2 < �C uniformly in z 2 ð0; 1Þ:

ii. There exists a sequence of constants Cj such that for each T

sup
k

jwj;k;T �WjðzÞj �
Cj

T
:

iii. The total variation (TV) ofW 2
j ðzÞ is bounded by a constant Lj, that is

TVðW2
j Þ :¼ sup

XI

i¼1

jW2
j ðaiÞ �W2

j ðai�1Þj : 0 < a0 < . . . < aI < 1; I 2 N

( )

� Lj:

iv. The constants Cj and Lj satisfy X1
j¼1

LjðLjLj þ CjÞ � r < 1:

The time evolution of LSW processes is governed by the time-scale varying evolutionary
wavelet spectrum which we define next.

2.1 Evolutionary Wavelet Spectrum and its Estimation
The evolutionary wavelet spectrum (EWS) measures the ‘contribution to the variance’ of Xt, T

at scale level j 2 N and location z 2 (0,1) and is defined as follows.
Definition 2 (Evolutionary Wavelet Spectrum) The EWS is defined by

SjðzÞ ¼ jWjðzÞj2 8 j 2 N and z 2 ð0; 1Þ: ð2Þ

Estimation of the EWS can be achieved by first computing the raw wavelet periodogram,
defined as follows.

Definition 3 (RawWavelet Periodogram) The raw wavelet periodogram is defined as

Ij;k;T ¼
����X1
t¼�1

Xt;T c
ðaÞ
j;k�t

����
2

; ð3Þ

where Xt, T = 0 for t 6¼ 0, . . ., T − 1, j = 1, . . ., J, k = 0, . . ., T − 1, J = log2(T) and c
ðaÞ
j;k is a discrete

non-decimated family of wavelets we shall refer to as the analysis wavelet.
In theory, the analysis wavelet from Eq (3) is the same as the synthesis wavelet in Eq (1).

However, often in practice the synthesis wavelet is unknown. For the purposes of our analysis
we shall assume the synthesis wavelet is known and equivalent to the analysis wavelet. The raw
wavelet periodogram, Ij, k, is a biased estimator of the EWS, but can be made asymptotically
unbiased after simple correction which we will explain next. To proceed with this, the autocor-
relation wavelet (ACW) is defined as follows.

Definition 4 (Discrete Autocorrelation Wavelet) The ACW at scale j 2 N at lag τ 2 Z is
defined by

CjðtÞ ¼
X1
k¼�1

cj;kcj;k�t:
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The discrete ACW determines the autocorrelation of a wavelet at a particular scale, j and differ-
ent lags, τ. The discrete ACW provides a family of symmetric, compactly supported, positive
semi-definite functions on τ 2 Z. Further theoretical details can be found in [2] and [14]. To
form an asymptotically unbiased estimator of the spectrum we require the inner product
matrix of the ACW defined as follows.

Definition 5 (The Inner Product Matrix) The operator A = (Aj, l)j, l � 0 is defined by

Aj;l ¼ hCj;Cli ¼
X
t

CjðtÞ ClðtÞ: ð4Þ

and the J-dimensional matrix is AJ = (Aj, l)j, l = 1, . . ., J.
Then using definitions 1 and 5, proposition 3.3 of [2] shows that

E½Ij;k� ¼
X

l

Aj;l SlðzÞ þOðT�1Þ; 8 z 2 ½0; 1Þ; ð5Þ

for j 2 N, k 2 Z, where A is calculated using the chosen analysis wavelet and the variance of the
wavelet periodogram is given by

var Ij;k;T
h i

¼ 2
X

l

Aj;l SlðzÞ
( )2

þO
2j

T

� �
; j � 0 ð6Þ

This result implies that as the sample size increases (T!1) the variance does not vanish. [2]
show that the obvious asymptotically unbiased estimator A�1

J Ik for {Sj(k/T)} where Ik = (I1,k,

. . ., IJ, k) is not statistically consistent. As is typical in spectral analysis in time series the period-
ogram needs to be smoothed to obtain consistency.

2.2 Wavelet Periodogram Smoothing
Various techniques have already been developed to smooth the wavelet periodogram, such as
those by [2, 9, 10]. [9] is theoretically attractive but practically challenging.

In [2] each level, j, of the raw wavelet periodogram is smoothed as a function of z using
translation-invariant (TI) de-noising [15]. Non-linear wavelet shrinkage is performed on the
approximately w21 distributed raw wavelet periodogram then bias corrected by the inner prod-
uct matrix (A−1). An appropriate threshold for the shrinkage was determined in [2]. The tech-
nique raises a number of questions, such as what is an appropriate wavelet? [2] believe that
smoother wavelets, such as Daubechies extremal phase with 10 vanishing moments, help to
avoid ‘leakage’ of power into the surrounding scales because of their short support in the Fou-
rier domain. They also produce less spiky and variable estimates in their example.

[10] suggested applying the soft shrinkage rule upon the Haar-Fisz coefficients of the raw
wavelet periodogram, using a scale dependent threshold. The methodology produced an esti-
mator which was mean-square consistent, rapidly computable, easy to implement and per-
forms well in practice. However, the theoretical validation of this technique was restricted to
locally stationary processes with a time-varying, but piecewise constant form.

