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CHAPTER'

1

ABSTRACT

Bayesian Model Selection Approaches are flexible methods that can be utilised to in-

vestigate Genetic Association studies in greater detail; enabling us to more accurately

pin-point locations of disease genes in complex regions such as the MHC, as well as

investigate possible causal pathways between genes, disease and intermediate pheno-

types. This thesis is split into two distinct parts. The first uses a Bayesian Multivariate

Adaptive Regression Spline Model to search across many highly correlated variants to

try to determine which are likely to be the truly causal variants within complex genetic

regions and also how each of these variants influences disease status. Specifically, I

consider the role of genetic variants within the MHC region on SLE. The second part

of the thesis aims to model possible disease pathways between genes, disease, inter-

mediate phenotypes and environmental factors using Bayesian Networks, in particular

focussing upon Coronary Heart disease and numerous blood biomarkers and related

genes.
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Bayesian Multivariate Adaptive Regression Spline Model

Genetic association studies have the problem that often many genotypes in strong link-

age disequilibrium (LD) are found to be associated with the outcome of interest. This

makes it difficult to establish the actual SNP responsible.

The aim of this part of the thesis is to investigate Bayesian variable selection methods

in regions of high LD. In particular, to investigate SNPs in the major histocompati-

bility complex (MHC) region associated with systematic lupus erythematosus (SLE).

Past studies have found several SNPs in this region to be highly associated with SLE

but these SNPs are in high LD with one another.

It is desirable to search over all possible regression models in order to find those SNPs

that are most important in the prediction of SLE. The Bayesian Multivariate Adapative

Regression Splines (BMARS) model used should automatically correct for nearby as-

sociated SNPs, and only those directly associated should be included in the model. The

BMARS approach will also automatically select the most appropriate disease model

for each directly associated variant.

It was found that there appear to be 3 separate SNP signals in the MHC region that

show association with SLE. The rest of the associations found using simple Frequen-

tist tests are likely to be due to LD with the true signal.

Bayesian Networks for Genetic Association Studies

Coronary Heart Disease (CHD) is one of many diseases that result from complicated

relationships between both genetic and environmental factors. Identifying causal fac-

tors and developing new treatments that target these factors is very difficult. Changes in

intermediate phenotypes, or biomarkers, could suggest potential causal pathways, al-

though these have a tendency to group amongst those patients with higher risk of CHD

making to difficult to distinguish independent causal relationships. I aim to model

disease pathways allowing for intermediate phenotypes as well as genetic and environ-

mental factors.

2



Statistical methodology was developed using directed acyclic graphs (DAGs). Disease

outcomes, genes, intermediate phenotypes and possible explanatory variables were

represented as nodes in a DAG. Possible models were investigated using Bayesian re-

gression models, based upon the underlying DAG, in a reversible jump MCMC frame-

work. Modelling the data this way allows us to distinguish between direct and indirect

effects as well as explore possible directionality of relationships. Since different DAGs

can belong to the same equivalence class, some directions of association may become

indistinguishable and I am interested in the implications of this.

I investigated the integrated associations of genotypes with multiple blood biomark-

ers linked to CHD risk, focusing particularly on relationships between APOE, CETP

and APOB genotypes; HDL- and LDL- cholesterol, triglycerides, C-reactive protein,

fibrogen and apolipoproteins A and B.

Overview

I will begin by introducing the topics of genetics, statistics and directed acyclic graphs

with a background on each (Chapters 2,3 and 4 respectively). Chapter 5 will then de-

tail the analysis and results of the BMARS model. The analysis and results of Bayesian

networks for genetic association studies will then be covered in Chapter 6.
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CHAPTER

2

BACKGROUND TO GENETICS

The material in sections 2.1 - 2.4 is all referenced from Molecular Biology of The Cell

by Alberts, Johnson, Lewis, Raff, Roberts & Walter [1], An Introduction to Genetic

Analysis by Griffiths, Miller, Suzuki, Lewontin & Gelbart [2] and Essentials Of Med-

ical Genomics by Brown [3].

Genetics is the key to heredity and variation in living organisms. Genetic information

is stored in the nucleus of most cells of an organism. This information is both copied

and passed onto offspring (through replication of DNA); and translated into proteins

(used for different functions within the organism). These processes are described in

more detail below.

2.1 DNA, Chromosomes and Genes

Genetic information is transmitted and stored as deoxyribonucleic acid (DNA). DNA

is made up of strings of polymers called nucleotides, or bases. Nucleotides come in
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four types: adenine (A), cytosine (C), guanine (G), and thymine (T). These strings of

nucleotides form a double helix and the nucleotides on each strand pair with the one

opposite via hydrogen bonds. A pairs with T, and C pairs with G. Therefore, one strand

completely defines the other and just one of the complementary bases will define the

nucleotide type at any given position along the DNA chain.

Figure 2.1: DNA double helix [4]

The genome is the complete set of genetic information contained in the DNA of an

organism. A gene is a unit of heredity which carries information from one generation

to the next.

This information is stored on very long units in which DNA is packaged called chro-

mosomes. Chromosomes are all packed together very tightly in the cell nucleus. Other

than gamete cells (see below) humans have 46 chromo omes in each cell nucleu - one

pair of sex chromosomes and 22 pairs of autosomes (non ex chromosomes) . In re-

production, each parent provides an offspring with one chromo orne of each of their

23 pairs. Gamete cells are sperm and egg cells and have 23 single chromosomes (hap-

loid), rather than 23 pairs (diploid). In reproduction, gamete cells fuse with gamete

cells from the opposite sex.
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Figure 2.2: Successiveenlargementsof an organismto focus on the genetic material [2]

2.2 Replication, Transcription & Translation

When DNA replicates the double helix structure unwinds and splits into two strands.

Each single strand of DNA acts as a template for the production of a new strand with

complementary bases. These new strands pair with their templates and form two dou-

ble stranded helix molecules of DNA identical to the original (barring any novel ge-

netic variation).

As mentioned before, genes are functional regions of DNA. The genetic information

stored in DNA can also be translated into protein. Producing proteins from informa-

tion in a DNA gene is a two step process. The first step is called transcription, and

involves the synthesis of a riboneuclic acid (RNA) chain that is complementary to one

of the strands of DNA. RNA is similar to DNA, and is made up of a string of bases: A,

C, G & Uracil (U), instead of T. RNA has the same complementary bases as DNA (A

pairs with U). To transcribe the information in DNA, the double helix separates, and

one of the strands acts as the template to form a complementary strand of RNA.

The second step in producing a protein from DNA is called translation, and involves

using the information in RNA to produce protein. Proteins are responsible for many

functions in the cell. For example, they act as enzymes or structural components, and

they are essential in building muscle, skin, bone and blood.
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Figure 2.3: Steps in Producing DNA and Proteins

2.3 Mendelian Laws of Inheritance

A locus is a particular position along the genome and can refer to a single base or

longer region. Genes relating to a particular trait (eg. eye colour) are located at the

same locus on the same chromosome in each individual. Every individual has two of

every chromosome (one from each parent) and therefore two of each locus. Alleles

are different possible forms of the locus. Each individual can only have two alleles for

each locus. These can vary between individuals. A phenotype is a detectable outward

manifestation of a gene. For example, the gene for the phenotype eye colour has alleles

that result in blue, brown or green eyes.

As mentioned above, offspring inherit one chromosome of a pair from each parent.

Mendel's principle of segregation states that the allele inherited from each parent for

each characteristic is random with equal probability. In the diagram 2.4 below, two in-

dividuals have alleles M I, M2 and M3, M4 respectively for marker 1 and 2 for parent 1

and 2. These alleles could each be A,T,C or G. These alleles separate from each other,

and then combine with another allele from the other parent. The combination of these

alleles is random with equal probability. The possible allele combinations from these

two parents are MIIM3, MtIM4, M2IM3 or M21M4. Each allele combination occurs

with 25% probability, assuming the alleles are not linked.
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Figure 2.4: Different Allele Combinations from Two Parents

The combination of unordered alleles at a particular locus is known as a genotype. If

an individual has two of the same allele for a particular trait then it is known as ho-

mozygous. However, if an individual has two different alleles then it is heterozygous.

For example, in the stretch of DNA shown below in Table 2.1, shows the two chromo-

somes one above the other, for a segment of DNA made up of ten base pairs. The third

base pair is highlighted and two different alleles are possible at this locus (namely A

and T). The individual is heterozygous at this locus.

T G A A A G A C C A

C c T G T C A G C T

Table 2.1: Example of Genotypes

Suppose that only two alleles (A and T) are possible at this locus. The genotype of

the highlighted locus is Aff, but could be NA (homozygous) or TfT (homozygous)

in a different individual. Note that a genotype is unordered so that Aff and T/A are

equivalent.

2.3.1 Hardy-Weinberg Equilibrium

In generalised terms, if we have a single locus with two possible alleles, Al with prob-

ability p, and A2 with probability (l-p) in a population, the expected frequencies are
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shown in Table 2.2 below:

Mother

Father AI(p) A2(1-p)

AI(p) AIA1(p2) A1A2(p(1-p»

A2(l-p) AIA2(P(l-P» A2A2((l-p )2)

Table 2.2: Frequencies of Alleles Inherited under Hardy-Weinberg Equilibrium

These frequencies are expected under the assumption that individuals in a popula-

tion are randomly mating and therefore diploid genotype (genotypes with information

about both alleles rather than genotypes coded as 0,1,2 as described later) frequencies

should only depend on allele frequencies in the population. For example, if the allele

frequency of Al is 0.9 and that of A2 is 0.1 then the expected genotype frequency of

AI/AI is 0.81, AdA2 is 0.18, and A2/A2 is 0.01. If the observed genotype frequen-

cies (calculated as described above) follow these probability expectations then this is

known as Hardy-Weinberg equilibrium (HWE). HWE is usually tested by using a

chi-squared test, comparing the observed genotype frequencies with those expected

under HWE. If the genotype frequency deviates from HWE for a particular locus then

this may be due to several reasons including genotyping errors, sampling variation, and

non-random mating. Therefore, HWE tests are often used as a form of quality control

test for genotype data and to check whether assumptions made in subsequent analyses

are reasonable.

2.4 Haplotypes and Recombination

A haplotype is a combination of alleles transmitted together at multiple loci on the

same chromosome. If there are two different alleles possible at each of two loci (for

example alleles Al and A2 at locus 1 and B, and B2 at locus 2) then there are four

possible haplotypes (AI-B1, AI-B2, A2-BI and A2-B2)' Each individual will have two

haplotypes (one on each strand).
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Occasionally when chromosomes pair during meiosis (the process of forming ga-

metes), the chromosomes exchange segments/strands during a process called crossing-

over. This results in new combinations of alleles called recombinants. Recombinants

can cause offspring to have haplotypes not seen in the parents. Figure 2.5 demonstrates

crossing over of parental chromosomes to form those for the child. The blue chromo-

some is that taken from the father, and the white is taken from the mother.

a a
b b

c

a a
b b

a
Gametes b

a
b

c
v e

crossmg-over and recombination during meiosis

Figure 2.5: Recombination of Chromosomes [5]

It is possible for more than one cross over to occur between two loci.

The recombination fraction is the proportion of offspring that receive a recombinant

haplotype from their parents ..Usual genotyping methods cannot determine haplotypes

directly since genotyping only reports the unordered alleles at each locus and does not

report which strand each allele belongs to. If an individual has genotypes Al/A2 and

Bl/B2 it is not possible to determine whether the haplotypes present are A1-B1 and

A2-B2 or Al-B2 and A2-B1. If, however, we have a sample of individuals, it is possible
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to estimate the frequencies of each haplotype based on their genotypes and the sample

haplotype frequencies. The haplotypes can be imputed using haplotype phasing tech-

niques as discussed in Section 2.7.3.

2.5 Linkage Disequilibrium

When alleles at different but nearby loci are statistically associated they are said to

be in linkage disequilibrium (LD). Another way of putting this is that LD exists if

there is departure from the expected haplotype frequencies if the loci were inherited

independently. LD typically exists between two nearby loci that have been inherited

together over many generations [6]. Figure 2.6 below shows a stretch of DNA inherited

from common ancestors over time. The blocks of yellow are alleles in LD inherited

together over many generations. The blue blocks arenew alleles introduced by recom-

bination.

Anoostral
ChromosotT1e

Presen1-day
chromosomos

Nature Reviews IGenetk:.

Figure 2.6: Linkage Di equilibrium [7]
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Whilst the association between two alleles located next to each other will break down

over time due to recombination; it may be maintained over many generations if recom-

bination is low. The two main measures of LD are based on the statistic D. Suppose
I

we have two loci with major alleles Al and Bit and minor alleles A2 and B2' A minor

allele is one which is the least common for a particular genotype in a given population

whereas a major allele is the most common one. Al has population frequency p, and

Bl has population frequency q. Assuming no LD, and alleles occurring independently,

the expected haplotype frequencies are shown in the table below.

Haplotype Al A2

Bl pq q(l-p) q

B2 p(l-q) (l-p)(l-q) l-q

P I-p 1

Table 2.3: Haplotype Frequencies assuming no LD (i.e. independence of inheritance)

Let e be the observed haplotype frequency of AlBl. D (a measure of LD), is defined

by D=e-pq=o. D is a measure of LD which is defined as the departure from the fre-

quencies under independent inheritance Ho. We expect that () = pq when both alleles

are inherited independently so that D=O. If LD exists then the haplotype frequencies

in the above table no longer hold true and D can lie between -1 and 1.

Haplotype At A2

Bl pq+ D q(l-p) - D q

B2 p(l-q) - D (l-p)(l-q) + D l-q

p l-p

Table 2.4: Haplotype Frequencies with LD

Given observed data of p and q and haplotype frequencies, it is simple to estimate D,

the measure of LD.
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D' and r2 are the usual measures of LD. They are both diallelic measures and are both

used in this PhD thesis.

D depends on the frequency of alleles. D' is a normalised measure, achieved by divid-

ing D by the theoretical maximum given the observed allele frequencies.

D' = _E__
Dmax

(2.1)

where

min(p(l - q), (1 - p)q)

min(pq, (1 - p)(l - q)

ifD > 0

otherwise

r is defined by

D
r = -y';=p(;=l =_::::;:p ):::::;q(=l _===:=q)

r2 is the correlation coefficient and is a measure of similarity between two markers

with respect to their minor allele frequencies (MAFs). A measure of r2 = 1 or D' = 1

between two loci represents "complete" dependency, whereas r2=0 or D' =0 between

two loci indicates independence.

(2.2)

Although the values of r2 being 0 or 1 and D' being 0 or 1 can be interpreted the same

way in terms of independence, the relationship between the two measures of LD is not

that simple. D' = 1when one of the four possible haplotypes is not observed indicating

there has been novel genetic variation but not recombination. When D' = 1 this does not

imply that r2 will also be 1. They are only equal when both 0-0 and 1-1 haplotypes do

not occur, or both 0-1 and 1-0 do not occur. D' is usually used to measure the extent

of recombination between loci over several generations, whereas r2 is usually used

to measure similarities between loci, and quantify how well one locus can predict the

value of another.
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Genetic association studies often have the problem that many genotypes in LD are

found to be associated with the outcome of interest. This makes it difficult to establish

the actual SNP responsible. This problem will be discussed more in chapter 5.

2.6 SNPs

Single nucleotide polymorphisms (SNPs) occur when a single nucleotide (A,T,C or

G) varies between individuals at the same marker. e.g. instead of an A allele there

is sometimes a C. The minor allele is that which has the lowest frequency at a locus,

usually of two alleles (biallelic) [1]. Figure 2.7 below shows an example of a SNP

between two chromosomes.

------- SNP --------------

Figure 2.7: Example of a SNP
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2.7 Uses ofLD

2.7.1 International HapMap Project

The International HapMap project [8] started in 2002 and aims to better understand

LDI haplotype structures. By analysing the patterns of variation in the genome, it is

hoped that this information could be used to identify genes associated with complex

diseases. "Genetic data from more that one population will enhance the ability of re-

searchers to study the genetic contributions to diseases that are more or less prevalent

in different groups."

The HapMap project has collected DNA from 270 people from 4 main populations:

U.S. residents with northern and western European ancestry; Yoruba residents from

Ibadan, Nigeria; Japanese individuals from Tokyo and Chinese individuals from Bei-

jing. The DNA was used to type approximately 1 million SNPs. Due to the success

of the first phase, the study was extended. The second phase used these blood samples

to type three times as many markers and was published in 2007. [9] The third phase

increased the number of samples from 270 to 1,301 and includes a wider variety of pop-

ulations. These are those with African ancestry in Southwest USA; Utah residents with

Northern and Western European ancestry(as before); Han Chinese in Beijing (as be-

fore); Chinese in Metropolitan Denver, Colorado; Gujarati Indians in Houston, Texas;

Japanese in Tokyo, Japan (as before); Luhya in Webuye, Kenya; Mexican ancestry in

Los Angeles, California; Maasai in Kinyawa, Kenya; Toscani in Italia; and Yoruba in

Ibadan, Nigeria (as before). [10]

It is hoped that these populations will help to identify the most common haplotypes

worldwide, and help in analysing variation between them. HapMap can be used to

view genome information e.g. in haplotype blocks of LD. From this, it is possible to

analyse which loci represent most of the underlying variation of the genome. HapMap

can act as a reference panel for imputation (detailed under 2.7.3) of loci that may have

been untyped in a particular study based on unobserved genotypes at nearby loci.

HapMap has helped us better understand the underlying genetic structures across pop-

ulations including LD structure.
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2.7.2 Tagging

Regions of high LD between loci means that we only need to type a small subset ofthis

region to represent it genetically. We can gain the same amount of genetic information

by genotyping a smaller subset. The aim of 'tagging' SNPs is to select those that will

best represent the genome or region of interest. [11-14]

2.7.3 Imputation

Genotypes at a particular locus may be missing for several reasons. They may have

simply not been typed for the study in question, there may have been a genotyping er-

ror, or maybe a reason specific to that allele/locus. Missing genotypes can lead to loss

of power and sometimes this missing data can lead to incorrect results due to bias [15].

Imputing missing information leads to a higher mapping density of data. Imputation

can increase the power of genetic association. [16]. Imputation can also aid in fine

mapping since denser loci can be imputed based on those tagged to be representative

of a region of LD. Each locus can then be used for association analysis whether or not

they have been typed in the study in question or imputed.

It is common that different studies will type different SNPs across the region of in-

terest. Pooling results can give a better picture and add more power to analyse which

variants within a region have the largest effect. If not all loci are typed in each study,

imputation can help fill in the missing data. It has been shown that studies with weak

findings can be combined together using these methods to identify completely new and

highly significant variants.

In terms of imputation, a cluster is a group of loci in high LD. These clusters vary by

size along the chromosome.

The program used in this PhD for imputation, Mach [17], makes use of a Hidden
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Markov Model (HMM) in updating the EM algorithm to find a maximum posterior

distribution. This model states that the unobserved cluster locus depends only on the

(unobserved) cluster which the previous locus belongs to.

Mach is one of the most commonly used imputation programs used for large datasets

such as GWAS [18]. Mach has been shown to perform as well as other programmes

also suitable for large datasets in terms of accuracy and computing time. [19-22]

Mach has the option of calculating the average allele dosage score for each SNP im-

puted. There is also the option of estimating LD of the imputed SNP with non missing

loci.

2.7.4 RareVariants

It has historically been difficult to detect rare variants due to the tagging of representa-

tive SNPs in LD. These tagged SNPs do not represent rarer SNPs well. Whole genome

sequencing will hopefully provide more information on these. For example, the 1000

Genomes Project [23]. These types of genotyping collection are possible now the cost

of genotyping has significantly reduced in recent years. It is hoped that the information

gained by analysing rare variants will help us to better understand complex diseases as

we will have a clearer picture of the whole genome.