The Haar-Fisz transform in [10] is very attractive producing transformed periodogram
ordinates that are very close to being uncorrelated and Gaussian. We apply Bayesian wavelet
shrinkage to this enticing situation and not having to worry about first order estimation error
in the variance.
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3 Spectral Normalisation using the Haar-Fisz Transform
The Haar-Fisz transformation works by normalising the wavelet coefficients of a signal to
obtain elements that are close to Gaussian and have near-constant variance. We adapt the defi-
nition from [10], Section 6, which applies the Haar-Fisz transform to the raw wavelet periodo-
gram Ij, k as follows. To prevent unnecessary notational overload we will temporarily drop the j
subscript and write Im for Ij, m. The next algorithm is applied to each scale j of the periodogram
separately.

1. Let cJ, m: = Im form = 0, . . ., T − 1, where T = 2J.

2. For l = (J − 1), . . ., 0, recursively for the vectors

dl;m ¼ 2�1=2ðclþ1;2m � clþ1;2mþ1Þ and cl;m ¼ 2�1=2ðclþ1;2m þ clþ1;2mþ1Þ;

wherem = 1, . . ., 2l − 1, and dl, m and cl, m are the Haar wavelet and scaling coefficient of the
raw wavelet periodogram at scale j, respectively.

3. Divide the wavelet coefficients by the scaling coefficients to produce the Haar-Fisz coeffi-
cients

fl;m ¼ dl;m

cl;m
; ð7Þ

for cl, m 6¼ 0. For cl, m = 0 set fl, m = 0.

4. For l = 0, . . ., J − 1, recursively modify the vectors cl:

clþ1;2m ¼ cl;m þ fl;m and clþ1;2m�1 ¼ cl;m � fl;m

where c0,0 = c0,0 andm = 1, . . ., 2l,

5. DefineHm = cJ, m,m = 1, . . ., 2J.

In other words, we have transformed the input vector fImg2
J

m¼1 into the Haar-Fisz output

vector fHmg2J

m¼1. Now we re-introduce the j subscript as this Haar-Fisz processing is replicated
at each scale, and let F denote the non-linear invertible Haar-Fisz operator, henceHj, k = FIj, k.

[10] model the raw wavelet periodogram as

Ij;k � RjðzÞZ2
j;k;

where Rj(z) = (AS)j(z), z = k/T and Z2
j;k � w21, for j 2 N, k = 1, . . ., 2J = T.

Proposition 6.1 in [10] details a number of properties possessed by F. Property 6.1(2) states
the Haar-Fisz transformation possesses the log-like property, which suggests the a potential
model for theH is

Hj;k ¼ BjðzÞ þ ej;k ð8Þ

for j = 1, . . ., J and k = 1, . . ., 2J, where Bj(z) = FRj(z), z = k/T and ej;k ¼ FZ2
j;k. As the distribu-

tion ofHj, k is approximatelyN ðBj;k; s
2
j Þ, ej, k are approximately uncorrelated with
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ej;k � N ð0; s2
j Þ, due to Proposition 6.1 (3,4,5) from [10]. Model Eq (8) is conducive to Bayesian

wavelet shrinkage as explained next.

4 BayesianWavelet Shrinkage

4.1 Brief Review of Wavelet Shrinkage
Wavelet shrinkage is a form of nonparametric regression introduced in a series of seminal arti-
cles such as [11, 16]. See [17] or [18] for more details and further references. Suppose we have a
set of noisy observations, y = (y1, . . ., yn) of an unknown function f(x), taken at regularly spaced
locations, denoted by x = (x1, . . ., xn). In our context, we can use the well-known additive sig-
nal-plus-noise model for each scale-level, j, in Eq (8):

yi ¼ f ðxiÞ þ ei for i ¼ 1; . . . ; n;

where e = (e1, . . ., en) are random variables which are usually assumed to be iid with zero mean

and some variance σ2. The aim is to devise an estimator f̂ ðxÞ to recover the signal f (also
known as B) from the noisy observations yi (H). Wavelet shrinkage is very simple and the esti-
mator can be obtained by the following three steps.

1. Apply the discrete wavelet transformation (DWT) to noisy data y, giving

d ¼ βþ ε;

where d =W y, β =Wf(x), ε =W e andW is the orthogonal DWTmatrix for a particular
smoothing wavelet (SW). The vector β are considered to be the ‘true’ wavelet coefficients, d
are the noisy empirical wavelet coefficients.

2. Apply a shrinkage method and threshold (such as hard shrinkage and the universal thresh-

old) to the noisy coefficients, d, to obtain estimates, β̂, of the wavelet coefficients β.

3. Apply the inverse DWT to the estimated coefficients β̂ to obtain an estimate, f̂ ðxÞ, of the
underlying function f(x) at the data points x.

To enable us to obtain good estimates with a sound basis for obtaining credible intervals we
adopt a Bayesian wavelet shrinkage approach as described next.