2.8 Genetic Association Studies

Genetic association studies can be used to determine whether there is an association

between a genotypic variant of interest and a disease or trait. For a binary disease

outcome (eg. disease/ no disease) and a case control study design, this is done by com-

paring genotype or haplotype frequencies at the locus of interest by outcome group.

Under the null hypothesis of no association, the genotype frequencies between cases

and controls should be equal. A case-control study compares a risk factor across two

groups; one with disease (cases) and one without (controls). In association studies the
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risk factor is the genotype variant [6]. A simple test for association is, for example, to

use logistic regression of case status (y) on coded genotype classes:

(2.3)

(2.4)
where Yi defines the case status for individual i (0 for control, 1 for case), tri is the

probability of individual i being a case, a is the intercept, Xi is the genotype variant of

subject i; usually coded 0 for first homozygous genotype, AlA for example, 1 for the

heterozygous genotype, AIT for example, and 2 for the other homozygous genotype,

Trr for example, and f3 is the genotypic effect on probability of disease. This is an

additive model on the log scale as the odds ratio (OR) for Trr is twice that of Arr i.e.

each T allele increases the OR by an equal amount. Other models can be considered to

allow for a dominant or recessive effect of the genotype, as described below.

Under a dominant model, only one copy of the variant allele is required to cause an

increase in risk of the disease. Having two copies of the variant allele is assumed not

to increase that risk. i.e. P(DIAA) = P(DIAa).

(2.5)

Under a recessive model, both copies of the variant allele are required to cause an in-

crease in risk of the disease. P(Dlaa) = P(DIAa)

(2.6)

Under a 2 degrees of freedom (2dJ.) model, the increase of risk of disease by having

two copies of the variant allele is different to that of having only one copy, but not in

an additive way.
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(2.7)
The appropriate test of association now has 2d.f. and tests against the null hypothesis

which in this case is j3 = 0 & 'Y = O. j3 can be viewed as the additive genetic com-

ponent and 'Y as a dominance (or equally recessive) component or the deviation away

from the additive model.

It is possible to show the genotype data for each SNP in a simple contingency table, as

shown below.

Genotype Cases Controls Total

Observed Expected Observed Expected

0 nOCa ~ nOCon
nQ.n Can no.n .. n ..

1 nlCa !!.l.!!..!&. nlCon
nl n Call nl,n .. n ..

2 n2Ca ~ tizcs« 11,~.n QQ:ll
11,2.n .. n ..

Total n.Ca ~ n.Con !L.!!...C.= 11,
11.. n .. ..

Table 2.5: Contingency Table for One SNP

Under the null hypothesis of no association with the disease, it is expected that the

genotype frequencies are the same in cases and controls. A 2d.f. score test for associ-

ation can be calculated using Pearson's X2 statistic for independence of the rows and

columns given by

X~en= L L
i=O,1,2 j=Ca,Con

(nij - E[nu])2
E[nul

(2.8)

E[ 1
nl.n.J

nij =--
n..

(2.9)
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Under the null hypothesis of no association (independence between the rows and

columns of the table above) of SNP and outcome, the test statistic has an approxi-

mate X2 distribution with two degrees of freedom.

2.8.1 Fisher Exact Test

An alternative to the Pearson's X2 test is the Fisher exact test which avoids relying

on asymptotics. This is especially useful when SNPs have small frequencies of geno-

types. In addition, a Fisher exact test does not assume an additive model, and allows

for any type of association between the SNPs and outcome. It may not be that all SNP

associations are additive, and this test gives more flexibility by SNP. In this framework,

each SNP is tested for an association individually. The Bayesian Multivariate Adaptive

Regression Spline model I use later (5.9) has a dominance component for such flexi-

bility, and using a Fisher exact test for my frequentist analysis allows for more direct

comparisons to be made under the different methods.

As explained above, genotypes can be coded as 0, 1 or 2 (two copies of the minor

allele, one copy of each the minor and major allele, or two copies of the major allele).

It is possible to show the genotype data for each SNP in a simple contingency table, as

shown above.

Under a Fisher exact test [24] the probability of obtaining the observed values in the

table above is given by the hypergeometric distribution. This probability is given by

p= (2.10)
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2.8.2 Data Augmentation in Binary Probit Regression

In order to simplify modelling a binary outcome, a probit link function with data aug-

mentation can be used.

By introduction of latent variables (via data augmentation) it is possible to reduce a

test of association with a binary outcome to a Gaussian linear model [25]. Consider

(2.11)

where

K

'T] = al + I:f3kx
k=l

In the probit model, the mean is given by /-Li = CP(1]i) so it follows that the probit link

function g(/-Li) = cp-l(1]i)

(2.12)

Introducing a set of latent variables Wi for the ith observation with a Gaussian distri-

bution conditional on observation specific random terms.

(2.13)

such that

y;= {
1 if Wi > 0

o otherwise

Therefore, the distribution of Yi having integrated out Wi is
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P(Yi = 1) - P(Wi > 0) = P(N(rJi' 1) > 0)

- P(N(0,1) > -rJi) = P(N(O, 1) < rJi) = q>(rJi)

(2.14)

2.9 Potential Problems with Genetic Association Stud-

ies

As explained in Section 2.3, genotypes are passed on to offspring under Mendelian

randomisation. This means that genotypes are inherited at random with equal proba-

bility. Genotypes are invariant to mRNA, proteins, diseases and environmental factors.

Therefore, genetic associations should be protected from reverse causation as these

things cannot cause a particular genotype. In addition, environmental factors cannot

be considered as possible confounders in a genetic association test which is a possible

problem with other association tests.

However, genetic association studies can still suffer from selection bias. For example,

in population based association studies, it is necessary to ensure that the cases and

controls have the same ethnic background otherwise a gene that differs between ethnic

groups could appear to be associated with the disease if disease prevalence differs in

the two populations.

Another potential problem is that two loci could be so closely in LO with each other

that they both appear to be equally associated with the disease outcome. In this case

it can be hard to determine which locus is truly associated with the disease by consid-

ering just the single SNP association tests. More complicated approaches that try to

correct for the effect of other loci are required to understand the data more clearly.

Finally, there is the problem about which disease model to assume. Often the additive

model is used but this can lead to loss of power when this model is incorrect, especially

in the recessive case. Methods that do not force a particular model are desirable.
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CHAPTER

3

BACKGROUND TO STATISTICAL

THEORY

The majority of this Chapter is referenced from Bayesian Data Analysis [26], Markov

Chain Monte Carlo in Practice [27] and Markov Chain Monte Carlo: Stochastic Sim-

ulation for Bayesian Inference [28] unless otherwise stated.

3.1 Statistical Inference in a Frequentist Setting

In classical or frequentist statistics, observed data Xex are used to make inferences

about a population parameter (J which we consider to be fixed, i.e. true but unob-

served. One approach to estimate ()in a frequentist setting is via likelihood modelling.

Suppose that Xl, ... , Xn are observable random variables with a joint distribution that

depends on unknown parameters 8 = «()1, ... , ()d). The likelihood function of 8 is found

by evaluating this distribution at the observed data (sample) x=(xt, ...,xn), f(xI9).

Note: This is not a probability distribution for 9 as it does not sum to lover ().
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As the data x are known, we are only interested in how the likelihood varies with (J.

Arguably the best estimator of the true value of (J is that value of (J which maximises

the likelihood function. This estimator, ii, is known as the maximum likelihood esti-

mator. [29-32]

.....
Inference can take the form of a point estimate (for example, 0=0.1); a confidence

interval (range in which 0 will lie within with a specified probability); a hypothesis

test (for example, reject the hypothesis that () < 0.07 at the 5% significance level);

a prediction (predict that 15% of patients will have an adverse event); or a decision

(decide to stop treatment on patients with adverse events). In each case, knowledge of

the observed sample value X=x is being used to draw inferences about the population

characteristic (). Moreover, those inferences are made using the likelihood function,

f(xl(J), which determines how, for a given value of 0, the probabilities of the different

values of X are distributed. In this setting of frequentist statistics, the statistical param-

eter, (J, although it is unknown, is treated as a constant to be estimated rather than as

a random variable.

3.2 BayesianInference

Bayesian inference allows us to combine the knowledge from observed data, and any

prior knowledge we may have before the sample is collected. It also allows us to make

inference about the distribution of the parameter values.

The fundamental difference between frequentist and Bayesian statistics is that in a

Bayesian context, 9 is treated as a random (vector) variable. Before collecting data on

the random variable X (which possibly depends on (J), the distribution of 9 is believed

to have prior density f(9). The probability distribution of (J is updated given the ob-

served data (j(xI9), using Bayes theorem, to give the posterior distribution f(9Ix),

which is the probability of the parameter (J given the observed data x. Inference is

based on the posterior, rather than the likelihood.
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Bayesian statistics revolves around Bayes theorem, which defines the posterior distri-

bution as:

where f(O) is the prior density, encompassing our prior beliefs about e, and f(xIO) is the

likelihood; the same as that used in frequentist inference outlined above. J(f(O)f(xIO)dO
is the normalising constant used to make f(elx) a probability density (i.e. sum to 1).

This normalising constant often does not need to be defined explicitly since f(O)f(xIO)
includes all the information about 0; the random vector we are interested in making in-

ferences about.

The prior distribution, f(9), which represents our prior knowledge or beliefs about 9

could be, for example, obtained from results of previous studies, or from expert opin-

ion.

Consider a simple example. If we have three experiments:

1. A tea-drinker claims she can tell whether the milk was added before or after the

tea. Out of ]0 attempts, she is correct 10 times.

2. A music expert claims she can identify and name any piece of Mozart's work.

She correctly identifies 10 out of 10 pieces.

3. A drunk friend claims she can predict the outcome of the toss of a fair coin, and

does so 10 times in a row.

In all of the above, the model is f(XIO) '" Bin(lO, 0) and x=10 is observed.

In frequentist statistics, using f(xIO), we would make the same inferences about 0 in

each case. Opinions differ as to whether this is either a draw back or an advantage of

inference in a frequentist setting. Our prior beliefs are likely to be different in each of

the above situations. Our prior beliefs are likely to remain highly skeptical about 3,
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partly convinced by 1, and perhaps not surprised by 2.

It can sometimes be difficult to express prior beliefs, and an uninformative prior might

also be used in this case.

3.3 Inference

If a posterior distribution has the same parametric form as the likelihood distribution, .

for the parameters of interest, then the prior is known as a conjugate prior. Conjugate

priors are often convenient. For example, if the prior distribution is Gaussian, and the

observed data has a likelihood distribution that is also Gaussian with known variance,

then the posterior distribution is also Gaussian. In this case, there is no need to cal-

culate the constant of proportionality of the full posterior distribution because this is

already known from the distributional form. [26]

Suppose we have data Y=(Yl, ... , Yn) that are i.i.d, with Gaussian distribution with

likelihood

(3.1)

where the variance a2 is assumed to be fixed at some known value. With a Gaussian

prior with mean /-to and variance T~, the posterior is also Gaussian:

p(OIY) oc p(O)p(YIO)
n

= p(O) IIp(YiIO)

ex: exp( __ l (O-J-lo)2)II
n

exp( __ l (Yi-O?)
27,2 2u2o i

ex: exp( -~[_!_(O - J-lo)2+ _!_ ~(Yi _ 0)2])
2 7,2 u2 L-o i

(3.2)
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leading to

(3.3)

However, it is not always possible to find a conjugate prior distribution that fits our be-

liefs, or perhaps a conjugate distribution is not known for the likelihood of interest. In

non conjugate settings the implementation of Bayes Theorem can be computationally

difficult, usually as a result of having to calculate the normalising integral in the de-

nominator. Calculating this normalising integral is necessary if we want to make most

inferences or predictions from the posterior distribution. Calculating this integral can

be extremely computationally intensive. As mentioned above, for some choices of the

prior distribution, calculating this integral can be avoided, but in general, specialised

techniques are required to perform this calculation. i.e. Inference from the posterior

distribution can be done either algebraically, or computationally using sampling. One

such method of sampling is Markov Chain Monte Carlo (MCMC).

3.4 Markov Chain Monte Carlo

Markov chain simulation algorithms allow us to sample from the posterior distribution

when calculating its full distribution is algebraically difficult. i.e. when the result-

ing posterior distribution is non-tractable. MCMC methods simulate a Markov chain,

whose stationary distribution is the posterior distribution we are interested in. [28,33]

A Markov chain is a sequence of random variables Zl,Z2,Z3, ... with the property that

at each time point t, the next state Zt+l is sampled from a distribution dependent only

on the current state Zt. The possible values of Z; form the state space, S. This is called

the Markov property: given the present state, the future and past states are independent.
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Under certain conditions (see below), the Markov chain converges to a stationary dis-

tribution that is, one which does not change over time. This stationary distribution does

not depend on t or Zoo

A chain converges to a stationary distribution if it satisfies all three of following con-

ditions [28.34]:

1. It is irreducible: there is a probability that the chain can assign any possible

member of state space S to Z; in a finite number of iterations.

2. It is aperiodic: the chain does not cycle between a subset of values for Z, in a

regular periodic movement.

3. It is positive recurrent: given any initial value of Zt, the expected number of

iterations to return to that initial value is finite.

Note: Each of these conditions by themselves is necessary.

In MCMC, we simulate from the "target" (posterior) distribution, making enough

draws so the distribution of draws is hopefully "close enough" to the stationary dis-

tribution. Once the stationary distribution has been achieved, future draws from this

distribution are still dependent since every new draw is now sampled conditionally on

the previous state.

When simulating using MCMC algorithms it is required to check convergence with

plots, summaries, and then delete the first M simulated values as a bum-in period. The

burn-in period is the time which it takes the algorithm to reach a stationary distribu-

tion. Once we are satisfied the data has converged, the target (posterior) distribution

can be summarised by the simulated values of e drawn after this point. For example,

an approximation to the mean of the distribution can be found simply by taking the

mean of the simulated values of e.
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3.5 Metropolis Hastings Algorithm

One such example of a MCMC algorithm is the Metropolis Hastings (M-H) algorithm.

Suppose we have a vector (J of dimension d of parameters we wish to sample. The

basic outline of a M-H algorithm is to

1. Select a starting point for vector (J

2. Propose a candidate value of (J for the next step of the Markov Chain

3. Accept the proposed value of (J given the rule below

4. Repeat the steps iteratively

In general terms, the chain is initialised with O?,... ,O~. Now suppose the current values

of the chain is 0{ ,... ,O~and that we want to simulate o{+l, the next value of 01, The

general scheme of the MCMC is to update O{ to o{+l and accept the new value using

the acceptance rule below.

Schematically the general Metropolis-Hastings updating mechanism is:

• Propose a candidate value o~an, which is a drawn from an arbitrary distribution

with density q(Oianl{l{, (I~, ... , ~).

• Take as the next value of 01 in the chain

'+1 {Oi = 0{
oean
1 with probability p

with probability I-p

where
p = min (1 p(OfaR,o~, .. "oal:r) q(o{ IOlaR ,O" ,Ii~»)

, p((Jl,~, ... ,(}~lx» q(lifanl~,Ii~, ,~)

with p(Oin,~, ... ,0~lx) denoting the posterior distribution of {II evaluated at

{l1 = {lin and similarly for p( {I{, (I~, ... ,~Ix) evaluated at {l1 = o{.
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• Update each member of (), proposing e~an,()jn, etc. in this way

• Iterate this procedure

The candidate generator q(einle{, e~, ... ,e~) is arbitrary but some choices of q(.) will

lead to faster convergence, and are therefore more computationally efficient. The vari-

ance of the candidate distribution is an important choice because if it is too big then the

proposed moves will be too large, and acceptance probabilities will be low. However,

if variance is chosen to be too small then then the acceptance probabilities will be high

but only small steps will be taken, and convergence will be slow.

Note: a common choice for the candidate generator is the density of a Gaussian distri-

bution for ein with mean e{. This is known as the Random Walk Metropolis Hastings

algorithm. Due to the symmetry of this candidate generator, the terms in the accep-

tance probability involving q(.) cancel and this reduces to

p= min(1, ratio of posterior distribution of ()}anvs 8{)

It can be shown that the Metropolis-Hastings algorithm converges to a stationary dis-

tribution, equal to the target posterior distribution.

3.6 BayesFactors

Bayes Factors CBF) are increasingly used in genetic epidemiology as an alternative to

frequentist p-values. If we have a discrete set of possible models, a Bayes Factor is

the ratio of posterior to prior odds of one model compared to another. If we wish to

compare two models M, and M, the Bayes Factor is defined as

(3.4)
where D is the data given. , If the two models have equal prior probabilities then

P(Mi)/p(A/j) = 1 and BF(Mi• !It!j) is simply pf~;I~~[26] , [35], [36]
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For example, a Bayes Factor can be used to test one model against the null hypothesis

in a linear regression that (3 = O. BFs > 3 are usually interpreted as an indication of

evidence in favour of Mi. [37]

3.7 Reversible Jump Metropolis Hastings Algorithm

Sometimes we wish to sample over models with varying dimensions. For example,

with regression models. it is likely that we will want to select the most important

predictors among a sometimes large set of variables. As in genetic applications, for

example.

One solution to this is to sample over the model space, and treat the model structure

(which variables, and how many) as an additional, separate parameter, say ~. We are

then interested in the posterior distribution of this parameter. For example, consider a

simple regression model with 10possible explanatory variables. If we were to propose

the first, third and eighth variables in the model, the parameter space for this iteration

could be defined by e=(1 ,0, 1,0,0,0,0, 1,0,0) where 1 indicates the inclusion of the cor-

responding explanatory variables (say, f3).

The Reversible Jump MCMC [34,38] scheme deals with this. The Reversible Jump

algorithm is an extension of the Metropolis-Hastings algorithm, and samples from pos-

teriors of varying dimension. At each step of the algorithm, we propose to either add

a variable to the current model (increase the dimension of corresponding explanatory

variables (3 by 1) which is known as a 'birth' step, or drop one (decrease the dimen-

sion by 1) which is known as a 'death' step. Note: At each iteration, a new value is

proposed for the element of /3 relating to the variable in question. i.e. a new value is

randomly proposed when adding a term, but is simply forced to 0 if dropping the term.

These steps are chosen at random, and the proposed vector of parameter space ee') is
accepted with probability

min (1, likelihood x prior x proposal ratio)
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For example, if a birth step is proposed the acceptance probability is

where dk is the probability of dropping one element of e and bk is the probability of

adding one element of e. If bk= dk = 0.5 then the acceptance probability is simply

min(l,BF(e', e».

Note: The above acceptance probability also includes a Jacobian term to account for

the change in dimension between a model with parameter space e and e' but in practice

this is rarely needed. [34]

In this situation, the MCMC algorithm is set up to combine a Reversible Jump algo-

rithm to move in model space, e (e' is accepted with above probability), and then a

M-H sampler as described in Section 3.5 to draw values of the current corresponding

explanatory parameters in the model, /3.

By monitoring both e and /3, this algorithm would give posterior probabilities of the

models visited as well as the usual posterior distribution of model parameters. It is then

possible to decide the importance of each predictor by summing the posterior probabil-

ities of the models containing the relevant term. This gives the marginal probabilities

of each predictor. It is also possible to examine the joint probabilities of variables.

MCMC schemes rely on being able to sample parameters conditional on the value of

others. Directed acyclic graphs (DAGs) represent such dependencies naturally and

conditional independence structures can be represented graphically. We discuss this in

the next chapter.
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CHAPTER

4

INTRODUCTION TO DIRECTED

ACYCLIC GRAPHS

4.1 GraphicalModels

Graphical models are one way to present statistical relationships. Precisely, dependen-

cies between variables and indicating conditional independent structures, Using them

it is possible to represent assumptions about relationships between variables. Fitting

graphical models also helps to determine whether is it possible to identify directions of

association with the data available and they can highlight possible biases. In addition,

graphical models make it easy for the reader to understand or picture more complex re-

lationships and can help set up joint probability models for such complex data systems.

A graphical model has nodes representing variables. Any line or arrow connecting two

variables in a graph is called an edge. Edges can be directed (represented by a single-

headed arrow) to represent direct links from one variable to another; or non-directed

(usually represented by a dashed line). Edges represent direct associations between
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variables after accounting for all other variables in the graph. In the graphical model

below, for example,

B has a direct effect on D, D has a direct effect on C, A has a direct effect on C and A

and B are associated but direction of effect is not specified. The association between

Band C is entirely through A and D. i.e. indirect. [39]

A path in a graphical model is defined as a sequence of edges connecting one variable

to another. A path can have directed or undirected edges, and need not follow the di-

rection of the edges.

4.2 Directed Acyclic Graphs

A directed acyclic graph (DAG) is a graphical model with directed edges, and no closed

loops (i.e. for all variables in the graph there does not exist a directed path from a par-

ticular variable to itselt). For example, the graph below contains a cycle (A to D to C

to A), and is therefore not a DAG. [40]
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On the other hand

is aDAG.

4.3 DAG Terminology

Consider this simple example of a DAG:

Some simple terminology ofDAGs, using the above diagram as an example: [39,40]
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• Two variables are adjacent if they are directly connected by an edge. e.g. A and

B are adjacent, but A and D are not.

• A path through the graph is any unbroken route connecting adjacent nodes.

• A directed path through the graph is any unbroken route connecting adjacent

nodes by directed edges and following the direction of these edges e.g. A to B

toD

• A variable is known as an ancestor if there is a directed edge or path from that

variable to another. e.g. A is ancestor of B,D,e and E.

• A variable is known as a parent of another if there is a directed edge from it

to another adjacent. e.g. A is a parent to Band e. Band e are also said to be

directly affected by A.

• A variable is known as a descendant, or affected by another if there is a directed

path into that variable. e.g. D is a descendant of e.

• A variable is known as a child if there is a directed edge into that variable from

another. e.g. D is a child of B and E.

• A backdoor path is defined as one in which there the first variable in the path is

a child of the second, and there are 3 or more variables connected in the pathway

e.g. D to E to B.

• A collider is a node with at least two parents. e.g. D or B.

• A path is blocked or closed if it has one or more colliders on it. e.g. A to B to D

toE.

• A path is unblocked or open if there are no colliders on it. e.g. D to E to e is an

unblocked path. In this case it is also a backdoor path.

• A v-structure is a collider in which the parents of the colliding node are not

adjacent. The two parents have directed edges towards the same child, creating

a 'v'. e.g. the following DAG is a v-structure:
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In this given v-structure, A and B may be marginally independent as they do not

have an association between them directly, but they are dependent conditionally

on C as there is a pathway from A to B through C.

4.4 Using DAGs in Statistical Modelling

Quantitative statistical approaches can be used to translate DAGs into statistical mod-

els. For example, statistical models can be represented using DAGs, showing the joint

relationships between variables. This representation can be used efficiently for defining

joint probability distributions, and possibly drawing conclusions about direct associa-

tions. DAGs can be used to encode conditional independent structures, and generate

convenient factorisations of a joint distribution.

Our naive hope in using DAGs for inference is that directed edges within our DAG

may help to suggest directions of associations. In fact, directions of association can

be very difficult to infer from such DAGs for two main reasons. Firstly, it is very

difficult to be sure that all unobserved confounders have been accounted for in obser-

vational studies and secondly there is the problem of DAG equivalence classes. [39,40]

4.5 Equivalence Classes

Different DAGs can be shown to infer the same underlying 'conditional independence'

model. For example,
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have the same joint distribution. In this case directions of association become indis-

tinguishable. We are interested in the implications of such limitations. Two DAGs are

equivalent if [40]

1. They have the same undirected graph. i.e. same graph but without the direction

of association on it (no arrows); only an indication of association between the

nodes. For example,

is the undirected graph of the previous DAG shown.

AND

2. They have the same v-structures

Consider another example below.
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These DAGs are equivalent because they have the same undirected graph, and the

same v-structure A to C and D to C. It is impossible to tell the direction of associa-

tion between nodes A and B given only this information. Even in a perfect situation

with completely observed population based data, equivalence classes can not be dis-

tinguished.

4.6 Association in DAGs

DAGs are non-parametric models in that they do not imply anything about specific

distributions between the variables. The directed edges between nodes imply a rela-

tionship between variables. If there is no edge then this implies no direct relationship

or association.

There are two main approaches when trying to establish the true underlying model of

a given scenario. Firstly, thinking in terms of directions of association and hypothesis-

ing about these between effect and outcome, then testing this model to see if the data

supports it, or if it can be falsified. On the other hand, assuming that the model is un-

known and trying to use the data to suggest 'likely' models or the most 'likely' model.

In this context, one cycles over all possible DAGs to find the one(s) that best fit(s) the

data. Given an optimal model or set of models we need to consider the correspond-

ing equivalence classes in order to establish information about directionality. Different

equivalence classes may suggest alternative conclusions about the true model. [39]
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4.7 Trying to Determine Direction of Association

Essentially, the interest is in trying to analyse which variables have a direct effect on

others. I want to allow for everything that could be related to the variables in question,

e.g. confounders, to make sure the model is correct. In a statistical framework, DAGs

can be used to model all the variables jointly. This will automatically correct for the

effects of all variables included in the model via the edges defined. Therefore, I allow

an algorithm (described later in Section 6) to choose the most appropriate model. A

confounder is a variable which is associated with both the outcome and exposure but

is not on the causal pathway from exposure to disease. If there is a confounder within

the model then this will be automatically corrected for. For example, fitting the model

below

will automatically correct for the effect of confounder C assuming primary interest is

in effect of A on B. The model search algorithm will decide whether the edge between

A and B is necessary when confounder C is taken into account. Note that the DAG

shown above is defined by equivalence class

with arrows in any direction since no v-structures are present. If confounder C is not

observed, or it is not adjusted for in the model, the true effect between A and B is

distorted by the associations of A and B with C.
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4.8 Instrumental Variables

Instrumental variables can be used to infer causal relationships.

Consider the following DAG

Figure 4.1: DAG Illustrating Instrumental Variable, B

Suppose we are interested in the association, and direction of association between an

exposure, E and outcome, O. There may be unobserved confounders influencing this

relationship. These are labelled 'U' in Figure 4.1 above.

Here, B is an instrumental variable for the relationship from E to O. A variable is de-

fined as an instrumental variable if it is

1. associated with exposure, E,

2. has no direct effect on the outcome, 0,

3. and does not share common causes with the outcome.

An instrumental variable allows the estimation of the effect of exposure even in the

case of unobserved confounders because it is only associated with outcome if expo-

sure is. In other words, B has an association with 0 but only through E. This approach

may offer a strategy for eliminating or reducing unobserved confounding, in the esti-

mation of E on O.

The instrumental variable forces the direction between E and 0 to be known due to the

v-structures implied by the added node.
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Randomisation of treatment in a randomised control trial, for example, can be consid-

ered an instrumental variable, as shown in the DAG below. It is associated with intake

of a drug (exposure); has no direct effect on outcome due to blinding; and does not

share common causes with outcome due to randomisation.

Genotypes can often be used as instrumental variables in genetic studies. Mendelian

randomisation (MR) states that genotypes are assorted randomly at birth with equal

probabilities. Genotypes are also not influenced by exogenous (environmental) fac-

tors. In this respect, genotype can be used in the same way as a randomised treatment

in a clinical trial by potentially allowing an unbiased estimate of the effects of gene

products (intermediate phenotype) on outcomes (disease risk/status) i.e. as an instru-

mental variable. Genotype can be associated with exposure, have no direct effect on

outcome and does not share common causes with the outcome. The effects of a geno-

type on the outcome in this scenario are assumed to be only through the intermediate

phenotype.

However, it should be noted that genotypes under the assumptions of instrumental vari-

ables through MR have several limitations. This methodology is subject to challenges

such linkage disequilibrium, pleiotropy, weak genetic effects and lack of knowledge of

how genetic variants biologically effect phenotypes. [41,42]

Under MR it may be possible to analyse the effects of an intermediate phenotype on

a disease using genotypes as instrumental variables (IV), in a set up generally free of

confounding by environmental exposures. However, confounding by linkage disequi-

librium (LD) or population stratification may still occur. Population stratification can

be a confounder as different populations carry different risks of disease and genotypes.

Depending on the SNPs typed, the analysis of the genotype effect on outcome may be
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biased due to a possible omission of untyped disease causing variants in LD with the

typed SNPs.

Linkage disequilibrium may also be an issue in that there may be another genotype

in LD with the genotype being used as an IV. This could violate the IV assumption

that the genotype is only associated with disease/outcome through intermediate phe-

notype/exposure as shown in the diagram below.

Figure 4.2: Genotype as Instrumental Variable with Possible Genotype in LD

In the same way pleiotropy may be an issue in using a genotype as an IV. If a gene has

multiple phenotypic traits; or acts via more than one pathway then the effect of this

on the outcome may be confounded by other pathways from gene to outcome. This

would, again, invalidate the assumption that genotype is only associated with disease

through intermediate phenotype.

The association between the intermediate phenotype and on a disease is usually cal-

culated using a ratio of regression coefficients of association between the variables. If

the regression coefficients are as shown in the diagram below
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Figure 4.3: Coefficients of Association

then the expected association between the phenotype and disease is given by

(4.1)

There will be some degree of bias for E(,BPD) when the IV assumptions outlined above

are not met.

If the effect of the genotype on the intermediate phenotype is weak then this wi1llead

to uncertainty in the model. Weak instruments can have underestimated confidence

intervals. A weak correlation between the instrument and error in the original equation

can lead to large inconsistencies. The less precisely the genetic variation predicts the

intermediate phenotype, the less precise the derived effect estimate for the association

between phenotype and disease will be. The above equation equation requires there

to be no large amou~ts of variation in the numerator. A weak effect can therefore vi-

olate the assumptions required of an instrumental variable: an association is required

between the IV (genotype) and exposure (intermediate phenotype). Weak instrument

bias is in the direction of the confounded association between intermediate phenotype

and disease.

There is also the problem of lack of knowledge of how genetic variants have their ef-

fects. This may mean that the pathways modelled are missing variables that would
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affect the estimates or pathways. Genetic variants may all be interacting and it may

not be clear which genotypes to include in the model.

Using genotypes as instrumental variables through Mendelian randomisation should

be done with caution, especially if the gene effect on intermediate phenotype is weak.
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CHAPTER

5

BAYESIAN MULTIVARIATE

ADAPTIVE REGRESSION SPLINE

MODELLING

5.1 Aims and Background for SLE dataset analysis

My aim is to investigate Bayesian variable selection methods in regions of high LD. In

particular, to investigate SNPs in the major histocompatibility complex (MHC) region

associated with systematic lupus erythematosus (SLE). Past studies have found several

SNPs in this region to be highly associated with SLE but these SNPs are in high LD.

The major histocompatibility complex (MHC) region on the short arm of chromo-

some 6 was first fully sequenced in 1999 by the MHC Sequencing Consortium. The

gene clusters found to have the most defined functional relevance in terms of antigen

processing and presentation were the HLA class I (HLA-A,-B,-C) and class II (HLA
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-OP,-OQ,-DR). [43] To date more than 100 diseases, including autoimmune diseases,

have been found to be associated with HLA genes, and the MHC region has been found

to have SNPs with the highest associations, in most cases, for autoimmune diseases.

However, there is a large amount of genetic variation and LO across the MHC which

hinders attempts to define the primary signals associated with disease and to determine

primary signals. [44] [45]

Rioux et al [46] aimed to investigate the strong linkage disequilibrium across the MHC

region by genotyping a very large dataset. They aimed to establish the common genetic

variants across the 3.44 Mb region using 10,576 DNA samples. They genotyped 1,472

SNPs, and analysed the genetic associations in this region with several auto-immune

diseases including SLE. Systematic lupus erythematosus (SLE) is a disease of the im-

mune system, and can cause inflammation of the joints, and certain organs of the body.

After initial analysis, Rioux et al [46] pooled the UK and US datasets together as the

individual SNP analysis for association with SLE gave the same 6 top markers using

each dataset. They concluded that their approach was robust, and they had high qual-

ity sample collections. With a pooled dataset, the power of their statistical analysis

increased.

The analysis showed that the top signal for association with SLE was RS 1269852

with an odds ratio of 2.4 and an associated p-value of 5.63E-29. Other top signals

were RS558702, RS3130484, RS3131378 and RS3131379 with p-values of6.75E-29,

1.59E-26, 1.9E-26 and 1.9E-26 respectively; and odds ratios of 2.34, 2.25, 2.24 and

2.24. It was found that these SNPs are all in extremely high LO with RS 1269852 with

r2 > 0.93.

Conditioning on RS1269852 to find secondary associated SNPs, Rioux et al found

RS3135391 to have the highest signal (p-value of 3.9E-06). However, this SNP is also

in high LO with RS 1269852 (r2=0.98). They found signals potentially independent of

RS 1269852 to suggest at least 3 separate signals in this region. The strong LO across

the SNPs found to be associated with SLE makes it difficult to identify the causal ones.
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The aim of my analysis is to use Bayesian variable selection methods to further inves-

tigate the patterns of association across the MHC region.

5.2 Datasets

The data set used for my analysis maps the HLA and non-HLA associations across the

entire major histocompatibility complex (MHC) region. An association study on the

major histocompatibility complex (MHC) region in SLE using data from the Interna-

tional MHC and Autoimmunity Genetics Network (IMAGEN) study, on 1,199 SNPs

from chromosome 6 showed several SNPs with strong evidence of an association. This

is a case-control study with 632 UK SLE cases and 746 UK controls from the 1958

Birth cohort [47]; and 483 US SLE cases and 1049 US controls from the New York

cancer Project. [48]

In order to increase the power of my analysis to detect separate signals of association

with SLE, another dataset was used. The second phase of the IMAGEN study collected

data on Spanish subjects. The Spanish dataset has 5,024 SNPs for 813 individuals in

the MHC region. This consisted of 404 controls and 409 cases. Combining UKIUS

and Spanish datasets together results in a larger dataset with more power for statistical

analysis but raises concerns about heterogenity. There was an intersection of 777 SNPs

between the UKIUS and Spanish datasets.

The plot below shows the distribution of SNPs across the MHC region by dataset. The

imputed dataset is described in Section5.6.
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SNP Positions by Analaysis Datasets

UK/US
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Figure 5.1: Distribution of SNPs by dataset

The following table summarises the final number of SNPs in each dataset after quality

controlling (detailed in Section 5.3) and the average marker spacing.

Dataset Number ofSNPs Cases Controls Mean Spacing(BP) Median Spacing (BP)

UK/US 1,199 1,115 1,795 6,311 1,864

Spanish 5,024 409 404 1,510 409

Imputed 3,592 1,524 2,199 2,135 687

Table 5.1: Average marker spacing by dataset in basepairs
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It is clear that the Spanish dataset and the dataset of both UKlUS, Spanish and imputed

SNPs have much finer marker density than the UKIUS dataset (i.e. that used by Rioux

et al). This means with more SNPs, I am more likely to find the primary signals asso-

ciated with SLE.

5.3 Initial Analysis of SLE data

5.3.1 Data Overview

Before quality controlling, the UKIUS dataset contained genotype information for

2,921 individuals on 1,230 SNPs. There were 11 people with another family member

in the study as determined by the family identification variable. These were dropped

from my analysis.

For a details on missing SNPs by UKIUS and Spanish data please see Appendix 8.0.1.

There were a maximum of 5% of genotypes missing over anyone SNP and this mini-

mal missing data was imputed using Mach [17]. The imputation methods used by this

program are discussed in 2.7.3. This algorithm uses Estimation Maximisation (EM) to

iteratively estimate the missing haplotype probabilities based on the observed haplo-

types of each individual at other loci. This method should converge to the haplotype

frequencies that equate to the maximum likelihood.

I ran the MACH program for 50 iterations, considering 200 haplotypes at each itera-

tion. This was reasonable for the small amount of missing data [17]. Missing genotype

data was imputed into the UKIUS dataset using information from the UK/US data, and

missing genotype data was imputed into the Spanish dataset using haplotype informa-

tion from the Spanish data. Missing genotypes were imputed as expected values for

each individual.

After imputing the missing genotypes within the UKIUS dataset, 14 SNPs were ex-

cluded from the analysis because they had the same genotype for every individual.

The UKIUS data now contained 2910 individuals with 1216 SNPs. This included 632
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UK cases, 746 UK controls, 483 US cases and 1049 US controls.

5.3.2 Testlng for HWE

I then tested whether or not the SNPs are in Hardy Weinberg Equilibrium (HWE). It

is important that SNPs are in HWE because deviations can be a sign of genotyping

error, inbreeding, population stratification or selection as mentioned in 2.3.1. Devia-

tions from HWE may invalidate assumptions of the analysis and give incorrect results.

Checking for HWE is therefore a necessary data quality check. I used the Pearson

goodness of fit test (also known as the X2 test) to test for deviations in my control data

from HWE. Only the control data is used because if there is an effect of a particular

SNP on SLE, for example, then the genotypes for the cases of that SNP will be out of

HWE by definition. Note: the alternative HWE test using a likelihood ratio method

resulted in the same SNPs being in or out of HWE. Both these tests have 2 degrees of

freedom.

This test using UKIUS controls showed that 17 SNPs were not in HWE with p-values

of less than 10-5• The expected number of SNPs out of HWE in a dataset this size is <
1. These SNPs were not included in my analysis. This left a final dataset for analysis

with 1,199 SNPs.

Doing the same test for each of the 5,024 SNPs of the Spanish controls dataset, showed

that they were all in HWE with a threshold p-value of less than 10-5•

5.3.3 Population Structure

The population structure between the UK and US datasets was tested to ensure that

combining them to form one dataset was sensible. Wrights FST is a measure of het-

erozygosity between different populations and tests whether the allele frequencies by

SNP in each population are comparable. It was developed by Sewall Wright in the

1920s [49,50]. The F-statistic can also be thought of as a measure of correlation be-

tween genes from different populations. The value of the F-statistic is altered by sev-
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eral evolutionary processes, such as mutation, migration, inbreeding, natural selection,

but its primary function is to measure the amount of allelic fixation due to genetic drift.

An F-statistic of 0 indicates no divergence between populations, and an F-statistic of 1

indicates that the populations are completely different.

The F-statistic between UK and US controls was calculated using the R package

polysat [51] to be 0.0006. As described by The International HapMap Consortium [10]

and Holsiner &Weir [52] this value is considered to show that the UK and US datasets

have similar allele frequencies by SNP and so can be merged to form one dataset with

more statistical power for further analyses. Further sensitivity tests to show how analy-

ses changed by UK or US alone will be carried out to illustrate that they obtain similar

results. See Section 5.3.4 below and Appendix 8.2.

The F-statistic between the UKIUS controls and the Spanish controls was calculated

to be 0.005. Although not as close to 0 as the F-statistic between the UK and US

controls, this indicates that the allele frequencies by SNP between the two data sets

are fairly similar, and merging all the data for one statistical analysis is not unreason-

able. [52]

5.3.4 Frequentist test of association

I used a simple frequentist Fisher exact test to initially analyse any SNP associations

with SLE as described in 2.8.1 In this framework, each SNP is tested for an associa-

tion individually. Note: the Bayesian Multivariate Adaptive Regression Spline model

I use later 5.9 has a dominance component for flexibility, and assumes an underly-

ing Gaussian distribution of liability (probit model). However, a Fisher exact test is

asymptotically equivalent to a logistic model so this makes it slightly more difficult for

direct comparisons to be made under the different methods.
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UKIUS Data Analysis

Applying this test to the 1199 SNPs of the UK/US dataset Ifound several to have very

small p-values. The results are shown in the plot below.