4.2 Bayesian Wavelet Shrinkage
Bayesian statistical methods start with existing prior knowledge of model parameters (β),
which are updated using the data (y) to give posterior knowledge. The resulting posterior
knowledge can be used to interpret these parameters. The model commonly used for Bayesian
inference is

pðβjyÞ ¼ pðyjβÞpðβÞR
YpðyjβÞpðβÞ dy

; ð9Þ

where p(yjβ) is the likelihood, p(β) is the prior density function and p(βjy) is the posterior den-
sity function of β given y. Credible intervals can be obtained from the upper and lower tail
quantiles of the posterior distribution.

Adopting a Bayesian approach for wavelet shrinkage has become increasingly popular for
wavelet denoising due to its excellent theoretical and practical properties, see [19, 20, 21, 22,
23] and [12], for example. Bayesian wavelet shrinkage has also been used for stationary spectral
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estimation in [24] and for credible intervals for regression by [25, 26] and [27]. The usual pro-
cedure is to place a prior distribution on the wavelet coefficients, use the Bayesian paradigm
specified by Eq (9) with the necessary components specified as follows to enable us to derive a
closed-form expression for the posterior means and variance. For parts of our specification
below we shall use the empirical Bayes approach from [12].

4.3 Regression Model
We shall apply Bayesian wavelet shrinkage to the Haar-Fisz transformed wavelet periodogram,
H. Taking the DWT of Eq (8), for a particular scale j, we obtain

hl;m ¼ bl;m þ εl;m; ð10Þ

where hl, m = (WHj)l, m, βl, m = (WBj)l, m, εl, m = (Wej)l, m for scales l = 0, . . ., J − 1 and locations
m = 1, . . ., 2l, andW is the T × T orthogonal DWTmatrix associated with some [13] compactly
supported wavelet. Due to the orthogonality of the wavelet transformation and the approxi-
mate error structure of the ej, k noted above, the distribution of the wavelet-transformed error

is approximately εl;m � N ð0; n2l Þ, where n2l ¼ 2J�ls2
j . For notational clarity we shall cease men-

tion of the scale index j. However, it should be remembered we are applying Bayesian wavelet
shrinkage scale-by-scale j to Eq (8).

4.4 Prior
We propose using the Berger-Müller mixture prior for βℓ,m

pðbl;mÞ ¼ al d0ðbl;mÞ þ ð1� alÞ xtlðbl;mÞ; ð11Þ

where ξτ(β) = τξ(τβ), δ0(x) is the Dirac-delta function at zero, αl is the prior probability that the
wavelet coefficient is zero, τl is the prior precision and ξ is the distribution of a non-zero wave-
let coefficient. [12] recommended using a heavy-tailed distribution, such as the Laplace distri-
bution, to model this parameter and we use this here. Therefore

pðbl;mÞ ¼ al d0ðbl;mÞ þ 1
2
ð1� alÞ tl exp f�tl jbl;mjg; ð12Þ

where τl is the prior precision and 2t�2
l is the prior variance for scale l = 1, . . ., J.

4.5 Hyperparameter Determination
As in [12] we use marginal maximum likelihood estimation (MMLE) to determine the hyper-
parameters: prior probability and precision (αl, τl), and error variance νl. To do this, we maxi-
mize the hyperparameters over the log-likelihood of the error distribution multiplied by the
prior,

Lðal; tl; nl; jhlÞ ¼
X2l�1

m¼0

log fal�nl
ðhl;mÞ þ ð1� alÞgðhl;mjnl; tlÞg; ð13Þ

where

gðyjnl; tlÞ ¼
Z 1

�1
�nl

ðy � xÞ xtlðxÞdx: ð14Þ

The maximum log-likelihood can not be obtained analytically and required numerical
maximisation.
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4.6 Likelihood
Due to Property 6.1 (4) the Haar-Fisz transformation bestows approximate/asymptotic Gaus-
sianity upon the data. Hence, we assume a likelihood of the form

pðhl;mjbl;mÞ ¼ �nl
ðbl;m � hl;mÞ ¼ n�1

l ð2pÞ�1=2 exp � 1

2n2l
ðhl;m � bl;mÞ2

� �
; ð15Þ

where ϕνl(�) is the the probability density function of the Gaussian distribution with variance
n2l , which we shall assume is equal to the error variance.

4.7 Posterior Distribution
By combining the prior and the likelihood, we obtain the posterior distribution of the form

pðbl;mjhl;mÞ ¼ pðbl;mÞpðhl;mjbl;mÞR
pðyÞpðhl;mjyÞdy

¼ ½yld0ðbl;mÞ þ xtlðbl;mÞ��nl
ðbl;m � hl;mÞ

yl �nl
ðhl;mÞ þ

R
xtlðyÞ�nl

ðy � hl;mÞdy
;

ð16Þ

where θl = αl(1 − αl)
− 1 is the odds ratio.

We will use the posterior mean as our ‘estimator’ of the wavelet coefficients {βl, m}. The pos-
terior mean can be obtained by evaluating the integral

b̂ l;m ¼ E½bl;mjhl;m� ¼
Z

x
pðxÞpðhl;mjxÞR
pðyÞpðhl;mjyÞdy

dx

¼
R
x xtl

ðxÞ�nl
ðx � hl;mÞdx

yl �nl
ðhl;mÞ þ

R
xtlðyÞ�nl

ðy � hl;mÞdy
:

ð17Þ

For credible intervals we require the posterior variance which can be calculated via the integral

Var½bl;mjhl;m� ¼ E½b2

l;mjhl;m� � ðE½bl;mjhl;m�Þ2

¼
R
x2 xtl

ðxÞ�nl
ðx � hl;mÞdx

yl �nl
ðhl;mÞ þ

R
xtl
ðyÞ�nl

ðy � hl;mÞdy
� b̂2

l;m:
ð18Þ

To simplify notation define

Qiðhl;mÞ ¼
Z 1

�1
xi xtlðxÞ�nl

ðx � hl;mÞdx; for i ¼ 0; 1; 2: ð19Þ

Lemma 1 The quantities Qi(h) for the Laplace mixture prior in Eq (12) are given by

a. i = 0

Q0
l ðhÞ ¼ tl

2
e�h2=2n2

l em
2
1
=2n2

l F
�m1

nl

� �
þ em

2
2
=2n2

l F
m2

nl

� �� �
:
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b. i = 1

Q1
l ðhÞ ¼ tl

2
e�h2=2n2

l

(
em

2
1
=2n2

l m1 F �m1

nl

� �
� nl � � m1

nl

� �� �

þ em
2
2
=2n2

l m2 F
m2

nl

� �
þ nl �

m2

nl

� �� �) :

c. i = 2

Q2
l ðhÞ ¼ tl

2
e�h2=2n2

l

(
em

2
1
=2n2

l ðn2l þ m2
1ÞF � m1

n1

� �
� m1nl � �m1

n1

� �� �

þ em
2
2
=2n2

l ðn2l þ m2
2ÞF

m2

nl

� �
þ m2nl �

m2

nl

� �� �) :

Proof. in the appendix.
Proposition 1 The posterior mean of the wavelet coefficients in model (10) with components

specified by sections 4.4 to 4.6 is given by:

b̂ l;m ¼ Q1ðhl;mÞ
yl �nl

ðhl;mÞ þ Q0ðhl;mÞ
; ð20Þ

and posterior variance by

Var½bl;mjhl;m� ¼ Q2ðhl;mÞ
yl �nl

ðhl;mÞ þ Q0ðhl;mÞ
� b̂2

l;m: ð21Þ

Proof. Substitute the formula (19) into Eqs (17) and (18).
The next result gives us the necessary log-likelihood function of our Bayesian model from

Eq (13) for the Laplace mixture prior.
Lemma 2 The log-likelihood function for the Laplace mixture prior is

Lðal; tl; nljhlÞ ¼
X2l�1

m¼0

log

(
al�nl

ðhl;mÞ

þ tlð1� alÞ
2

e�y2=2n2
l em

2
3
=2n2

l F
�m3

nl

� �
þ em

2
4
=2n2

l F
m4

nl

� �� �)
;

where ϕν(�) is the zero mean Gaussian pdf with variance ν2, F(�) is the Gaussian cdf, m3 ¼
y þ n2l tl and m4 ¼ y � n2l tl .

Proof. The proof uses the same methods as for the proof of Lemma 1.

5 Implementation, Simulation and an Example

5.1 Implementation Issues
We determine the hyperparameters via MMLE of Eq (13) using the function optim in R
which uses the L-BFGS-Bmethod from [28]. Empirical investigations revealed that with four
coarsest scales, l = 0,1,2,3, as they consist of 1,2,4 and 8 wavelet coefficients (respectively),
numerically maximising the log-likelihood for each scale resulted in strongly biased
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hyperparameter estimates. Therefore, instead of maximising the log-likelihood for the four
coarsest scales separately, the coefficients were grouped together and maximisation was per-
formed over all the four scales. To distinguish between scales, the hyperparameter estimates
were scaled appropriately, such that as the scale decreased αl decreased and τl increased by a
factor of two.

Ultimately, we are seeking an estimate of the posterior (mean and) variance of B(z). For-
mula (21) gives us an estimate of the posterior variance of βl, m the wavelet coefficients of B.
We could use the approximate method of [25] to obtain the posterior variance of B(z). This
works well for Haar wavelets (where the square of the wavelet ψ2(z) is equal to the father wave-
let) but less accurate for non-Haar wavelets. Hence, we adopt the following simple sampling
strategy to obtain posterior credible intervals for B(z).

We simulate S realisations for a complete set of wavelet coefficients {βl, m} from the posterior
distributions given by Eq (16). Each realisation of wavelet coefficients is then subjected to the
inverse wavelet transform which provides a posterior realisation of the B = {B(z1), . . ., B(zn)}.
We then use the sample mean and variance of the B(zi) to provide the ‘estimate’ and credible
intervals.

Fig 1 depicts a flow diagram of the entire computational process required to produce an esti-
mate of the EWS via Bayesian wavelet shrinkage of the Haar-Fisz transformed wavelet periodo-
gram and credible intervals.

5.2 Simulation

To test the performance of our method we simulated 200 realisations, fXtg1023t¼0 , from the EWS
in Fig 2 with Gaussian innovations as shown in Fig 3. The EWS was designed to encapsulate a
time series with slowly varying power at a middle scale along with a burst of power at the finest
scale.