Plot of frequentist -10910 p-values of SNP association with SLE
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Figure 5.2: Plot of Frequentist p-vaJues of UK/US SNP Association with SLE

This plot shows that (in order of marker position & in left to right on the plot & high-

lighted by triangles) RS3130484, RS3131379, RS313 J 378, RS558702, RS 1269852,

RS204041O, RS2187668 are highly significant, with frequentist p-values of 7.11 E-28,

7.l1E-28, 7. llE-28, 2.06E-30, 4.54E-30, 2.29E-27, 1.29E-27 respectively. Rioux et

al [46] found that RS1269852 had an odds ratio of association with SLE of 2.4 with a

p-value of 5.63E-29. The top two SNPs in the above frequentist analysis; RS558702

and RS 1269852 (Rioux et aI's top SNP) are physically very close to each other (marker

positions 31978304 and 32188]68) and are in high LO (1'2 of 0.961, D' of 0.985)

Testing a large number of SNPs, it is expected that some SNPs would be significant

by chance alone. Therefore in doing genome wide association studies, or in studies

with a large number of variables being tested, it is necessary to change the threshold

p-value from the "normal" value of 0.05 to one of say 5 * 10- . This reduces the false

discovery rate of defining too many SNPs to be associated. Using a p-value of 5* 10-8
as a cut off (as used by the Welcome Trust Case Control Consortium (WTCCC) [53]),
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there are 161 SNPs associated with SLE in the above analysis. The dashed line on the

plot represents this cut off.

It is evident from the plot of my simple frequentist analysis that there is a clustered

nature of associations across SNPs on chromosome 6. There is no clear signal as to

which SNPs are actually associated with SLE. This clustering is likely to be largely

due to strong LD within the region and my aim is to disentangle this.

The frequentist p-values from separate UK and US analyses are similar. The top 10

SNPs are the same though in a slightly different order. The top 2 SNPs for the UK

analysis are RS558702 and RS1269852 with respective p-values 5.76E-20 and 1.24E-

19. The top 2 SNPs for the US analysis are RS1269852 and RS558702 with p-values

3.05E-IO and 5.05E-l 0 respectively. These are also the same 2 top SNPs from the joint

frequentist analysis. In all 3 analyses, the p-values between the top 2 SNPs are very

close. The p-values for the individual analyses are slightly bigger but this is likely to

be due to the smaller sample sizes. This echoes the result of the F-statistic above, and

we can conclude that the datasets are similar enough to combine.

Spanish Data Analysis

Applying the frequentist Fisher exact test as described above to the Spanish dataset, I

found several to be highly associated with SLE. The results are shown in the plot below.
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Plot of frequentist -10910 p-values of SNP association with SLE

SNP Pcsttion

Figure 5.3: Plot of Frequentist p-values of Spanish SNP Association with SLE

Again, there is a clustered nature of associations across SNPs on chromosome 6. There

is no clear signal as to which SNPs are independent signals associated with SLE. Note

that there is less power in this analysis than in the UK/US one as there is a smaller

sample size (813 individuals vs 2920 individuals).

Using p-values of 5 * 10-8 as a threshold, there is only one SNP associated with

SLE in the Spanish dataset. This SNP is marked as a triangle on the plot above

and is RS9268832 with a p-value of 1.46E-08. However, the plot shows that (in or-

der of marker position and from left to right on the plot), RS3131381, RS3131379,

RS3117574 an RS3 130490 all share a p-value of l.45E-07 and are located very close

to each other and the top ranking SNP on chromosome 6 (marker position numbers

31816442,31829012,31833209,31847099. The top SNP has marker position 32535767)

so it is likely that these are all highly correlated with each other. The next stage was

therefore to investigate the LD between all these SNPs to see if this is the ca e.

Note: the top two SNPs from the Spanish analysis are not in the UKIUS dataset but

the third most highly associated SNP RS3131379 is the fourth highest in the UK/US

dataset. SNP RS3131379 has a p-value of association with SLE in the UKIUS data et

of 7.11 E-28 and 1.45E-07 in the Spanish analysis. The difference in p-values could be

due to significantly less power in the Spanish dataset due to a smaller sample size.
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The top SNP RS558702 from the frequentist UKIUS analysis with a p-value of 2.06E-

30 has a p-value of 3.52E-07 in the Spanish analysis. The second highest SNP from

the UKIUS dataset, RS 1269852, has a p-value of 4.54E-30 in the UKIUS analysis and

4.50E-07 in the Spanish one. These SNPs are ranked 8th and 14th respectively in the

Spanish frequentist analysis.

5.3.5 Linkage Disequilibrium

UK/US Data Analysis

I then investigated the LD between the top ranking 100 SNPs from the UKIUS fre-

quentist analysis. An LD plot created using Haploview [54] [55] shows the levels of

LD between all SNPs selected in order of marker position on chromosome 6 from left

to right. The darker the box connecting the two SNPs, the higher the level of LD be-

tween the two SNPs. The LD value shown in each box is the r2 statistic. The black

boxes drawn on the plot show blocks of LD.

The LD plot of all UKIUS SNPs (in Appendix 8.1) shows that all of these SNPs are

in high LD with several other SNPs. This confirms that the clustering shown in the

frequentist results above is likely to be due to strong LD amongst the SNPs.

The levels of LD between the 10 highest ranking SNPs from the UKIUS frequentist

analysis are shown in the plot below. They are all in LD with at least one other SNP in

the top 10 with r2 > 0.5.
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Figure 5.4: LD Plot of Top 10 UKIUS SNPs from Frequentist Test of Association with

SLE

This shows that the top two SNPs in the above analysis (RS558702 and RS1269852)

are highly correlated with all top SNPs showing an association. The very high correla-

tion between these SNPs could mean that there is only one locus associated with SLE

but it is difficult to establish which one.

Spanish Data Analysis

I then investigated the LD between the top ranking 100 SNPs from the Spani h fre-

quentist analysis. The LD plot (in Appendix 8.1) shows the levels of LD between all.

the SNPs.

To see more clearly, the levels of LD between the 20 highe t ranking SNPs from the

frequentist analysis are shown in the plot below. The top 20 were chosen rather than

the top 10 in the UKIUS dataset because the loci in the Spanish data et are more den e.

Ialso wanted to include the two top SNPs from the UK/US for compari on. Again, the

darker the shade of red the box connecting the two SNP , the higher the level of LD.

The top 20 SNPs are all in LD with at least one other SNP with r2 > 0.7 as shown

below.
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Figure 5.5: LD Plot of Top 20 Spanish SNPs from Frequentist Test of Associationwith

SLE

5.4 Intersection of UKIUS and Spanish Data

In order to increase power and the ability to localise the signals of association, the

UKIUS and Spanish datasets were merged. Combining the UK/US datasets and the

Spanish datasets resulted in 772 overlapping SNPs for 3723 individuals; 1,524 cases

and 2,199 controls.

Itwas necessary to flip alleles on 230 SNPs so that those from the Spanish dataset were

on the same strand as those from the UKIUS dataset. Sometimes if the genotyping of

the SNPs are done on different chips e.g. Affymetrix and Illumina, then the major and

minor alleles can be defined differently. This means that Cs are coded a G , or Ts are

coded as As or vice versa. This was the case between the Spanish and UK/US dataset

for 230 SNPs, and so I flipped these strands on the Spanish dataset to match those on

the UKIUS dataset.

There were 34 SNPs with different observed minor allele frequencie. The e were

genotypes coded across both studies as C/G or NT but had different minor alleles. In

order to reconcile this problem, I compared the allele frequencie to those in the Euro-

pean HapMap database and matched the minor allele to this information. [56]
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The dataset merged together of UKIUS and Spanish data was done after imputation for

missing genotypes in the individual datasets but before testing for HWE. Using both

datasets combined, each SNP was tested for HWE in the dataset with more individu-

als. There were 14 SNPs out of HWE (with p-value criteria as in UKIUS and Spanish

analyses) so these were dropped from analysis of the intersection data.

5.4.1 Frequentist Test of Association

Applying a logistic regression test for association and adjusting for population (UK/US

vs Spanish) between each of the 758 SNPs and SLE, several were found to be strongly

associated. The results are shown in the plot below.

Plot of frequentist -log10 p-values of SNP association with SLE
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Figure 5.6: Plot of Frequentist p-values of Intersection SNP A. sociation with SLE
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The plot above shows that the three SNPs with the highest frequentist p-values after

adjusting for population (UKIUS vs Spanish) for an association with SLE (in order

of marker position and from left to right. and marked by triangles) are RS3131379,

RS558702 and RS1269852 with respective p-values of 1.97E-33, 2.73E-35 and 8.34E-

35. The top SNP RS558702 is the top SNP in the UKIUS individual frequentist anal-

ysis (p-value of 2.06E-30), and is the 8th highest in the Spanish analysis (p-value of

3.52E-07). The second most significant SNP RS1269852 ranks 2nd in the UKIUS anal-

ysis (p-value 4.54E-30) and 14th in the Spanish analysis (p-value 4.50E-07). Using a

p-value threshold of a conservative 5 * 10-8, there are 124 SNPs in the overlapping

dataset that have an association with SLE.

Again, there is a clustered nature of associations across SNPs and it is not obvious

which SNPs are actually associated with SLE.

5.4.2 Linkage Disequilibrium

The LD plot between the top ranking 100 SNPs from the frequentist analysis is shown

in Appendix 8.1.

The levels of LD between the 10 highest ranking SNPs from the frequentist analysis

are shown in the tables of D' and then r2 below.
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Considering the plot of frequentist p-values of the overlapping SNP analysis and the

LD between those SNPs with the toplO highest p-values, we may believe that there

could be two underlying causal loci. One represented by the two top hits RS 1269852

and RS558702 which are in extremely high LD (D' = 0.99), and the other repre-

sented by the 4 in the cluster above in the frequentist plot of p-values (RS2239805,

RS3135366, RS2395171 and RS2227139). These 4 SNPs are in very tight LD with

each other (D' > 0.97). This would collaborate with evidence suggested by the single

analyses but gives a slightly more detailed picture.

5.5 Summary of Frequentist Analysis

The table below gives a comparison of the top 10 SNPs from intersection frequentist

analysis with results for the same SNPs in individual UKJUS and Spanish analyses.

Table 5.4: Summary of p-values of Association & HWE p-values by Top SNP & Dataset

Intersection Data UK/US Data Spanish Data

SNPs Association p-val Association p-val Association p-val
(HWE p-val) (HWE p-val) (HWE p-val)

rs558702 3.13E-31 (0.18) 2.06E-30 (0.24) 3.52E-07 (0.35)

rsl269852 8.68E-31 (0.09) 4.54E-30 (0.12) 4.50E-07 (0.36)

rs3131379 3.24E-29 (0.40) 7.11 E-28 (0.51) 1.45E-07 (0.35)

rs3134942 4.59E-27 (0.76) 6.37E-26 (0.82) 1.35E-06 (0.16)

rs1150758 5.32E-25 (0.06) 1.09E-24 (0.15) 4.65E-07 (0.70)

rs2071278 2.65E-22 (0.76) 2. 16E-22 (0.88) 3.4IE-04 (0.08)

rs2395171 l.lE-20 (0.63) 8.72E-21 (0.69) 1.11E-03 (0.38)

rs2227139 1.64E-20 (0.56) 4.96E-19 (0.63) 1.29E-06 (0.36)

rs3135366 1.64E-20 (0.84) 4.05E-21 (0.91) 3.44E-03 (0.51)

rs2239805 4.S8E-20 (0.21) 6.16E-21 (0.52) 7.89E-03 (0.42)

From this it is clear that the p-values within each dataset analysis are similar. This
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makes it difficult to distinguish the SNPs that are independent signals.

I then carried out simple frequentist tests of association by conditioning on the top

SNPs RS558702 and then RS1269852 in order to examine if there are any indepen-

dent signals within the top 10 SNPs from the intersection analysis.

Table 5.5: Table of p-values of Association Conditioning on RS558702

SNPs p-value

rs1269852 0.46

rs3131379 0.18

rs3134942 0.23

rs1150758 0.50

rs2071278 0.66

rs2395171 0.31

rs2227139 6.84E-06

rs3135366 0.33

rs2239805 0.37

Table 5.6: Table of p-values of Association Conditioning on RS 1269852

SNPs p-value

rs3131379 0.62

rs3134942 0.30

rs1150758 0.41

rs2071278 0.80

rs2395 171 0.37

rs2227139 7.78E-06

rs3135366 0.37

rs2239805 0.43

These results show that there are at least two independent signals. It would be more
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efficient to test for an association with all SNPs jointly. This is done in Section 5.9

5.6 Combined Dataset with Untyped SNPs from HapMap

In order to obtain a better coverage of the whole chromosome and therefore to be more

likely to find independent SNPs, untyped genotypes in each dataset were imputed us-

ing information from HapMap (as discussed in Section 2.7.3).

The SNPs missing from each dataset but available in the other, and in HapMap were

imputed in two blocks. Firstly, those missing from the UKIUS but in the Spanish

dataset were imputed using information from the UKIUS dataset and HapMap. Then

those missing from the Spanish dataset were imputed in the same way. This took into

account the fact that the two datasets might have different population structures, and

imputed SNPs into the the Spanish dataset, for example, using information from the

UKIUS dataset would not make sense if they were different. In fact, Wright's FST

between the UKIUS and Spanish datasets for those SNPs in both datasets is 0.005.

This implies that they datasets have similar allele frequencies. The imputed datasets

were combined and an indicator variable was added to determine between UKIUS and

Spanish to allow for different MAFs or effect sizes in the two datasets.

The SNPs used to impute untyped SNPs in each of the datasets were taken from

HapMap. These SNPs were unrelated Utah residents with ancestry from northern and

western Europe. The SNP samples were taken from chromosome 6 within the MHC

region (26000000 to 34000000) for 17 individuals each. Mach [17] was again used for

imputation using 50 iterations using information from 200 haplotypes for each SNP

at each iteration. This resulted in a dataset of 3,636 SNPs for 1,524 cases and 2,199

controls. 2,910 individuals from UKIUS (1,795 controls and 1,115 cases) and 813

individuals from the Spanish data (404 controls and 409 cases). I used the expected

genotype value output from Mach so SNPs are now 1.2,0.7, etc., for example. I filtered

any imputed SNPs using r2, which estimates the squared correlation between imputed

and true genotypes. I used a cut-off of 0.8. [56]. This resulted in a dataset for analysis

with 2,733 SNPs.
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The tight LD of the associated genotypes motivates the use of a model search method,

for which Bayesian methods cope better with uncertainty about the model.

5.7 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Spline (MARS) modelling was developed by Fried-

man [57] to allow for flexible regression of high dimensional data. This model was

motivated by the fact that it can be difficult to approximate the relationship between an

outcome and many variables and we may not know a priori what effect we expect each

variable to have upon the outcome. The set-up of MARS models is described in detail

below.

In a genetic context, a MARS model does not force a specific model for each locus. It

allows different SNPs to have different effects on the outcome of interest. For example,

some SNPs may be dominant while others may be additive or recessive. MARS mod-

els also account for non-linear relationships between outcome and variable, can allow

for interactions, and use variable selection to include the most significant variables in

the model.

5.S Non-linear regression

Sometimes we want to allow for non-linear relationship of the genotypes of a SNP

with an outcome. For example, if we were to fit a linear model to this data.
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Linear Regression of Genotype vs Outcome

Genotype

fj = 1+ 1.5x (5.] )

From the plot, it is clear that this is not a linear relationship. A better fitting model

would be

fj = 1 + l[x - 0]+ + l[x - 1]+ (5.2)

as shown in the plot below. Where [x - 1]+ is known as a basis function, and []+ is the

value of that in the brackets if it is positive; 0 otherwise. For example, [2 - 1]+ = 1

but [2 - 3]+ = O. In the example above, the gradient change at 1. This is known as a

knot.
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Non-Linear Regression of Genotype vs Outcome

Genotype

This is an example of a simple MARS model.

For a single covariate, x, a regression spline model with basis functions for varying

knot points, can be written as

J(

g(X, {3, t, J() = f30 +L f3,;[x - td~ (5.3)
i=l

where q is a positive integer to denote the order of the spline (e.g. q=2 for a quadratic

spline model; q=l in these examples), as mentioned before []+ is the positive part of

that in the brackets, t1, . , , , i« is a set of candidate knots. Note that for genetic data,

coded as 0, 1 or 2, we only allow knots at values 0, I or 2. To reiterate, knots are points

on the x-axis where the nature of the function changes. All these parameters are es-

timated simultaneously with the regression coefficients f3 and K, the total number of

knots.

As mentioned above, three well known genetic models are the dominant, recessive or

additive model on an outcome. When modelling a disease outcome and we want to

model the probability of disease/ no disease (1 /0) as for SLE outcome, it is desirable

68



to work using the probit model on a log scale. This was explained in detail in Section

2.8.2 However, examples of dominant, recessive and additive models are plotted with-

out a log scale for simplicity at this stage.

Effect Under a True Recessive Genotype Effect Under a True Additive Genotype

o o

Genotype Genotype

Effect Under a True Dominant Genotype

o

Genotype

Figure 5.7: Plots of Effects of True Recessive, Dominant and Additive Genotypes

From these plots, it is clear that MARS model is suitable to fit to genotype data, for

flexible models, including those usually fitted, and can allow a different model for each

locus.

The MARS model can be extended to include interaction terms. This can be useful if

for example, genotypes have an interaction effect. For example, if we have an interac-

tion between true additive, dominant and recessive SNP , the effects will look like the

plots below.
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Figure 5.8: Plots of Effects of Interactions Between Genotypes

The MARS model linear predictor for my analysis is written

[(

TJ = f31 +L f3kBk(X)
k=2

(5.4)

where the basis function Bk(X) is

Zj

Bdx) = II[skz(xv(kz) - tkz)l+ (5.5)
z=l

where Zj= lor 2, ... depending on number of interactions for that particular basis func-

tion, [.l+ = max(O,.), Z is the degree of interaction of basis function Bi; Skz = -1

or 1 depending on the sign (Note: changing the sign of the basis function can lead to

effects by genotype opposite to those shown on the plots above], v(kz) is a member

of 1,... ,p and indicates the predictor in the model and tl.;z is the associated knot value

with interaction term z for basis function k. Therefore, TJ is a linear combination of

non-linear transformations of the covariates. Let e = {k, fj, z, 8, v, i} be a vector of

parameter estimates. In this equation each predictor is constrained to appear only once

in each basis function.

In this analysis for SLE, the MARS model is restricted to have a maximum of 2 inter-

actions.
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Notice that, just as in the case of usual multivariate regression, the effect of each pre-

dictor in the model is adjusted for all other predictors within the model. This should

enable us to tease out the most likely causal loci by automatically correcting for nearby

associated SNPs.

The' Adaptive' part of the MARS model refers to the selection of the optimal model.

The frequentist approach to fitting this MARS model iterates through the possible mod-

els (basis functions), using forward and backward variable selection. As in stepwise

regression, a proposed change in the model is accepted if it results in a significantly

improved residual sum of squares of the fitted model.

In forward selection, the candidate spline term multiplied by the existing basis function

that gives the largest reduction in residual sum of squares is added. In order to reduce

the number of basis functions in the model and to avoid overfitting, a backward dele-

tion is proposed. We can choose which basis functions to delete using the generalised

cross-validation criterion, for example. [58]
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5.9 Bayesian Multivariate Adaptive Regression Spline

(BMARS)

It is desirable to search over all "possible" models in order to find those SNPs that

are most important in the prediction of SLE. The BMARS model used should auto-

matically correct for nearby associated SNPs, and only those most directly associated

should be included in the model.