These simulations were executed using the aforementioned wavethresh [29] package.
First, we create a blank spectral object using the cns() function and then using the inserter
function putD() we installed the sinusoidal spectral energy at level four and the small block
at the finest scale. The realizations can then be generated by executing the LSWsim() function
with the specified spectrum as an argument.

For each realization we produced a Bayesian Haar-Fisz and translation-invariant (TI) de-
noised estimator using the Daubechies extremal phase (EP) with 1 − 10 vanishing moments,
and Daubechies least asymmetric (LA) with 4 − 10 vanishing moments smoothing wavelets.
The TI estimator was described in Section 2.2. The average mean squared error (AMSE) were
calculated using Haar-Fisz estimator with twenty cycle spins to remove any features of the
wavelet alignment which might unduly influence our estimator. See [15] for further details on
cycle spinning.

We calculated the mean EP smoothing wavelet estimate for each of the 200 processes, then
calculated AMSE for both methods. The overall AMSE for the TI De-noising estimators was
0.192 and for Bayesian Haar-Fisz estimators 0.131.

Table 1 shows the AMSE for each estimator and choice of smoothing wavelet. The EP1 cor-
responds to the Haar wavelet, which gives the poorest estimator for Haar-Fisz and second

Fig 1. Flow diagram of Bayesian modelling of the discrete wavelet transformation (DWT) of the Haar-Fisz (H-F) transformation of the raw wavelet
periodogram using a pre-determined smoothing wavelet (SW).

doi:10.1371/journal.pone.0137662.g001
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poorest for TI-D, this is only the best wavelet to use if the underlying structure of the EWS for
each scale is known to be piecewise constant. We found that both methods seemed fairly robust
to the choice of wavelet, as the difference between the AMSE appeared to be fairly small.
Although we noticed the AMSE of the TI de-noising estimator decreased as the support of the
wavelet increased, which was not the case for the Bayesian Haar-Fisz estimator. However, the
Bayesian Haar-Fisz estimator consistently out performed the TI de-noising estimator and also
with a much smaller variability (as indicated by the mean absolute deviation figures).

We compared the best TI de-noising estimator [2, SW = EP10], as shown in Fig 4 to our best
estimator using Bayesian modelling of the Haar-Fisz periodogram (SW = LA6), see Fig 5, as
determined by the results in Table 1.

Comparing the plots in Figs 4 and 5, we can see that the Bayesian Haar-Fisz estimator is less
susceptible to Gibbs-type phenomena, but the leakage of power in neighbouring scales
appeared to be fairly comparable for both estimators. Some of the power from scale j = 6 has
leaked into j = 5,7, which has made recovery of the true underlying signal difficult.

Fig 2. Plot of the example true evolutionary wavelet spectrum.

doi:10.1371/journal.pone.0137662.g002
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Table 1. Averagemean square error (×10−3) over 200 simulations for the translation-invariant de-noising (TI-D) and Bayesian Haar-Fisz (H-F) esti-
mators using the smoothing wavelets: Daubechies extremal phase (EP) with 1 − 10 vanishingmoments and Daubechies least asymmetric (LA)
with 4 − 10 vanishingmoments. Figures in parentheses show the median absolute deviation (mad() in R) of the mean squared errors.

Vanishing Moments Extremal Phase Least Asymmetric

TI-D H-F TI-D H-F

1 196(43) 146(27) - -

2 198(44) 130(28) - -

3 193(40) 123(26) - -

4 191(39) 129(28) 196(43) 124(28)

5 190(40) 136(25) 195(41) 128(28)

6 188(39) 132(26) 195(43) 122(28)

7 187(37) 126(28) 196(42) 136(23)

8 186(37) 129(26) 195(41) 123(28)

9 186(37) 138(27) 195(43) 136(26)

10 185(37) 139(27) 195(42) 123(26)

doi:10.1371/journal.pone.0137662.t001

Fig 3. Simulated locally stationary wavelet process fXtg1023

t¼0 generated using the Haar synthesis wavelet and Gaussian innovations from the
spectrum in Fig 2.

doi:10.1371/journal.pone.0137662.g003
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Figs 6–9 show the EWS estimation for the simulated example in greater detail. The new
method is certainly better at detecting the burst at the finest scale shown in Fig 6. In Fig 9 we
judge our method to be comparable to the TI-denoising away from z = 0.6 and considerably
better near to z = 0.6. (This is because the red and blue lines both roughly match the solid line
truth, but the blue is much better near to z = 0.6 where the TI-D (red) suffers from extreme
variability).

A key advantage of our new methodology is the ability to easily generate credible intervals
which are shown by grey-scale in Figs 6–9. For example, even though the estimator for S3(z)
appears to be non-zero in Fig 8, the 50% credible intervals completely contain zero which

Fig 4. Estimated evolutionary wavelet spectrum using translation-invariant denoising with SW = EP10

arising from the realisation in Fig 2.

doi:10.1371/journal.pone.0137662.g004
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indicates (correctly) that there is no real power at this scale level. The same is true, but less
clear maybe, in Fig 7.

5.3 ECG Example
To test our methods further, we consider the study of infant sleep [30]. Five mothers and their
healthy first-born infants slept in a sleep laboratory designed to be similar to a normal domestic
bedroom once a month for the first five months. The rooms were thermally controlled and all
infants slept supine in a cot besides their mother, who were free to care for their infants as they
would at home (e.g. feed, change nappy, etc). Most studies commenced around 8–9pm and fin-
ished around 8–9am the next morning.

Fig 5. Estimated evolutionary wavelet spectrum using our Bayesian Haar-Fisz method with SW = LA6,
arising from the realisation in Fig 2.

doi:10.1371/journal.pone.0137662.g005
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Amongst the measurements taken of each infant was their heart rate via ECG (electro-car-
diogram) monitors, their brain waves via a EEG (electro-encephalogram) sensor and eye move-
ments using a EOG (electro-oculogram) sensor. The infant’s sleep state was then determined
through manual analysis where a trained observer visually interprets the EEG and EOG at pre-
determined time periods, which can be time consuming and laborious. Four sleep states were
recorded: AWAKE, ACTIVE SLEEP, BETWEEN and QUIET SLEEP. For simplicity, we have
combined the latter three states into ASLEEP.

This data is freely available as part of the wavethresh [29] package for R [31] in the data
sets BabyECG and BabySS.

Fig 6. True evolutionary wavelet spectrum (black solid), translation-invariant estimator (red dotted) and our Bayesian Haar-Fisz estimator (blue
dashed) for the j = 1 finest scale along with the 50% (dark grey) and 90% (light grey) credible intervals for the Bayesian Haar-Fisz estimator. These
estimates are all obtained by denoising the single realisation from Fig 3.

doi:10.1371/journal.pone.0137662.g006

BayesianWavelet Shrinkage of the Haar-Fisz Wavelet Periodogram

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 16 / 24



Fig 10 is a plot of 2048 observations sampled every 16 seconds recorded from 21:17:59 to
06:27:18 of the ECG and determined sleep state for the same sixty-six day old infant. The plot
indicates that when the infant is awake there is a larger variance in the infant’s heart rate com-
pared to the two different sleep stages, for which quiet sleep appears to possess the smallest var-
iance. We have produced an estimate of the EWS for the differenced ECG data to establish
whether we could use the second order structure of the data to determine the infant’s sleep
state. The plot in Fig 11 implies the majority of the power of the spectrum is present at the fin-
est scale. There appears to be some difficulty in discerning the infant’s sleep state when it
changes quickly (such as between location z 2 [0.2,0.4]). As with earlier analyses, such as that
in [18], there appears to be a link between active sleep and higher power at the finest scale.

Fig 7. True evolutionary wavelet spectrum (black solid), translation-invariant estimator (red dotted) and our Bayesian Haar-Fisz estimator (blue
dashed) for the j = 2 scale along with the 50% (dark grey) and 90% (light grey) credible intervals for the Bayesian Haar-Fisz estimator. These
estimates are all obtained by denoising the single realisation from Fig 3.

doi:10.1371/journal.pone.0137662.g007
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However, our new analysis reveals much more: that there is more uncertainty associated with
the higher power estimates and more certainty when the power is lower. The arrangement of
the posterior mean estimate relative to the 50/90% credible intervals indicates skew in the pos-
terior distribution which is especially noticeable around the peak near 0.65. A blow-up of the
finest scale power is shown in Fig 12.

6 Conclusion and Further Work
This article combines the Haar-Fisz transform with Bayesian wavelet shrinkage to obtain a new
method for modelling the evolutionary wavelet spectrum of a locally stationary wavelet pro-
cess. Bayesian wavelet shrinkage is known and powerful technique and well-established for
noisy data contaminated by uncorrelated Gaussian noise which the Haar-Fisz transform

Fig 8. True evolutionary wavelet spectrum (black solid), translation-invariant estimator (red dotted) and our Bayesian Haar-Fisz estimator (blue
dashed) for the j = 3 scale along with the 50% (dark grey) and 90% (light grey) credible intervals for the Bayesian Haar-Fisz estimator. These
estimates are all obtained by denoising the single realisation from Fig 3.

doi:10.1371/journal.pone.0137662.g008
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approximately, but effectively, provides. Although there are competing methods for spectral
estimation there are, as far as we know, no methods for generating credible intervals for evolv-
ing spectra certainly in the wavelet case. Our Bayesian wavelet shrinkage gives a rational
method for assessing uncertainty in this case providing us with approximate credible intervals.

Further work to improve our method would be to improve our method of determining
hyperparameters and also investigate its application to irregularly spaced time series. Another
interesting possibility is to apply Bayesian wavelet shrinkage to Haar-Fisz transformed spectra
in the stationary or locally stationary Fourier case.