I used a Bayesian Multivariate Adaptive Regression Spline (BMARS) model, devel-

oped by Verzilli et al. [59], to identify the most associated SNPs taking into account

nearby associated SNPs in the data above via Bayesian model averaging.

A Bayesian approach summarises the evidence in favour of model m in terms of the

posterior probability of model m given the data (j(mly). [60]

f(mly) = f(ylm)f(m)
EmEM f(ylm)f(m)

Model averaging refers to averaging over all possible models using either

(5.6)

a)f(fJIY) = f(fJly, m)f(mly) (5.7)
all models m includings

or

b)p(covariate i being in model) = p(mly) (5.8)

all models including covariate i

Verzilli et aI. use a reversible jump algorithm as described in Section 3.7 [34,38]. This

allows the MCMC scheme to sample from any model m for the MARS models con-

sidered. The reversible jump algorithm explores the space of e, proposing to change

the dimension of 0 at each iteration using a birth, death or switch step.

For the MARS models used in this analysis, the acceptance probability of a new basis

function (birth step) is simply [61]
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min { 1,BF((/, O)R} (5.9)
where R is the ratio of probabilities (d~;l as described in Section 3.7) and BF«O', 0) is

the Bayes factor (see Section 3.6) of the proposed model (e') compared to the current

model (0).

73



5.10 Priors for Parameters in the SLE BMARS Model

I follow Verzilli et al. who use similar prior distributions for the parameters e =

{k, {3, z, s, v, t} as Holmes and Denison 2003. Using a Bayesian approach, 0 is treated

as unknown, and all parameters are assigned prior distributions. The prior distribution

on the sign indicator for basis function k, Skz is uniform on {-I, I}, i.e. P(Skz)=U(-

1,1). Predictor variable v(kz) which is used in term z of basis function k and indicates

whether a SNP is included in the model or not, is given a uniform prior p(v(kz))=U(O, ... ,p)

where p is the number of possible SNPs in the model. The knot values tz are uniformly

distributed on the observed genotype values, i.e p(tkz)=U(0,1,2). For the maximum

number of basis functions K that the model is allowed to grow to we set p(K) =

U(I, ... , Kmax), here choosing Kmax=250. The prior distribution for the vector of

spline coefficients, (3, is p({3) = .MV N(O, CT~I). Finally, the prior for CT~ is inverse

gamma, i.e. p(CTi2) = gamma(O.01, 1).

The BMARS code was then extended by Verzilli et at. to include a Poisson prior on

the number of variables in the model, as previous code assumed at least one SNP as-

sociated with SLE at each iteration. p(K) '" Pois(A)

A was set to 0.5 as this equates to a very conservative prior of less than one SNP being

included in the model. However, under sensitivity analysis, by varying the values of A,

neither the posterior probability or the number of SNPs being included changed.

In order to simplify sampling from posterior distributions, the probit link function with

data augmentation was used, as explained in Section 2.8.2. The advantage of using

the latent variables Wi. together with conjugate priors, is that posterior sampling of all

parameters is simplified following from the Bayesian linear model, conditioned upon
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5.11 Application to SLE association study data

In the SLE dataset, observed values of Y are defined by

u= { ~
if no SLE i.e. control

if have SLE i.e. case

The matrix of x is made up of SNPs, coded as 0,1,2 for the different possible geno-

types as described above in the frequentist analysis; or by expected genotype values in

the case of imputed SNPs.

In every case the prior probability is set so that the expected number of SNPs in

the model is 0.5. Sensitivity of this was examined by altering the mean of the prior

(P(K) '" Pois(>.)) from 0.5 to 10 as this could be a potentially informative prior (see

plot below).

The plot below of probability mass functions of the Poisson distribution with A. = 0.5,

5,10 shows that this could be a potentially informative prior on the number of SNPs in

the model.
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Figure 5.9: Probability Mass Functions of the Poisson Distribution
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5.11.1 Analysis of UKIUS dataset

The BMARS MCMC algorithm developed by Verzilli et al. was applied to the UK/US

dataset with 1,199 SNPs for 2,910 individuals. The algorithm was run 10 times for

5,000,000 iterations with a burn-in period of 200,000 with a thin of 800. A large thin-

ning parameter was used to reduce the size of the vector stored in Rover 5 million

iterations. A convergence plot of the posterior probability of the SNP with the high-

est signal shows that only the short burn-in used is required. The model converges at

150,000 iterations but a burn-in period of 200,000 was used to be stringent.

Posterior Probability of AS558702
having an Association with SLE

50000 100000 150000 200000

lterauons

Figure 5.10: Cumulative Posterior Probability of RS558702 having an Association with

SLE

The BMARS algorithm was run on the UK and US datasets separately to examine

whether the results would be that different to each other. The posterior probabilities of

each SNP having an association with SLE were similar. See Appendix 8.2

77



The BMARS algorithm was run on the combined UKIUS dataset for 5 million itera-

tions with a burn in period of 200,000, and thinning of 800, and repeated 10 times. The

posterior probability of each SNP having an association was estimated by the number

of times the SNP was in the model over all 10 runs divided by 60,000 (the number of

iterations stored). The algorithm was run 10 times in order to check whether there was

any heterogenity between runs. In each case, the posterior probability of each SNP

being included in the model was approximately equal. The posterior probabilities of

each SNP are shown in the plot below.

Posterior Probabilities of SNP Association with SLE

0

.,
0

~ <0~ 0

~
Q.

.2

~
v
0

'"0

0
0

fs558702

rs3135388

rs 135391
rs126985

SNPs

Figure 5.11: Posterior Probabilities by SNP of Association with SLE

This plot shows that SNP RS558702 has the highest posterior probability of 0.72 of

having an association with SLE. This was also the top SNP in the UKIUS frequentist
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analysis with a p-value of 2.06E-30. The 2nd ranked SNP in the frequentist analysis,

RS 1269852 (p-value 4.54E-30), has a posterior probability of 0.26. This leads to the

conclusion that RS558702 has the primary association with SLE.

Note: The posterior probability of 0.72 of RS558702 having an association with SLE

does not seem that high compared to a frequentist p-value of association of 2.06E-30.

The weaker Bayesian result could be due to the possibility that there is more than one

SNP effect on SLE and so with a joint analysis, individual effects are smaller as it is

less clear which SNPs have an association. The frequentist p-values are from indepen-

dent tests of association with SLE and do not take into account the joint effects or LD.

Analysing the number of basis functions in the model, when RS558702 is in the model,

we found that there were was a probability of 0.12 of only RS558702 being in the

model, a probability of 0.74 of there being 2 in the model, and probabilities of 0.13 and

0.01 of 3 and 4 basis functions being in the model with RS558702 respectively. From

this we can conclude evidence of a second signal. From the above posterior probability

plot, it is difficult to determine between the levels of signal from RS3135391 (posterior

probability of 0.3) RS 1269852 (posterior probability of 0.26) and RS3135388 (poste-

rior probability of 0.24).

Examining further into which SNPs appear together in each model when any of the top

four SNPs are in the model, I found that RS558702 and RS 1269852 are very rarely in

the model together (probability of 0.0001 of the other being in the model when one is).

When there are two basis functions in the model (posterior probability of 0.73 of that

being the case), RS558702 is in the model with RS3135391 with probability 0.24 or

RS3135388 with probability 0.12. RS 1269852 is in the model with RS3135391 with

probability 0.09 or RS3135388 with probability 0.07.

The prior probability of having 2 basis functions in the model is 0.08.

There do not appear to be interactions of SNPs in the models with the top posterior

probabilities. The probability of RS558702 having an interaction with any other SNP

is 0.05.
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Frequencies (out of the number of iterations with a model using each SNP) for knot

values (i.e. where the gradient of the basis function changes) were plotted for each of

the top SNPs associated with SLE from the BMARS output to show the type of rela-

tionship (dominant, recessive, additive, for example).
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Figure 5.12: Frequencies of Knot Points by Top SNPs
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This plot shows that for the top SNP, RS558702, the relationship with SLE appears to

be additive. The sign of the equation is altered by s, so we are interested in the values

of s against the knots, t (as well as the sign of [3). s is always 1 (positive) when the knot

value is 0, and always -1 (negative) when the knot value is 2. It can be either positive

or negative when the knot is at 1. Given the knot value for RS558702 is 2, this results

in the following basis function values at each genotype value

Table 5.7: Basis Function by Genotype (x) for RS558702

x Basis function:[-(x - 2)]+

0 2

1 1

2 0

This leads to a relationship between RS558702 and SLE on the probit scale of (this is

for RS558702 in the model only, with no interactions, and a knot point of 2 which has

a posterior probability of 0.07)
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Effect of RS558702 on SLE on the Problt Scale

Genotype

Figure 5.13: Plot of Relationship of RS558702 on SLE

rt = -0.47 + O.53([-(x - 2)]+) (5.10)

where the parameter estimates are the posterior means given the model.

The model with the highest posterior probability (0.13) involves two basis function

with SNPs RS558702 (.1:1) and RS3135391 (X2) with no interactions. The basis func-

tion involving RS558702 has an s of -J and a knot point (t) of 2. The basis function for

RS3135391 has an s of 1 and a knot point of O. The effect on the probit scale of this

model is

rJ = -0.552 + 0.56([-(Xl - 2)]+) + O.24([(X2 - 0)]+) (5.11)
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A plot of this model looks like

Effect of AS556702 & AS3135391 on SLE on the Probit Scale

o 0

Figure 5.14: Plot of Effect of Most Common Posterior Model on SLE
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Below is a table of posterior probabilities of the most common combination of SNPs.

Note: These model frequencies are irrespective of knots.

Table 5.8: Posterior Probabilities of the Top Models

SNPs in Model Frequency Posterior Probability

RS558702 + RS3135391 8921 0.15

RS558702 + RS3135388 6568 0.11

RS558702 + RS3135352 5032 0.08

RS558702 5017 0.08

RSI269852 + RS3135391 3532 0.06

RS1269852 + RS3135389 2345 0.04

RS558702 + RS396960 2214 0.04

RS1269852 2126 0.04

RS 1269852 + RS3135352 1769 0.03

Note: RS396960 (position 32299558) and RS3135352 (position 32500883) have marginal

posterior probabilities of 0.08 and 0.17 respectively.
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Below are tables of LD measure D' and then r2 of the top SNPs and those included in

the most frequent models.

Table 5.9: D' Between Top SNPs

RS558702 RS3135391 RS3135388 RS1269852 RS396960 RS3135352

RS558702

RS3135391 0.823

RS3135388 0.820 1.000

RS1269852 0.985 0.822 0.820

RS396960 0.953 0.930 0.930 0.953

RS3135352 0.819 0.997 0.997 0.819 0.930

Table 5.10: r2 Between Top SNPs

RS558702 RS3135391 RS3135388 RS1269852 RS396960 RS3135352

RS558702

RS3135391 0.022

RS3135388 0.022 0.996

RS1269852 0.961 0.022 0.022

RS396960 0.053 0.049 0.049 0.052

RS3135352 0.022 0.989 0.993 0.022 0.049

Although, it appears in the plots above that there are 2 clear signals of an association

with SLE (Plot 5.11 and Plot5.8); most likely at RS558702 and RS3135391, the SNPs

in the top models are in high LD. RS558702 and RS 1269852 are in high LD with
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r2=O.96; and RS3135391 and RS3135388 are in high LD with r2= 1.

Note: The r2 values indicate less LD between the top SNPs than D'. As described in

Section 2.5 this is a sign that the MAF varies between the SNPs.

In addition, the mean values of f3 for RS558702 and RS1269852 are similar (0.545

and 0.538). The same is true for the mean values of f3 for RS3135391 and RS3135388

(0.245 and 0.247). For plots of posterior densities of f3 coefficients of top SNPs given

they are in the model please see Appendix 8.3. This implies that RS558702 and

RS1269852, and RS3135391 and RS3135388 have similar effects on SLE when in

the model.

However, as the model has not selected between these 2 pairs of SNPs in high LD, it

could be possible that these top SNPs are due to a single underlying untagged locus.

Therefore, I aim to impute untyped SNPs and combine this data with another dataset

to provide more information.
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5.11.2 Analysis of Spanish dataset

The BMARS MCMC algorithm described above was applied to the Spanish dataset

with 5,231 SNPs for 813 individuals. The code was run 10 times for 5 million itera-

tions with a burn in period of 500,000, and thinning of 800. The BMARS model of the

Spanish dataset took longer to converge than the analysis of the UK/US dataset. This is

likely to be due to the larger number of SNPs in the Spanish dataset for model selection

(5,231 in the Spanish dataset compared to 1,199 in the UK/US). A convergence plot

of the posterior probability of the SNP with the highest association with SLE is shown

below.

Postorlor Probability of RS3129768
having an Association with SLE
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Figure 5.15: Cumulative Posterior Probability ofRS3129768 having an A ciati n with
SLE

Note: It appears from this plot that the MCMC algorithm ha not fully onv rged to

a posterior probability of RS3] 29768 having an as ociation with L . How vel', over

every repetition of running the algorithm, the po .terior probability of this a so iation

is the same. The poor convergence is, again, likely t be du to the large number of
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SNPs included in the model.

The posterior probabilities of each SNP are shown in the plot below.

Posterior Probabilities of SNP Association with SLE
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Figure 5.16: Posterior Probabilities by SNP of Association with SLE

This plot shows that SNP RS3129768 has the highest posterior pr bability of 0.79 of

having an association with SLE. This SNP ha: a frequenti t p-value f 2.1 -06 for an

association with SLE, and was ranked 40th in the frequentist test. This SNP i not in

the UKIUS dataset. The highest signal in the frequentist analy i of the Spani h data

has a posterior probability of 0.02 in the BMARS analysis. The top SNP, RS558702,

from the UKIUS BMARS analysis has a posterior probability of 0.02 in the Spanish

analysis. The differences in the results could be due to th mall sample ize of the

Spanish dataset and the lack of power.

Analysing the number of basis functions in the mod I, when R 312976 i in th

model, we found that there were was a probability of 0.0023 f onJy on ba is fun tion

being in the model (a probability of 0.0003 of RS312976 bing in th m del al ne
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and with no interaction term in the basis function), a probability of 0.66 of there being

2 in the model, and probabilities of 0.28 and 0.05 of 3 and 4 basis functions being

in the model with RS3129768 respectively. From this we can conclude evidence of a

second signal. This result is similar to that found in the UKJUS analysis where there is

a probability of 0.73 of there being 2 signals. There was a probability of 0 of no SNPs

being included in the model.

There were prior probabilities of 0.08,0.013,0.002 of there being 2, 3 or 4 basis func-

tions in the model.

Frequencies for knot values for each iteration of the BMARS algorithm including a ba-

sis function for RS3129768 were plotted to show the genotype's relationship with SLE.

SNP RS3129768, no Interaction SNP RS3129768. with on Interaction

~ ~

~ ~

~ ". ~

~ ~

~ @

~ ~

~ 0 ~ D0

Figure 5.17: Frequencies of Knot Points for RS312976

This shows that the relationship between RS3129768 and L i additiv a a kn t at
o clearly has the highest posterior probability.

Investigating further into which SNPs appear together in th model wi th RS3] 29768,
I found that the most common model is RS3129768(x) with another ba i function

with interaction between RS1793891(x2) and RS3.115663(x·). This m d I ha p t-

rior probability of 0.05
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'f/ = -0.31 + 0.55([(XI - 0)]+) + 0.60([-(X2 - 2)]+)([(X3 - 0)]+) (5.12)

Below is a table of posterior probabilities of the most common combination of SNPs.

Note: These model frequencies are irrespective of knots.

SNPs in Model Frequency Posterior Probability

RS3129768 + (RS31 15663 * RS 1793891) 2,751 0.05

RS3129768 + (RS2248902 * RS3130070) 1,936 0.03

RS3129768 + (RS3130626 * RS2248902) 1,918 0.03

RS3129768 + RS3130623 1,130 0.02

RS3129768 + RS3131381 1,024 0.02

Table 5.11: Posterior Probabilities of the Top Models

Below are tables of LD measure n' and then r2 of the top SNPs and those included in

the most frequent models.
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These results, again, show evidence for 2 signals of association with SLE. The differ-

ent SNPs in the top 3 models are in high LD with each other. RS3115663 is in LD with

RS3130070 and RS3130626 with D' of 1. RS 1793891 is in LD with RS2248902 with

D' of 0.997. As with the UKIUS analysis, the model has not selected between these 3

models with 2 basis functions which are in high LD. It could be possible that these top

SNPs are due to a single underlying untagged locus.

For a plot of the posterior density of {3 for RS3129768 given it is in the model, please

see Appendix 8.4
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5.11.3 Imputed Dataset Using Hap Map for Untyped SNPs

The BMARS algorithm described above was applied to 2,733 SNPs in this dataset for

3,723 individuals 100 times for 6 million iterations with a burn-in of I million and a

thin of 1,000. Below is a convergence plot of the posterior probability of the highest

signal in the model. For convergence plots of other top SNPs, please see Appendix 8.5.

Posterior Probability of RS558702
having an Association with SLE

20 40 60 80 100

Iteraliona

Figure 5.18: Convergence Plot of Posterior Probability of RS558702 haying an As ocia-

tion with SLE

The posterior probabilities of each SNP having an a sociation with SLE ar shown

below.
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Posterior Probabilities 01 SNP A.soclatlon with SLE
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Figure 5.19: Posterior Probabilities by SNP of Association with SLE

This plot shows that yet again the strongest signal of an association with SLE is that

from RS558702 with a posterior probability in this analysis of 0.68. The next high-

est signals (in order from left to right on the plot) are RS 1269852, RS3135391 and

RS3135388 with posterior probabilities of association 0.57,0.34 and 0.32 respectively.

The indicator variable for differences between UKIUS and Spanish subject. had a pos-

terior probability of 1.

The number of basis functions in the model when each of the top SNP are in pr vid

evidence for more than one signal. The table below how the po trior probability f

the number of basis functions in the model when each f th top NP is in th In d I.
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Number of Basis Functions RS558702 RS3135391 RS3135388 RSI269852 Overall

2 0.0004 0 0 0.0007 0.0005

3 0.012 0.006 0.008 0.013 0.012

4 0.25 0.25 0.27 0.27 0.26

5 0.41 0.42 0.42 0.42 0.41

6 0.23 0.23 0.22 0.22 0.23

7 0.08 0.08 0.07 0.07 0.07

8 0.02 0.015 0.01 0.01 0.01

9 0.002 0.002 0.002 0.002 0.002

Table 5.14: Posterior Probability of the Number of Basis Functions in the Model Given

each of the Top SNPs are in the Model

This table shows that there is a posterior probability of 0.4 of there being 5 basis func-

tions in the model. It is therefore likely that there are 4 signals in this data for an

association with SLE. There is a posterior probability of 0.0005 of there only being

one SNP in the model. There was a prior probability of 0.0002 of there being 5 basis

functions in the model.

When SNP RS558702 is in the model there is a posterior probability of 0.0 1 of it being

part of an interaction term. When SNPs RS3135391, RS3135388 and RS 1269852 are

in the model, there are a posterior probabilities of 0.04, 0.03 and 0.0 Irespectively of

each SNP being part of an interaction term. There is a posterior probability of 0.99

that the indicator term for difference between UKIUS and Spanish data is part of an

interaction term in the model. The indicator term is interacting with 217 SNPs with

posterior probabilities shown in the plot below.
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Posterior Probabilities of SNP Interacting with Indicator Term

SNPS

Figure 5.20: Posterior Probabilities by SNP of Interaction with Indicator Term

The inclusion of an interaction between a particular SNP with the indicator term im-

plies that there is a difference of the effect of that SNP on SLE between studies. This

difference is being accounted/ adjusted for by the inclusion of the indicator term. How-

ever, the posterior probabilities of the top SNPs being part of an interaction are very

low. Therefore, I can conclude that there is no difference in the effect of the top SNPs

on SLE between datasets.