Fig 9. True evolutionary wavelet spectrum (black solid), translation-invariant estimator (red dotted) and our Bayesian Haar-Fisz estimator (blue
dashed) for the j = 4 scale along with the 50% (dark grey) and 90% (light grey) credible intervals for the Bayesian Haar-Fisz estimator. These
estimates are all obtained by denoising the single realisation from Fig 3.

doi:10.1371/journal.pone.0137662.g009
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A Proofs

Proof of Lemma 1
The integral in Eq (19) can be shown to be equal to:

Qi
lðhl;mÞ ¼ tl

2
e�h2

l;m
=2n2

l em
2
1
=2n2

l

Z 0

�1
yi �nl

ðy � m1Þ dy ð22Þ
�

þ em
2
2
=2n2

l

Z 0

�1
ð�yÞi �nl

ðy þ m2Þ dy
�
; ð23Þ

Fig 10. Electrocardiogram plot (light grey line) and sleep state (black solid line) of a 66 day old infant sampled every 16 seconds recorded from
21:17:59 to 06:27:18.

doi:10.1371/journal.pone.0137662.g010
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where ϕν(�) is the zero mean Gaussian pdf with variance ν2, m1 ¼ hl;m þ n2l tl and
m2 ¼ hl;m � n2l tl. Formula (23) is obtained by substituting in the formula for the Laplace den-

sity in Eq (19) and splitting the integral into two parts on the negative and positive domains.
Then, on each integral, the exp(−τljxj) term is merged with the exponential in the normal den-
sity and then the square completed for each term.

Finally, to obtain the quoted formulae in Lemma (1) use the following properties of the
Gaussian distribution:

Z y

�1
�ðxÞdx ¼ FðyÞ;

Z y

�1
x�ðxÞdx ¼ ��ðyÞ and

Z y

�1
x2�ðxÞdx ¼ FðyÞ � y�ðyÞ:

Fig 11. Estimated evolutionary wavelet spectrum for all scales of the infant ECG data.

doi:10.1371/journal.pone.0137662.g011

BayesianWavelet Shrinkage of the Haar-Fisz Wavelet Periodogram

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 21 / 24



Acknowledgments
Kara Stevens was supported by a studentship funded by the SuSTaIn Science and Innovation
Award grant EP/D063485/1. Guy Nason was partially supported by EPSRC grants from EP/
I01687X/1: “The Energy Programme, an RCUK cross-council initiative led by EPSRC and con-
tributed to by ESRC, NERC, BBSRC and STFC” and EP/K02951/1. The authors would like to
thank Peter Fleming, Jeanine Young and K Pollard of the Institute of Child Health, The Royal
Hospital for Sick Children, Bristol for supplying the data.

Author Contributions
Conceived and designed the experiments: GPN KS. Performed the experiments: KS. Analyzed
the data: KS GPN. Contributed reagents/materials/analysis tools: GPN. Wrote the paper: GPN
KS.

Fig 12. Estimated evolutionary wavelet spectrum (blue dashed line) for j = 1 with 50% (dark grey) and 90% (light grey) credible interval for the
differenced Infant ECG data and sleep state (black solid line).

doi:10.1371/journal.pone.0137662.g012

BayesianWavelet Shrinkage of the Haar-Fisz Wavelet Periodogram

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 22 / 24



References
1. Dahlhaus R. Fitting Time Series Models to Nonstationary Processes. Annals of Statistics. 1997; 25:1–

37. doi: 10.1214/aos/1034276620

2. Nason GP, von Sachs R, Kroisandt G. Wavelet Processes and Adaptive Estimation of the Evolutionary
Wavelet Spectrum. J Roy Statist Soc B. 2000; 62:271–292. doi: 10.1111/1467-9868.00231

3. Page CH. Instantaneous power spectra. Journal of Applied Physics. 1952; 23:103–106. doi: 10.1063/1.
1701949

4. Silverman RA. Locally stationary random processes. IRE Trans Information Theory. 1957; IT-3:182–
187. doi: 10.1109/TIT.1957.1057413

5. Priestley MB. Evolutionary Spectra and Non-Stationary Processes. Journal of the Royal Statistical
Society: Series B. 1965; 27:204–237.

6. Nason GP, von Sachs R. Wavelets in time series analysis. Phil Trans R Soc Lond A. 1999; 357:2511–
2526. doi: 10.1098/rsta.1999.0445

7. Dahlhaus R. Locally stationary processes. Handbook of Statistics. 2012; 30. doi: 10.1016/B978-0-444-
53858-1.00013-2

8. Fryzlewicz P, Van Bellegem S, von Sachs R. Forecasting non-stationary time series by wavelet pro-
cess modelling. Ann Inst Statist Math. 2003; 55:737–764. doi: 10.1007/BF02523391

9. Van Bellegem S, von Sachs R. Locally Adaptive Estimation of Evolutionary Wavelet Spectra. Ann Stat.
2008; 36:1879–1924. doi: 10.1214/07-AOS524

10. Fryzlewicz P, Nason GP. Haar-Fisz Estimation of Evolutionary Wavelet Spectra. J Roy Statist Soc B.
2006; 68:611–634. doi: 10.1111/j.1467-9868.2006.00558.x

11. Donoho DL, Johnstone IM. Ideal Spatial Adaption via Wavelet Shrinkage. Biometrika. 1994; 81:425–
455. doi: 10.1093/biomet/81.3.425

12. Johnstone IM, Silverman BW. Empirical Bayes Selection of Wavelet Thresholds. Ann Stat. 2005;
33:1700–1752. doi: 10.1214/009053605000000345

13. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM; 1992.

14. Eckley IA, Nason GP. Efficient computation of the discrete autocorrelation wavelet inner product matrix.
Statistics and Computing. 2005; 15:83–92. doi: 10.1007/s11222-005-6200-y

15. Coifman RR, Donoho DL. Translation-invariant de-noising. In: Antoniadis A, Oppenheim G, editors.
Wavelets and Statistics. vol. 103 of Lecture Notes in Statistics. Berlin: Springer-Verlag; 1995. p. 125–
150.

16. Donoho DL, Johnstone IM. Adapting to Unknown Smoothness via Wavelet Shrinkage. J Am Statist
Ass. 1995; 90:1200–1224. doi: 10.1080/01621459.1995.10476626

17. Vidakovic B. Statistical Modeling by Wavelets. New York: Wiley; 1999.

18. Nason GP, Silverman BW. The stationary wavelet transform and some applications. In: Antoniadis A,
Oppenheim G, editors. Wavelets and Statistics. vol. 103 of Lecture Notes in Statistics. Berlin:
Springer-Verlag; 1995. p. 281–300.

19. Chipman HA, Kolaczyk ED, McCulloch RE. Adaptive BayesianWavelet Shrinkage. J Am Statist Ass.
1997; 92:1413–1421. doi: 10.1080/01621459.1997.10473662

20. Vidakovic B. Wavelet-Based Nonparametric Bayes Methods. In: Practical Nonparametric and Semi-
parametric Bayesian Statistics. vol. 133 of Lecture Notes in Statistics. Berlin: Springer-Verlag; 1998.
p. 133–155.

21. Clyde MA, George EI. Empirical Bayes estimation in wavelet nonparametric regression. In: Bayesian
Inference in Wavelet Based Models. Berlin: Springer-Verlag; 1999. p. 309–322.

22. Müller P, Vidakovic B. Bayesian inference with wavelets: density estimation. J Comput Graph Stat.
1999; 7:456–468.

23. Ruggeri F, Vidakovic B. Bayesian Modeling in theWavelet Domain. In: Dey DK, Rao CR, editors.
Bayesian Thinking Modeling and Computation. vol. 25 of Handbook of Statistics. Amsterdam: Else-
vier; 2005. p. 315–338.

24. Pensky M, Vidakovic B, De Canditiis D. Bayesian Decision theoretic Scale-Adaptive Estimation of a
Log-Spectral Density. Statistica Sinica. 2007; 17:635–666.

25. Barber S, Nason GP, Silverman BW. Posterior Probability Intervals for Wavelet Thresholding. J Roy
Statist Soc B. 2001; 64:189–205. doi: 10.1111/1467-9868.00332

26. Semadeni C, Davison AC, Hinkley DV. Posterior probability intervals in Bayesian wavelet estimation.
Biometrika. 2004; 91:497–505. doi: 10.1093/biomet/91.2.497

BayesianWavelet Shrinkage of the Haar-Fisz Wavelet Periodogram

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 23 / 24

http://dx.doi.org/10.1214/aos/1034276620
http://dx.doi.org/10.1111/1467-9868.00231
http://dx.doi.org/10.1063/1.1701949
http://dx.doi.org/10.1063/1.1701949
http://dx.doi.org/10.1109/TIT.1957.1057413
http://dx.doi.org/10.1098/rsta.1999.0445
http://dx.doi.org/10.1016/B978-0-444-53858-1.00013-2
http://dx.doi.org/10.1016/B978-0-444-53858-1.00013-2
http://dx.doi.org/10.1007/BF02523391
http://dx.doi.org/10.1214/07-AOS524
http://dx.doi.org/10.1111/j.1467-9868.2006.00558.x
http://dx.doi.org/10.1093/biomet/81.3.425
http://dx.doi.org/10.1214/009053605000000345
http://dx.doi.org/10.1007/s11222-005-6200-y
http://dx.doi.org/10.1080/01621459.1995.10476626
http://dx.doi.org/10.1080/01621459.1997.10473662
http://dx.doi.org/10.1111/1467-9868.00332
http://dx.doi.org/10.1093/biomet/91.2.497


27. Davison A, Mastropietro D. Saddlepoint approximation for mixture models. Biometrika. 2009; 96:479–
486. doi: 10.1093/biomet/asp022

28. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization.
SIAM J Sci Comp. 1995; 16:1190–1208. doi: 10.1137/0916069

29. Nason GP.wavethresh: Wavelets Statistics and Transforms; 2012. R package, version 4.6.1. Avail-
able from: http://cran.r-project.org/web/packages/wavethresh/index.html

30. Sawczenko A, Galland B, Young J, Fleming P. Night time mother-infant interactive behaviour and phys-
iology: a longitudinal comparison of room sharing versus bed sharing (‘co-sleeping’). Pediatric Pulmo-
nology. 1995; 20:341.

31. RDevelopment Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria;
2012. ISBN 3-900051-07-0. Available from: http://www.R-project.org

BayesianWavelet Shrinkage of the Haar-Fisz Wavelet Periodogram

PLOSONE | DOI:10.1371/journal.pone.0137662 September 18, 2015 24 / 24

http://dx.doi.org/10.1093/biomet/asp022
http://dx.doi.org/10.1137/0916069
http://cran.r-project.org/web/packages/wavethresh/index.html
http://www.R-project.org