The posterior probabilities of each SNP specifically interacting with the indicator term

are all very low. Due to the high numbers of ba i function included in mo t of the

models, the posterior probabilities of each specific basis functi n is thinly pread over

a number of models. It is more important to consider the po terior pr bability f each

SNP being in the model at allover all iterations.

Note: If the indicator term was included in the mod lind p nd ntly, then this would

imply that there is a difference between the frequency f cas and ntr I b twe n

the two datasets. In this case, there is a posterior P'' bability of O. 0 f th indi ator

term being included in the model independently. Thi c uld be xplain d by th fact

that 0.38 of individuals are cases in the UK/US dataset compar d t 0.5 in the I anish

dataset.
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Below is a table of the most common models and their posterior probabilities.
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The most common model (with specific knot points) has a posterior probability of

0.003. The effect on SLE on the probit scale is

Y = - 0.42 + 0.04(I = Spanish) + 0.69[-(Xl - 2)]+

- 0.74[-(X2 - 2)]+ * (1 = Spanish)

+ 0.26[(X3 - 0)]+ + 0.4035[-(X2 - 2)]+[-(X4 - 1.99)J+

- 0.36[-(X5 - 2)]+[(X6 - 1.69)]+

where Xl represents RS558702, X2 is RS3130288, X3 is RS3135391 , X4 is RS6906128,

X5 is RS3132550 and X6 is RS9268220. Note: these SNPs have posterior probabilities

of an association with SLE of 0.67, 0.06, 0.57, 0.01, 0.08 and 0.02 respectively. As

mentioned above, the SNPs spread are more thinly over several model . The posterior

probabilities of individual SNPs over all models is more important.

Frequencies for knot values for each of the top SNPs given it i in the mod J are hown

below to give an indication of their relationship with SLE.

SNP RS558702, no Interaction SNP RS3135301, no Inter.etlon

i__ O ;10
SNP AS313S30a, no Interlctlon SNP RS1260052. no Intenctlon

o !O -e -

Figure 5.21: Frequencie of Knot Points D r 11p NPs

From this is it evident that RS558702, RS3135391, R 1 5

have an additive effect on SLE.

and RSI269852 all
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The plots below show the posterior densities of f3 given that particular NP i in the

model

Posterior Censity of Beta for RS558702

-2 -1

Bet. Coefficient

Figure 5.22: Posterior Density of /3 As ociated with RS558702

Posterior Density of Beta for RS3135391

o

-2 _1

eet. Coettlclent

Figure 5.23: Posterior Density of f3 As ociar d with R 31 5.
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Posterior Density of Beta for RS3135388

-2 -I

Bela Coelllclenl

Figure 5.24: Posterior Density of f3 Associated with RS3135388

Posterior Density of Bela for RS1269852
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Figure 5.25: Posterior Den, ity of /3 A. sociated with R 1269852

The mean beta coefficients are 0.57. 0.26, 0.27 and 0.55 f r R 55 702, R 31 5 91,

RS3135388 and RS 1269852 respectiv Iy.

When RS558702 is in the model, there is a po t ri r pr bability fO. 7 fR I 53 1

also being in the model; 0.33 of RS313538 also bing in the model; and 0.000 of

RS 1269852 also being in the model. Similarly, when RS31 5 91 is in th m d I,

there are posterior probabilities of 0.68, 0.002, 0.31 of R 55 702, R I 53 8 r

RS 1269852 also being in the model re p ctively. Wh n R J 5 is in th m d I,
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there are posterior probabilities of 0.67, 0.0008 and 0.32 of RS558702, RS3135391

and RS1269852 also being in the model respectively. Finally, when RS1269852 is

in the model, there are posterior probabilities of 0.001, 0.54 and 0.33 of RS558702,

RS3135391 and RS3135388 also being in the model.

This implies that RS558702 is in the model with either RS3135391 or RS3135388;

or RS1269852 is in the model with either RS3135391 or RS3135388. RS558702

and RS1269852 are rarely in the model together; and RS3135391 and RS3135388

are rarely in the model together.

The tables below show LD measures D' and then r2 for the top SNPs in the imputed

dataset analysis.

The high LD values between RS558702 and RS1269852; and between RS3135391

and RS3135388 re-iterate the point that either is sufficient in the model in each case.

RS558702 RS3135391 RS3135388 RS1269852
RS558702
RS3135391 0.727
RS3135388 0.722 1.000
RS1269852 0.985 0.751 0.747

Table 5.15: D' BetweenTop SNPs

RS558702 RS3135391 RS3135388 RS1269852
RS558702
RS3135391 0.014
RS3135388 0.0138 0.996
RSI269852 0.959 0.0148 0.0146

Table 5.16: r2 Between Top SNPs
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5.12 Conclusions and Discusion

5.12.1 UKIUSAnalysis

It appears that there are 2 causal signals; most likely to be RS558702 and RS3135391.

However, the top 4 SNPs are all in high LD so it is possible these signals are due to

one underlying untagged locus.

5.12.2 Spanish Analysis

There is only one signal in this analysis, namely RS3129768. The top SNPs from the

UKIUS analysis have low posterior probabilities in this analysis. It is interesting that

none of the other SNPs with small p-values from the frequentist analysis have high

posterior probabilities. It is especially interesting that RS558702 or RS 1269852 or any

SNP in a similar position on the chromosome in high LD do not come up.

A simple frequentist generalised linear model to investigate the relationship between

SLE and RS3129768 and the top 4 SNPs from the UK/US analysis, showed that the

best fitting model was that with both RS558702 and RS3129768. In fact, the p-value

for RS3129768 was more significant when conditioning on RS558702.

However, the convergence plots 5.15 show that the model has not converged properly.

This could be due to the number of possible SNPs in the data to select from. The

BMARS model can not cope with such a large dataset, especially with only 813 indi-

viduals.

In addition, the top SNP, RS3129768, from the Spanish dataset is only in LD with

one other SNP in the SNPs with p-values < 10-05 from the frequentist analysis. The

top SNP from the UKIUS and combined analyses, RS558702, on the other hand is in

high LD (r2 >0.8) with 25 other top SNPs from the frequentist analysis. This includes

RS 129852 which is second ranking SNP from both the UKIUS and combined analyses.

The other signal found in the UKIUS analysis was either RS3135391 or RS3135388.

These SNPs are in high LD with 4 other SNPs ranking highly from the frequentist
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analysis.

The total posterior probabilities of all SNPs in LD (r2 >0.8) with RS558702 is 0.51

i.e. there is a posterior probability of 0.51 that at least one of these SNPs is associated

with SLE. This high posterior probability spread across several SNPs indicates that the

model appears to be splitting the selection of particular signals between SNPs which

are in high LD. It is possible that RS31269852 is selected as it is not in LD with any

other SNPs that have a frequentist effect with SLE but it, itself does.

5.12.3 Analysis on Combined UKIUS and Spanish Dataset

There are again. two main signals in this analysis. RS558702 with either RS3135391

or RS3135388; or RS 1269852 with either RS3135391 or RS3135388. These are the

same top 4 SNPs from the UKIUS analysis. However. the top SNP from the Spanish

analysis (RS3129768) is not included in the imputed dataset analysis as it was not in

the UK/US dataset or in HapMap for imputation purposes.

If RS3129768 is removed from the Spanish BMARS analysis. then another signal

(RS9271775) has a posterior probability of 0.8 and is again the only signal. RS9271775

is in high LD with RS3129768. This SNP, however, is in the imputed dataset but has a

very low posterior probability. as shown in the table below.
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Table S.17: Table of Posterior Probabilities in Imputed Data Analysis of SNPs in High

LD CD' of 1) with RS3129768 in Spanish Dataset
D' r2 Position RS number Posterior Probability

1 0.003 31647414 RS2516312 6.80E-05

1 0.018 32762692 RS9275 184 0.00048

1 0.011 32674134 RSI1754183 0.000178

1 0.019 32776824 RS9275383 0.000248

1 0.004 32911977 RS9378275 0.00015

1 0.004 32025270 RS2072634 0.000104

1 0.010 32038330 RS2734331 6.60E-05

1 0.Dl8 32790115 RS3957148 0.000188

1 0.012 32904771 RS4148876 4.80E-05

1 0.009 31255073 RS9263823 0.000826

1 0.002 32232402 RSI0947233 0.00016

1 0.009 32475975 RS3817964 0.000102

1 0.819 32702306 RS9271775 0.000152

1 0.029 32492505 RS9268541 0.001178

1 0.006 30046004 RS6457116 0.00012

1 0.017 32792235 RS9275614 8.40E-05

1 0.017 32793528 RS3916765 9.20E-05

1 0.027 31752619 RS13295 0.000328

1 0.029 32523953 RS13209234 0.000568

1 0.017 32789997 RS3998159 0.000358

RS9271775 is the best best predictor of RS3129786(with r2=0.81 and D' = 1) but it

has a very low posterior probability of association with SLE in the imputed dataset

analysis of 1.00E-04. From this, it is possible to conclude that given the higher power

of the combined dataset and conditioning on RS558702, RS 1269852, RS3135391 and

RS3135388, the top SNP from the Spanish analysis does not have a high posterior

probability of association with SLE. The Spanish dataset only has 813 individuals so

it makes sense that these results, together with the conclusions above, on their own are

not as convincing.

The results show that there are 5 basis functions in the model with posterior probability

0.42. This indicates that there are 5 signals in the data. It could be that there are more
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underlying untyped causal SNPs along the chromosome. Rioux et al [46] concluded

that there were two signals; RS1269852 and RS3135391. This study has shown that

RS558702 has a higher posterior probability than RS 1269852 but is also likely to be

one of 2 signals with RS3135391. It has also highlighted that there may be 5 signals

in the MHC region.

My BMARS model provides an automatic way of dealing with interactions and non-

additive genotypic effects on SLE. BMARS does not assume a particular model and

allows the data to select the SNPs with the highest posterior probabilities of associa-

tion. It is a convenient and quick method for multivariate Bayesian model selection. It

took less than 1 hour to run the BMARS analysis for 6 million iterations on a dataset

with 2,733 SNPs for 3,723 individuals.

In a frequentist framework, tests of association could be carried out conditional on the

top signals found in the SNP by SNP tests of association. However, there are more

than 100 SNPs in the dataset with p-values of association < 5 * 10-8• A step-wise

regression model may lead to different results each time and not be time effective.

Under a Bayesian framework, uncertainty is quantified as the results give the probabil-

ity a particular SNP has of being in the model.

In conclusion, I think BMARS is useful for datasets with :5 3,000 SNPs. (With more

than 3,000 SNPs in high LO, the model has difficulty in selecting the true SNPs asso-

ciated with SLE.) It selects the most important SNPs, gives a clear indication of the

number of signals in the data and runs quickly. Finally, it is a relatively straight for-

ward way of allowing for interactions and the possibility for different effects of each

SNP.
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CHAPTER

6

BAYESIAN NETWORKS FOR

GENETIC ASSOCIATION STUDIES

6.1 Aims and Background

Genetic association studies have great potential to dissect the genetic basis of dis-

ease but raise a number of challenging and interesting statistical questions. These

include both the potential complexity of the disease state, which may be categorised

by a number of response variables, and the need to cope with large numbers of poten-

tial explanatory variables, both genetic and environmental. There are also complicated

relationships between intermediate phenotypes or biomarkers; and genes and disease.

Questions regarding how these are modelled jointly are important.

Coronary heart disease (CHD) is one of many diseases that results from complicated

interactions between genetic and environmental factors. This means that identifying

the genetic and environmental causal factors and understanding the relationship be-

tween disease and biomarker/intermediate traits is very difficult. By 1981, already

108



over 200 phenotypes had been shown to be associated with a higher risk of CHD [62].

I am interested in modelling the pathways between genotypes associated with CHD

and a number of these phenotypes.

This study was particularly motivated by the work of Drenos et al [63]. They inves-

tigated the associations of genotypes with multiple blood biomarkers linked to CHD

risk. It has been shown previously that the blood biomarkers associated with CHD are

highly correlated with each other.

Changes in biomarkers such as lipid and lipoprotein particles and proteins involved in

inflammation and coagulation, have a tendency to group amongst those patients with a

higher risk of CHD. This makes it difficult to determine the relationships and direction

of these relationships with CHD. Due to the correlation amongst these biomarkers,

establishing an independent effect on CHD outcome is hard. The associations found

between the blood phenotypes and CHD could be causal. However, it could be that

reverse causation or confounding is present.

It has been shown that several candidate gene and genome wide association stud-

ies [64-66] that nearly all these highly correlated biomarkers associated with CHD are

also associated with SNPs. Drenos et al examined several SNPs associated with CHD,

and found that these SNPs also had relationships with several blood phenotypes. From

their findings, Drenos et al propose that information on genotype and blood pheno-

types may be used to disentangle the complicated relationships with disease outcome.

As discussed in 4.8, due to Mendelian randomisation, genotype allocation is consid-

ered to be randomly assorted. It is therefore possible to use these genotypes as possible

instrumental variables in analysing the complicated associations and directions of re-

lationships between these biomarkers. Consequently, associations between CHD and

genotype; and blood phenotype and genotype should not be subject to the problems of

confounding because genotypes do not vary due to phenotype, disease or any exoge-

nous factors.

The analysis done by Drenos et al is limited in that only univariate associations be-
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tween the genotypes, phenotypes and disease outcome are highlighted. I aim to de-

velop methods for the joint analysis several phenotypes and genotypes using directed

acyclic graphs (DAGs). Joint analyses of all this information could be used to disen-

tangle CHD pathways amenable for possible treatment. DAGs allow us to model data

jointly and therefore correct for other variables within the model. This allows us to

get a better understanding of the underlying structure of the data and possibly untangle

correlated factors. I aim to use these methods for modelling intermediate phenotypes

and disease outcomes to better understand the joint relationships between them.

The relationships I will focus on are between APOE, CETP and APOB genotypes; and

HDL- and LDL- cholesterol, triglycerides, C-reactive protein, and apolipoproteins A

and B after these were highlighted by Drenos et al.

6.2 NPHS-II Data

The Northwick Park Heart Study II (NPHS-II) on coronary heart diseases is a prospec-

tive study of 3012 healthy middle-aged men aged 50-64 years at recruitment, sampled

from nine UK general practices between 1989 and 1994. Measures were made of

at least 15 circulating blood factors associated with CHD risk that included both cir-

culating proteins, and non-protein metabolites. By December 2005, after a median

follow-up of 13.6 years, there had been 296 definite fatal or non-fatal CHD events

(230 in 2401 of the genotyped sample. [63]

The table and plot below summarise the relationships found by Drenos et al.
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Figure 6.2: Association between SNPs and phenotypes of men from NPHS [63]

Figure 6.1 shows the relationships between phenotype measures and it is apparent that

they are correlated with each other. Figure 6.2 highlights the relationships between

SNPs and phenotypes of men in the NPHS. It is obvious that the phenotypes are as-

sociated with more than one genotype, and several are associated with the same geno-

types. For example, APOE genotype is associated with both eRP level and APOB

level. These relationships, and other subsets, will be discussed later in Section 6.4.

I will investigate how these relationships work jointly. Much is known about biological

associations for coronary heart disease between certain genes and phenotypes, and so

certain results can be expected. If these results are not found then it may be an indica-

tor that the proposed algorithm is ineffective of selecting the "correct" model, and so

these data are perfect for initial testing purposes as well as further explanation.
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The plot below shows the number of missing genotypes in my data by individual.

Those with >30% missing genotypes were deleted which left a dataset of 2,385 indi-

viduals.

Histogram 01 Missing Genotypes by Individual

--

h Jl
,------,-------.------~

10050 150

Number 01Missing Genotypes

Figure 6.3: Histogram of number of missing genotypes by individual

Once those with >30% missing genotypes were deleted, the number of mi sing indi-

viduals by genotypes were as described in the table below. Th table gives a summary

of the the variables used in my PhD from the NPHS-II.
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APOE is defined as a two SNP variant: rs429358 + rs7412. It is known that these

two SNPs work biologically together. [67] Together they are commonly known as the

APOE 'genotype', and is how they will be referred to from now in this PhD. For the

other genotypes in my analysis, I used one SNP per gene and these are summarised

below.

I Genotype I RS number

LPL rs264

CETP rs708272

APOA r86589566

CRP rs3091244

APOE rs429358+rs7412

APOB rs585967

The tables below show the LD measures between the genotypes used in my analysis;

firstly D' and then r2. It is clear that these genotypes are not correlated with each other.

LPL CETP APOA CRP APOE APOB

LPL

CETP 0.016

APOA 0.174 0.058

CRP 0.016 0.081 0.277

APOE 0.0371 0.066 0.300 0.019

APOB 0.030 0.051 0.014 0.111 0.105

115



LPL CETP APOA CRP APOE APOB

LPL

CETP 3.45e-05

APOA 4.02e-04 1.98e-04

CRP 8.55e-OS 3.07e-04 3.41e-04

APOE 1.04e-03 1.31e-03 1.Sge-03 9.S3e-OS

APOB 2.6ge-05 3.S6e-04 8.60e-OS 1.28e-04 4.51e-04

6.3 Methods

I expanded methodology proposed by Fronk and Giudici [68] for Markov Chain Monte

Carlo (MCMC) selection for directed acyclic graphs (DAGs). Fronk and Giudici pro-

pose methods to cycle over possible DAGs searching for the relationships with the

highest posterior probabilities between nodes, using an MCMC with reversible jump,

developed by Green [34]. I expand their methodology to a genetic context, and to allow

for specific issues relating to modelling complex disease pathways between genotypes,

intermediate phenotypes and disease.

6.3.1 Directed Acyclic Graphs

In this framework, the DAG (see Chapter 4 for clarification) is set up so that each node

is a variable; a genotype or phenotype. An arrow between them indicates a direct as-

sociation between them, which or or may not be informative about the direction of that

association. The joint model of all data will automatically correct for the effects of

all variables in the model via the edges defined. This model allows us to distinguish

between direct and indirect effects as well as explore possible directionality of rela-

tionships. Since different DAGs can belong to the same equivalence class (see Section

4.S), directions of association may become indistinguishable and I am interested in the

implications of this. Note that in this model a genotype can not be dependent on a

phenotype as this does not make biological sense. A genotype can not be determined

by levels of phenotype.
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The joint model of all the data will automatically correct for all the effects of all vari-

ables included in the model via the edges defined. Therefore if I allow the algorithm

to choose the most appropriate model any confounders included in the model will be

automatically corrected for.

6.3.2 Algorithm Overview

A brief overview of the algorithm proposed is outlined below. This is then explained

in more detail.

• Start at any (legal) DAG model.

• Propose a directed arrow between two variables.

• When an association is already included in the model, check that addition or

reversal of proposed arrow to current DAG does not lead to a cyclic graph, and

that direction of arrow makes sense. Note: As discussed above, a genotype can

not be dependent on a phenotype.

• Reversible jump MCMC; select birth, death or switch step at each iteration de-

pendent on current DAG and directed arrow proposed.

• Accept or reject proposed change in arrow between two variables.

• Gibbs sampler, based upon current DAG, to update model parameters.

• Iterate until convergence.

• Analyse DAGs with highest posterior probabilities.

6.3.3 Bayesian Multivariate Gaussian Linear Regression

Given the current DAG, d, and following methodology developed by Fronk & Giu-

dici [68], I jointly consider a Gaussian regression model for each phenotype Xi re-
gressed upon it's parents (genotype or phenotype) for i=1,... ,p, where p is the number

of nodes in the model. The number of parents, pa(i), varies by node and the set of
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parents for node Xi is denoted by matrix Xpa(i) with dimension n x Pi. n is the number

of individuals in the dataset. Each regression model is defined as:

where {3io is the intercept term, (3il are the regression coefficients, pa(i) indicates the

parents of node Xi and aT is the partial variance of Xi given parents pa(i).

The priors for (3, a and d are given by:

p(d) = ~
where D is the total number of possible DAGs, given the number of nodes Xi. This is

discussed more below in Section 6.3.5. I is the identity matrix with a dimension of the

number of parents + 1 for the intercept term. This assures the coefficients of this re-

gression model to be mutually independent, a priori. (J is given an inverse gamma prior

for computational simplicity as this is the conjugate (see Section 3.3) for the variance

of a Gaussian prior.

Again. as in Fronk & Giudici. using the factorisation and global parameter indepen-

dence properties of joint distributions (for details see [69]), the joint distribution is

given by
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(6.1)

6.3.4 Matrix of Allowed Direction

As mentioned previously, it is not possible for a genotype to be a child as it cannot be

determined by phenotype level or disease status. It is also assumed for this analysis in

particular that the genotypes do not have any association with any other genotype as

they are not in LD. Therefore, the DAG model search space needs to be limited in my

algorithm to account for this. i.e. there can never be an arrow from a phenotype node

into a genotype one, or any arrows between genotypes.

After proposing an arrow between two nodes at each iteration, it is checked that the

proposed association and dependency makes sense. If not, then another arrow will be

proposed until it does. This is done using a p*p matrix of Os and 1s (where p is the

number of nodes) was developed. The ith row and the jth column is 0 if a move from

parent i to child j is not allowed, and 1 otherwise. The Os and 1s are dependent on

whether the ith row and jth column indicate a directed association between a genotype

and phenotype, or between phenotypes.

6.3.5 Test for Acyclicity

At each iteration, the proposition of a new arrow must also be tested to check whether

its addition to the current DAG model will create a cycle.
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A graph is acyclic if it contains no cycles. i.e. there are no closed loops.

The proposed DAG will not be acyclic if and only if one of the following steps is true

1. one of the parents of the new proposed parent is the child proposed

2. one of the grand-parents of the new proposed parent is the child proposed

3. one of the great grand-parents of the new proposed parent is the child proposed

4. etc. depending on how many nodes could be included in a possible loop. i.e.

there is a maximum of (p-I) possible generations

If the arrow fails this check, then another is proposed until I am proposing a new di-

rected acyclic graph.

Prior on DAGs

Under the framework used by Fronk and Giudici, the prior on each DAG, d, is 1:5 where
D is the total number of possible DAGs, given the number of possible nodes Xi in the

model. In this case, each possible DAG is selected with equal probability.

A new arrow is proposed randomly with equal probability. Fronk and Giudici have

no restrictions on the relationships on the relationships between nodes: each possible

DAG with the addition of a new arrow proposed is allowed. However, given the re-

stricted direction of association from a genotype to a phenotype in my proposed model,

it is not clear whether each possible DAG has an equal probability a priori of being se-

lected. Given the prior of equal probability for every possible arrow given restrictions,

I investigated whether the model would favour 'mid-size' DAGs.

In order to investigate if this would favour any DAG model in particular, I ran a MCMC

algorithm for 6 nodes with no likelihood function, data or priors on other model pa-

rameters. The model used was to propose iteratively an arrow between two. nodes
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uniformly at random.

All proposed steps were accepted with probability 1. The results gave probabilities of

selecting each possible DAG and numbers of arrows included at each iteration. Below

is a histogram of the number of arrows in the model over 200,000 iterations.

Histogram of Number of Arrows In the Model

nn nn
10 12

Numbor of Arrows

Figure 6.4: Histogram of number of arrows in D under prior of uniformly selected arrows

This shows that under the prior of equal weight to each possible arrow at each itera-

tion, there is a prior probability of 0.17 of 5 arrows, 0.22 of 6 arrow, and 0.22 of 7

arrows out of a maximum of 12 in this particular model with 6 nodes and 3 genotypes.

Therefore, this prior favours 'mid-size' DAGs. This will be taken into consideration in

analysis of the results.

6.3.6 Application Using Reversible Jump MCMC

I wish to estimate posterior probability p(d,,B,cr2Ix) and the marginal distributions

p(dlx), p(,Blx) and p(cr2Ix).
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Again, following the methodology outlined by Fronk and Giudici, I use reversible

jump MeMe to sample from the joint posterior distribution of d, !3 and a in order to

make inference about these parameters; in particular to discover the most likely mod-

els underlying the data (i.e. d with highest posterior probability). My aim is to cycle

over possible DAGs to find those with the highest posterior probabilities. As described

in Section 3.7, a reversible jump algorithm allows sampling over models with varying

dimension, as is the case with my DAG model space.

To re-iterate, at each iteration, arrows are randomly proposed to be added, dropped or

direction swapped. In a 'birth' step a new arrow is added to the model; in a 'death' step

an arrow is dropped from the model; and in a 'switch' step the direction of association

between two nodes is reversed. In my algorithm, a child j, and parent i, are randomly

selected, testing for acyclicity where necessary to make sure such a move would not

produce a non-acyclic DAG. If child j already has i as a parent then it is proposed to

drop the association between i andj, and remove node i as a parent of j (a death step).

If child j doesn't have i as a parent, then it is proposed to add an association from i to

j, and add node i to the model for child j (a birth step). However, if i has j as a parent,

then it is proposed to swap the direction of association between the two nodes so that i

becomes the parent, and the model for node i gains a parent, whilst the model for node

j loses a parent.

If a birth step is proposed, then a new coefficient for the association of i being a

parent of j is introduced, (3;j' The proposal distribution of the new coefficient is

q((3;j) f'oJ N(O, 1]2). The acceptance probability of this step is reduced to:

b _. (1 p(Xj Ixpa' e» !3jlpa' e» o-;Ipa' (j»p(!3jlpa' (j) IO;lpa'(j» ) (62)
pro accept - mzn , , 2 2'

q(f3ji)p(Xj IXpa(j) , !3jlpa(j), 0jlpa(j»p(!3jlpa(j) IOjlpa(j»

where xpa'(j) refers to the proposed (new) matrix of parents j for child i i.e. this ma-

trix has increased in dimension by 1, !3jlpa'(j) refers to the proposed (new) matrix of

{3swhich now includes another (3 for the extra parent of i, and similarly for o;lpa' (j)'

2 2 .. . . p(O';Jpa' (j) Id)p(d)
0jlpa'(j) = 0jlpa(j) and p(d) IS uniform so there IS no need to include the p(O:jlpa(j)ld)p(d)

122



part of the acceptance ratio as it cancels out.

If the step is not accepted then the DAG remains the same for this iteration. If a death

step is proposed, then the acceptance probability is essentially the reciprocal of that for

the birth step, and I propose to drop the coefficient flij relating to the directed associa-

tion from i to j.

If a switch step is proposed then, i loses j as a parent, but j gains i as a parent. There-

fore, I lose the regression coefficient flji from flilpa(i), but I gain fl;j to the vector fljlpa(j)'

The proposal distributions, then, are those proposed by Gelman (1995):

(6.4)

where V' = (X;a/(i)Xpal(i))-l. The proposal distributions for {3~lpal(j) and (7~~pal(j)are

derived similarly. Fronk and Giudici suggest that these proposal distributions are used

to achieve high acceptance rates by proposing to assign new values for all parameters

associated with i and j at a specific iteration. The parameters are drawn from the cur-

rent model. The acceptance probability of this step is:

prob accept

(6.5)
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where the 's indicate matrices or vectors with dimensions of model proposing. For

example, Xpa' (i) relates to the matrix of parents of i, including a column for proposed

child j as a result of the proposed switch step.

The final step of the algorithm is to update the regression coefficients, and their vari-

ance with the new vectors ,B;lpa(i) and (T~pa(i) using the Gibbs sampler based upon their

full conditional distributions:

(6.6)

(6.7)

where Oi/ull = oilpa(i) + O.5(n + p) and

Ai/ull = Ailpa(i) +O.5( (Xi- Xpa(i),Bilpa(j»)T (Xi- Xpa(i),Bilpa(i) )+(,Bilpa(i) -bi1pa(i»)T(,Bilpa(i)-

bi1pa(i») )

6.3.7 MissingData

Missing genotypes were imputed using Mach [17]. I ran the MACH program for 50

iterations, considering 200 haplotypes at each iteration. This was reasonable for the

small amount of missing data, as shown in the histogram above 6.3. Each of these had

a minimum r2 of 0.9. r2 estimates the squared correlation between imputed and true

genotypes. I used the expected genotype value for each missing genotype.

I assume the missing data to be missing at random (MAR) [70]. The missing phenotype

data was imputed using a Gibbs sampler within the above algorithm. At each iteration,

the missing data was sampled using the conditional distribution of the missing data at

a specific node given current values of all parents, children and related parameters of

the current DAG. Consider the example of a DAG below to illustrate the joint model
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to be considered when sampling the missing values of x. ihas two parents pa(i)l and

pa( ih. two children jl and j2 with parents other than i ml and m2; and m3 respectively.

Denoting Ximi .. as the vector of missing phenotypes of Xi for each node i= I •...• p. the

number of nodes in the DAG at each particular iteration. and the notation used above.

the conditional distribution is given by
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where Xi is the phenotype I am imputing missing values for, xpa(i)mi .. is the matrix of

parents of i corresponding to the missing values of Xi, similarly xpa(j)m ... represents

the column relating to i as a parent of j of the matrix of all parents of j; and specifi-

cally the elements of that column associated with the missing elements of Xi, Xlimi ..

represents each element of missing phenotype Xim ••• for 1 = 1, ... , ni,ni .. , f3iO is the

13 coefficient associated with the intercept value of f3ilpa(i). Xljmi .. represents each el-

ement of Xj (where j is a child of i) corresponding to missing phenotype Xim ... for

l = 1, ... ,nimi •• , f3jO is the (3 coefficient associated with the intercept value of f3jlpa(j),

{3jm is the vector of {3s associated with parents of j other than i, Xlmm ... represents

each element of Xm (where m is a parent of j not equal to i) corresponding to missing

phenotype Xim ... for i = 1, ... ,nimi •••

This equates to a Gaussian distribution for Ximi •• , and each missing value of each node

i is sampled from:

(

13ilpa(i):Cpa(i)miu + " . 13j~a(j)(i) (x. _ 13.. -" r.l . X .) )
N O}lp4(i) L....;J O";lpa(j) Jmi"(') ]0 L....;m fJm(}) m(J) 1

1 '1 ,,13j lpa(j)(i)
1 '" /3; [paUj(i) =r- + L....;. 2

;;Z-+L.,j ,,2 O"ilpa(i) J O"jlpa(j)
ilpa(') jlpa(j)

(6.10)

6.3.8 Binary data

The algorithm was then extended to allow for binary phenotype data. Via data aug-

mentation I can model binary regression with a probit link, using essentially a Gaus-

sian linear model. [25,71].

As with the data augmentation in binary probit regression in the BMARS chapter, con-

sider

(6.11)

where Xi is a binary phenotype. Note: Xi can be either a proposed child or parent here.
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Introducing a set of latent variables Zi for the ith observation where

(6.12)

such that

1 ifzi>O

o otherwise

In the case of my algorithm, at each iteration, z was sampled from a truncated Gaus-

sian distribution with mean of expected value of each element given the distribution of

the current DAG. i.e. the mean value given current values of all parents, children and

related parameters of current DAG for each binary node. Taking into account the joint

distribution of the current DAG model

(6.13)

using the same principle as for missing phenotype data.

So I sample Zi from a truncated Gaussian distribution defined by

(6.14)
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6.4 Assessing Performance of the Algorithm

The algorithm was run for several different numbers of nodes, using simulated data

at first to check the algorithm was working correctly, and then using data from the

NPHS-II study from which I selected variables which already had known biological

associations to further test the algorithm.

6.4.1 Simulationstudy

The first step of testing the algorithm, was to use simulated data. I used up to 6 nodes

with up to two simulated genotypes, and up to 5 simulated phenotypes for 1,000 in-

dividuals. The genotype was simulated by randomly sampling the number 0,1, or 2

1,000 times to correspond to the 3 possible genotypes with probabilities under HWE

with MAF 2:: 0.05. For my first simulation with 3 nodes, the phenotypes were simu-

lated by setting

phenotype! = 0.7 + (2*genotype) + (Xl

phenotype2 = 0.5 + (1.5*genotype) + (2.5 * phenotype l ) + Q2

where (Xl and Q2 '" N(O, 1). Note: These simulated effect sizes are large in compari-

son to the small genotypic effects expected on phenotypes.

The chains converged quickly within 100 iterations, and settled down between the two

DAGs of the same equivalence class within 2000 iterations. The posterior probabilities

of the resulting DAGs showed that associations between the nodes were exactly as ex-

pected. The results gave the following DAGs and posterior probabilities (after bum-in

period):
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Posterior probability of 0.41 Posterior probability of 0.37

The two DAGs above are in the same equivalence classes and have approximately

equal posterior probabilities of 0.41 and 0.37. The marginal posterior probability of

a direct association from phenotype 1 to phenotype 2 is approximately equal to that

from phenotype 2 to phenotype 1 (~0.5). In addition, the regression coefficients were

very close to the true values simulated. The first DAG has a model of

phenotypel = 0.70 + (2.01*genotype)

phenotype2 = 0.50+ (l.47*genotype) + (2.51 * phenotypel)

6.4.2 Checks for convergence

Checks for convergence were done in R using the coda package [72], for all coeffi-

cients of directed associations for each node. Convergence plots, and summaries of the

coefficients were produced and shown below.

Auto-correlation plots below show that the algorithm is mixing well and there is no

dependence between iterations after a lag of 10.
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Density plots of the first 10,000 iterations of each coefficient specific to the DAG sim-

ulated show that the model has recovered the coefficients as simulated in each case.

(0.7,2,0.5, 1.5 and 2 respectively).
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Trace plots of the first 10,000 iterations of each coefficient specific to the DAG simu-

lated show that the model has converged.
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I simulated data for more nodes and was able to recover the true tru tur s. I simulated

for up to 6 nodes with 2 million iterations.

For example, I simulated 3 phenotypes with the following relation. hips to the geno-

type simulated as above. The use of genotype 2 a. an instrum ntal variable (see ection

4.8) should allow me to discover the direction of th arr w b tween ph notype I and

phenotype2 as this will lead to a model with a DAG in it own unique quival 11 e clas .

phenotype] = 0.7+(2*genotypel) + (1.S*genotype2) + 1
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phenotype2 = 0.5 +(1.5*genotypel)+ (2.5*phenotypel)+ a2

where al and a2 rv N(O, 1).
I ran the algorithm for 1,000,000 iterations with a bum-in period of 100,000 and a

thin of 100. The results gave the following DAG (showing exactly what was modelled

above) with posterior probability 0.92.

The same convergence plots as for the 3 nodes simulation above showed that the al-

gorithm mixed well, the true correlation coefficients were recovered and the algorithm

had converged after 50,000 iterations. As there is no DAG equivalent to this one, the

direction of association (as that simulated) between phenotype 1 and phenotype 2 is

clear due to the addition of genotype 2 as an instrumental variable.

In addition, a table of the marginal probabilities of each arrow shows that the algorithm

selects a directed association from genotype 1 to phenotypes 1 and 2 with posterior

probability I, from genotype 2 to phenotype 1with probability I, from genotype 2 to

phenotype 2 with probability 0.09, and from phenotype 1 to phenotype 2 with proba-

bility I, as expected.
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child phenotype 1 phenotype 2

parent
genotype 1 1 1

genotype 2 1 0.09

phenotype 1 0 1

phenotype 2 0 0

Table 6.1: Marginal probabilities of directed association

6.4.3 Application to real data

Modell

I then applied my algorithm to real data. I focused on using previously known associ-

ations described in Drenos et al. [63]. As summarised in tables above there is a known

association between APOB levels with APOB and APOE genotypes. CRP levels are

also associated with APOE genotype but also with CRP genotype and APOB level.

Also, smoking is highly associated with CRP level, and so it may be interesting to see

how these variables interact jointly with the addition of smoking. As with Drenos et

al, I have used log CRP and log APOB levels, as these have Gaussian distributions.

How these are related jointly will be interesting. It is expected biologically [73] that

the association between APOE genotype and CRP level is only through confounding,

and once adjusting jointly for other genotypes, this association will not be apparent.

It is unknown what the direction of association between APOB level and CRP level

is. Smoking is known only to be associated with levels of CRP, and modelling this

relationship jointly with everything else, should not affect the relationship between the

other variables. An additive APOE genotype model is associated with increased levels

of APOB level but decreased levels of CRP. APOB genotype is known to be associ-

ated with increased levels of APOB, but has no affect on CRP levels. In this subset of

variables, CRP genotype is only known to be associated with increased levels of CRP.

I ran my algorithm with these 5 variables as nodes. The data set included 2,385 individ-

uals of which 1895 individuals had no missing data at any of the 5 variables. As shown

in Section 6.2, there is no association between any of the genotypes, and therefore no
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associations between genotypes were allowed in the matrix of allowed direction. The

algorithm was run for 1 million iterations with a bum-in period of 100,000 iterations.

Note: As APOE genotype is a two SNP variant, it was coded -I, 0, 1 for c-2*, c-33 and

c-4* respectively.

The table below shows the p-values associated with independent additive models be-

tween the 5 above variables and smoking status.

APOB genotype eRP genotype APOE genotype eRP level APOB level
eRP level 0.28 4.05E-03 5.2SE-05 4.25E-07

APOB level 1.60E-04 0.46 4.72E-IO 4.25E-07

Smoking 0.519 0.488 0.22 <2E-16 0.86

Table 6.2: p-values for independent tests of association

If all the independent associations shown above hold when the 5 variables (not includ-

ing smoking, initially) are modelled jointly, I would expect the following DAG

I ran the model 10 times for 1 million iterations with a bum in period of 100,000 after

which the model had converged. Plots of convergence are shown in the Appendix 9.1.

The acceptance rate of a birth, death or switch step in the MCMC was 9.4%. This

means that the algorithm is mixing well.

After a bum-in period of 100,000 iterations, the DAGs with the largest posterior prob-

abilities are as follows:
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Posterior probability of 0.18

Posterior probability of 0.15

These DAGs are both unique in terms of equivalence classes. Therefore, they have

their own underlying joint distributions.

Note: the next top models have posterior probabilities of 0.11, 0.10, 0.07 and 0.04.

The only difference between the two top models, is the addition of an association be-

tween between APOE genotype and APOB level. Considering these joint posterior

probabilities alone, this perhaps gives some indication that the relationship between

APOE genotype and CRP level is through APOB level, once modelled jointly with

the other variables. However, the marginal posterior probabilities appear to give more

information about the underlying associations.

The marginal probabilities of directed association are shown in the table below. There

are marginal posterior probabilities of 0.999 and 1 that CRP genotype and APOE geno-

type are associated with CRP level respectively. There is a marginal posterior probabil-

ity of 0.45 that APOB level is dependent on APOE genotype. There is a marginal pos-

terior probability of 0.49 that CRP level is dependent on APOB level; and a marginal
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posterior probability of 0.33 that APOB level is dependent on CRP level.

child APOS level CRP level
parent

CRP genotype 0.06 0.999

APOE genotype 0.45 1

APOS genotype 0.14 0.17

APOB level 0 0.49

CRPlevel 0.33 0

The results in this table suggest that i) CRP genotype only effects CRP level. ii) CRP

level is definitely dependent on APOE genotype and iii) there is a relationship between

APOB level and CRP level. There is weaker evidence that APOB level is dependent

on APOE genotype. The direction of the association between APOB level and CRP

level is more likely to be from APOB level to CRP level. Interestingly. in this model.

APOB genotype appears to have little (or no) effect on any other variable. including

APOB level.

The model with the highest posterior probability (0.18) is log CRP level = 1.1 + (0.26*

CRP genotype) - (0.19* APOE genotype) + (0.34 * log APOB level).

In the joint model with all five variables. after adjusting for APOE genotype and CRP

genotype on CRP level there is no association between APOB genotype with APOB

level. The relationship of APOB level on the other variables in the model may be

through CRP level but perhaps not considering. In order to determine the direction of

association between APOB level and CRP level. other nodes could be added that may

act as instrumental variables. or explain in more detail the relationship.

It is strange that the marginal association between APOB genotype and APOB level

is so low. This could be because the relationship between APOE genotype. CRP level

and APOB level is so strong that once adjusted for jointly. the relationship is no longer

significant. There is something strange underlying this model but the biology behind

it is unknown. There is not enough information in this model to explain the true rela-
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tionships.

One potential idea is that APOE genotype and APOB genotype are related in some

way as this would complicate the relationships shown. However, they are not in LD
or on the same chromosome. Biologically, it is though that the association between

APOE genotype and CRP level is due to confounding. Once adjusting for other geno-

types in LD with APOE genotype, it is thought that this relationship would not exist.

However, I do not have these genotypes available, and my model can not cope with

larger numbers of variables easily.

In the absence of other information, another possibility is that the associations between

APOE genotype and CRP level are not, in fact, modulated through APOE level, for ex-

ample. I do not, however, have APOE level data and conditioning on this variable could

possibly be sufficient to identify the direction of association between APOB level and

CRP level. Another possibility to identify the direction of association between APOB

level and CRP level in this joint model is by using a confounder between the two. In

my dataset, smoking is associated with CRP level but not APOB level, and so cannot

be used as a possible confounder in the joint model. However, it is still interesting to

investigate how adding smoking to the model will effect the joint model.

6.4.4 Model 2

I ran the above model but with the addition of a smoking variable. I restricted the

arrow between smoking and phenotype APOB level or CRP level to be directed from

smoking to phenotype. It is unlikely that phenotype level will have a direct effect on

smoking status. Smoking level is strongly associated with CRP level with a p-value of

<2E-16. It is also unlikely that genotype will have a direct effect on smoking status.

As shown in Table 6.2, there is no association between smoking status and any of the

genotypes in this model. (p-values of 0.52, 0.49 and 0.22 for an association between

smoking status and APOB genotype, CRP genotype and APOE genotype respectively).

Therefore, I did not allow for an arrow directly between genotype and smoking. I ran

my algorithm 10 times for 1 million iterations, a thin of 100 and a burn in of ]00,000.
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If all the independent associations shown above in Table 6.2 hold when the 6 variables

are modelled jointly, I would expect the following DAG

Plots of convergence are shown in Appendix 9.2. The acceptance rate of a birth, death

or switch step being accepted in the MCMC was 8.4%

The DAGs with the highest posterior probabilities were obtained for the following joint

models
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8

Posterior probability of 0.16

8

Posterior probability of 0.14

The joint relationships have similar posterior probabilities as to the model without

smoking but with the added relationship between smoking and CRP level.

Again, these DAGs have different underlying joint distributions and are members of

unique equivalence classes.

Considering the marginal posterior probabilities in the table below, it is evident that

the addition of smoking to the model does not change much.

This is reassuring in terms of the prior on model size as the increase in variables has

not altered the results significantly.
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child APOB level CRPlevel

parent
CRP genotype 0.06 0.98

APOE genotype 0.48 1

APOB genotype 0.13 0.15
Smoking 0.08 1

APOB level 0 0.49
CRPlevel 0.34 0

The joint model with the highest posterior probability (0.16) is log CRP level = 1.0+
(0.23* CRP genotype) - (0.18* APOE genotype) + (0.31 * APOB level) + (0.5 *Smok-

ing status).

6.4.5 Model3

Another set of variables with potentially interesting joint relationships as highlighted

by Drenos et al [63] are CETP genotype, APOA genotype, LPL genotype, HDL level,

TO level and smoking status. Smoking status is a known confounder of the relation-

ship between HDL level and TG level. LPL and APOA genotypes are associated with

both TO and HDL levels. CETP genotype is associated with HDL level. I used my

algorithm to investigate how these relationship work jointly.

331 individuals out of the dataset of 2,385 were missing HDL level, and 13were miss-

ing TO level.

The p-values associated with independent relationships between these variables is

shown in the table below.

CETP genotype APOA genotype LPL genotype HOL level TO level
HDL level 0.00117 0.0114 0.000228 <2.16E·16
TO level 0.283 8.09E-05 0.00263 <2.16E·16
Smoking 0.50 0.94 0.97 0.0306 0.045
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If all these independent associations occurred jointly, I would expect the following

DAG assuming a 5% significance level.

I ran the model 10 times for 1 million iterations with a burn-in of t 00,000 iterations

each. The acceptance rate of a birth, death or switch step being accepted in the MCMC

was 8.3% Plots of convergence are shown in Appendix 9.3.

The DAGs with the highest posterior probabilities were obtained for the following joint

models
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8
Posterior probability of 0.11

8

8
Posterior probability of 0.09
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8
Posterior probability of 0.09

8
Posterior probability of 0.08
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Note: Joint top models shown are those that are most common. In this case no clear

model seems to have come up.

Marginal posterior probabilities of direct association between the 6 variables is shown

in the table below.

child HDL level TO level

parent
LPL genotype 0.53 0.12

CETP genotype 0.83 0.04

APOA genotype 0.15 0.88

HDL level 0 0.49

TO level 0.51 0

Smoking 0.20 0.12

In this case, my algorithm does not seem to select a particular model with high pos-

terior probability. The DAGs with the highest posterior probabilities indicate that the

association between APOA genotype and HDL level is modulated through TG level;

and the relationship between LPL genotype and TG level is modulated through HDL

level. Again, the marginal posterior probabilities give more information and in this

case re-iterate what is seen in the joint models. There is a posterior probability of 0.53

of a direct association between LPL genotype and HDL level compared to 0.12 of a

direct association between LPL genotype and TG level. Similarly, there is a poste-

rior probability of 0.88 of a direct association between APOA genotype and TG level

whereas there is a posterior probability of 0.15 of a direct association between APOA

genotype and HDL level.

The marginal probabilities found suggest that the relationship between CETP genotype

and TG level is modulated through HDL level. It appears that

i) HDL level is dependent on CETP genotype

ii) HDL level is dependent on LPL genotype

iii) TG level is dependent on APOA genotype
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iv) There is a relationship between TO level and HDL level

Biologically, it may have been expected that the algorithm would not pick a particular

model as the relationship between TO level and HDL level are so highly correlated.

The joint model with the highest posterior probability (0.11) is HDL level = 1.94 -

(0.07 * LPL genotype) + (0.09 * CETP genotype) - (0.45 * log TO level) where log

TG level = 0.56 + (0.11 * APOA genotype)

The DAOs with the highest posterior probabilities shown above all have unique equiv-

alence classes and therefore different underlying joint distributions. However, they all

have similar posterior probabilities so it is difficult to distinguish from them what the

true joint relationships are. The marginal posterior probabilities give more information

and given these, the only important direction that is not defined is that between HDL

level and TG level. It is likely that there are more unknown factors involved in this

highly correlated relationship. Again, my model is not able to include any more vari-

ables easily even if they were available.

As there is weak evidence of a joint model including an association between smoking

and either HDL or TG level, I dropped smoking from the dataset.

6.4.6 Model 4

I ran my algorithm on the data used in Model 3 but without smoking status. Again,

I ran the algorithm 10 times for 1 million iterations and a bum-in period of 100,000.

Acceptance rate was 9%. Convergence plots are shown in Appendix 9.4. The DAOs

with the highest posterior probabilities are shown below.
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Posterior probability of 0.15

Posterior probability of 0.13
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Posterior probability of 0.13

Posterior probability of 0.13

Marginal posterior probabilities of direct association between the 5 variables is shown

in the table below.
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child HDLlevel TO level

parent
LPL genotype 0.53 0.13

CETP genotype 0.83 0.04

APOA genotype 0.15 0.88

HDLlevel 0 0.49

TO level 0.51 0

Without smoking in the model, there is a smaller subset of possible arrows in the DAG,

and therefore the posterior probabilities of a particular model are not spread so thinly.

As seen here, the posterior probabilities of the same DAGs increase by 0.02 compared

to those in Model 3. The marginal probabilities remain the same as expected.

6.5 Conclusions and Discussion

6.5.1 Simulated Data

As demonstrated by analysis on simulated datasets, my algorithm works well on small

numbers of nodes and arrow subsets. Approximately equal posterior probabilities are

obtained for simulated equivalence classes as shown by the simulated data example

with 3 nodes. Each equivalence class has a posterior probability of ~ 0.4 and the

marginal posterior probability of phenotype 1 being dependent on phenotype 2 is equal

to phenotype 2 being dependent on phenotype 1 (~ 0.5).

The addition of an instrumental variable in the form of genotype 2 to the simulated

dataset gives the correct DAG with a high posterior probability of 0.92. From this

DAG is is possible to recover the direction of association between phenotype 1 and

phenotype 2 which is recovered as modelled i.e. phenotype 2 is dependent on pheno-

type 1. This DAG is in its own equivalence class and so this has helped me to determine

the correct! simulated direction of association as discussed in introduction Section 4.8.

My algorithm also recovered the coefficients as simulated. The convergence plots show

that the algorithm is mixing well and converge to the "correct" model quickly.
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6.S.2 NPHS-IIData

The results on analysis using the NPHS-II data are, as expected, not so clear as those

using the simulated data.

Modell was an analysis on the joint relationships between APOE genotype (rs429358

+ rs7412), APOB genotype (rs585967), CRP genotype (rs309 1244), APOB level and

CRP level. The results gave two DAGS with high posterior probabilities of 0.18 and

0.15. These showed that when examining the relationships between all these variables

jointly, only 3 direct effects are important and 1of possible importance once adjusting

for the effects of all other variables in the model. The relationship between APOB

genotype and APOB level; and APOE genotype and APOB level were not important

in the joint model. These results suggest surprisingly that the relationship between

APOE genotype and APOB level appears to be modulated through CRP level. As the

two DAGs shown above for Model 1 are unique in terms of equivalence classes, Ican

conclude that there is a slightly higher posterior probability of CRP level being de-

pendent on APOB level rather than the other way round, when taking into account the

underlying joint distribution with the other variables.

Looking at the marginal posterior probabilities, these probabilities re-iterate this: there

is a marginal posterior probability of 0.49 of a direct association of APOB level on .

CRP level but only 0.33 of a direct effect of CRP level on APOB level. It is interesting

that the independent p-value of association between APOB level and APOB genotype

of 1.60E-04 compares to 0.14 marginal posterior probability when the relationship is

examined in a joint model. i.e. APOB level regressed upon both APOB genotype

and CRP level with all other variables controlled for. Also, APOE genotype has an

independent frequentist p-value of association with APOB level of 4.72E-I O. This re-

lationship has a marginal posterior probability of 0.45 under the DAG framework.

Model 2 used the same variables as Model 1 but with the addition of smoking sta-

tus. Given the strong frequentist association found between CRP level and smoking
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independently, it is not surprising that there is a marginal posterior probability of 1 be-

tween these. Other than the addition of a direct association of smoking on CRP level,

the results from Model 2 change only a tiny amount from those found in Modell. The

relationship between smoking and CRP level does not affect the joint relationships be-

tween APOE genotype, CRP genotype. APOB level and CRP level.

I examined the joint relationships between LPL genotype (rs264), APOA genotype

(rs5689566), CETP genotype (rs708272), HDL level, TO level and smoking status in

Models 3 and 4. Smoking status is a known confounder between HDL level and TO

level so it was interesting to see that smoking has no relationship with either in this

model after jointly adjusting for the genotypes (in the DAOs with the highest poste-

rior probabilities reported above). Using my DAO methodology, smoking status had a

marginal posterior probability of 0.2 and 0.12 of direct association with HDL level and

TO level respectively. These relationships had independent p-values of 0.03 and 0.045.

The results from this model show that the effect of APOA genotype on HDL level is

modulated through TO. The effect of LPL genotype on TO level is modulated through

HDL genotype. Again, considering the marginal posterior probabilities, the relation-

ship between CETP genotype and TO level is also modulated through HDL level. The

independent frequentist tests of association between APOA genotype and HDL level

and TO level have p-values of 0.01 and 8.09E-05 receptively compared to marginal

posterior probabilities of 0.15 and 0.88 when modelled jointly. Similarly, the p-values

of independent association between LPL genotype and HDL and TO levels are 0.0002

and 0.003 compared to marginal posterior probabilities of 0.53 and 0.12.

The direction of association between HDL level and TO level is still undetermined. It

may be possible to establish the direction of this association if an appropriate variable

was discovered that could act as an instrumental variable. As described in Section 4.8

a variable is instrumental in this case if it is only associated with one variable through

the other. However, I do not know of any such variables at present.

Alternatively, as HDL level and TO level are so highly correlated, better plasma traits

could be used. HDL level, for example, is composed of many lipids and these could
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be incorporated.

6.5.3 Discussion

The methodology used in my joint model analysis has automatically corrected for the

effects of all variables in the model via the edges defined. By allowing the algorithm to

choose the appropriate model any confounders in the data are automatically corrected

for as well.

Given these results, it is still tricky to determine exactly what the directed joint re-

lationships are between the variables used is. Genotype information has helped to

establish some relationships. My Bayesian methodology gives a better idea of what

the underlying joint distributions are by quantifying the posterior probability of each

DAG through model selection. This adds more information than simple independent

tests of association or joint frequentist models. [74]

The above results are in the absence of any other information. It would, for example,

be interesting to examine the effects of APOE level (which is currently unavailable in

the NPHS-II dataset) on the joint model between APOE genotype, APOB genotype,

CRP genotype, CRP level and APOB level. Incorporating APOE level into this dataset

may alter the relationship between the other variables jointly. It could be, if APOE

level is strongly correlated with CRP and APOB levels, that once adjusting for APOE

level there is no direct association between APOE genotype and CRP level. This effect

could be modulated through APOE level.

In addition, biologically it is thought the relationship between APOE genotype, APOB

level and CRP level is more complex than a model with only 3 genotypes. The inclu-

sion of other genotypes in LD with APOE genotype may explain the relationship more

adequately and answer the question as to whether the apparent relationship between

APOE genotype and CRP level is only due to confounding.

It is also important to note that it is strange that in this model, the relationship between
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APOB genotype and APOB level is not important. There is something underlying this

but it is not known what. I do not know enough about the biology behind it. or have

enough information in terms of other variables to establish anything other than the re-

sults shown. I believe that the methodology used works but there is not enough in the

model! data I was given to establish sensible results. The relationship between APOE

genotype. APOB genotype, CRP genotype, APOB level and CRP level is more com-

plex than first expected.

My algorithm is limited by the number of nodes and subset of possible arrows in the

DAG model. By expanding! developing my code in another program (C++, for ex-

ample), I could achieve more computing power. The computing time for my analysis

is approximately 24 hours for 6 nodes for lmillion iterations. Again, this could be

improved by using C++. If I were able to increase efficiency greatly then I would be

able to include more possible confounders/ variables considered potentially biologi-

cally important in the model.

In order to further investigate the efficacy of my methodology, simulated data with ef-

fect sizes more similar to the typically small genetic effects expected could be used.

This would help determine whether the inconclusive results are due to the data or my

algorithm not having enough power to detect small effect sizes.

In order to better understand these relationships, I think the next development would

be to incorporate prior biological knowledge on pathway analysis. This may help to

disentangle true relationships from spurious ones. Gene pathways are now well char-

acterised with relevant information publicly available on databases such as KEGG [75J

and Gene Ontology [76].
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CHAPTER

7

DISCUSSION

The aim of this PhD was to try to understand the factors influencing disease by trying
to disentangle genetic and phenotypic information. I have developed a new method for
jointly modelling genotypes and phenotypes in an attempt to disentangle complicated
relationships; and applied an already existing method to find causal SNPs for SLE
from those in very high LD. Both of these were looking for a more simple structure
underlying the data and were achieved using a Bayesian framework.

7.1 Bayesian Multivariate Adaptive Regression Spline

Modelling

I applied the Bayesian Multivariate Adaptive Regression Spline model developed by
Verzilli et al. [59] to find causal SNPs for SLE amongst those in high LD on the MHC
region. This expanded on work by Rioux et al [46] who identified primary associa-
tion signals, and then performed conditional regression to identify independent sec-
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ondary signals. They reported at least three separate signals using this method, namely

RS1269852, RS3135391 and the NOTCH gene. My method highlighted at least four

independent signals with posterior probability 0.72. These were either RS558702 or

RS1296852 with either RS3135391 or RS135388 in addition to two other signals.

There was strong evidence for two other signals along the chromosome but without

high posterior probabilities of specific SNPs. Therefore, the BMARS model allowed

me to identify further SNPs and regions of interest for further investigation. In addi-

tion, the BMARS methodology was more flexible as it allowed for genotype interac-

tions and different effects for each SNP.

7.1.1 Comparison to Other Methods

Other current methods of determining SNP association in this respect include frequen-

tist stepwise regression or the Bayesian method, Bayesian IMputation-Based Associa-

tion Mapping (Bim-Bam) [77].

Frequentist stepwise regression would only result in one model with no known cer-

tainty that it is the correct model. The Bayesian methodology used gives quantitative

posterior probabilities of each model; of the number of signals; and of each SNP hav-

ing an association. It is unlikely that a single model will represent the data. It is more

likely that a number of similar models will be almost equally representative of the un-

derlying model. BMARS quantifies the posterior probability of each of these models

using model averaging whereas a frequentist stepwise approach forces the choice of a

single model.

The Bim-Bam method shares a few similarities with BMARS. Bim-Bam is also a

method to detect causal SNPs when multiple causal variants are present. Bim-Bam

uses LD information together with typed genotypes to impute missing genotypes, and

then uses Bayesian regression to assess association between the phenotype and the es-

timated genotypes. Bim-Bam then quantifies the strength of evidence that each SNP

is associated with Bayes Factors. Therefore, like the method used in this PhD, this ap-

proach provides more interpretable explanations for observed associations. compared
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to frequentist methods or single SNP tests.

However, BMARS has several advantages over Bim-Bam in that it allows for interac-

tions between genotypes and uses a reversible jump algorithm. The use of interactions

more accurately defines the relationships between SNPs and the outcome. The use of

reversible jump means that a BMARS approach results in model selection and actu-

ally eliminates SNPs from the model whereas Bim-Bam summarises the strength of

association of all SNPs individually. This means that with BAMRS the strength of evi-

dence for each model is quantified with a posterior probability; rather just the strength

of association for each single SNP. By selecting the most likely models, BMARS is

modelling SNPs jointly and so selects the true causal SNPs from those in high LD.

7.2 Bayesian Networks for Genetic Association Studies

The methodology I developed on Bayesian networks for genetic association studies

modelled several variables jointly; automatically correcting for the effects of all vari-

ables in the model via the edges defined. This work expanded on the independent

tests of association between SNPs and phenotypes highlighted by Drenos et al. [63]

in the NPHS-II data. The analysis I carried out gave more information about these

associations by allowing for the joint underlying distributions. Again, as I have used

a Bayesian framework, posterior probabilities of each model and marginal posterior

probabilities of association between each set of variables are achieved. The DAG

framework also allows the possibility to determine the direction of associations be-

tween variables.

7.3 Advantages of Methodology Used

Both methods in my PhD thesis make use of Bayesian statistics. In a context where

there is a lot of uncertainty about which SNP is the most causal out of those in LD, or

which association is the strongest given weak genetic effects, this has several advan-

tages as discussed above. i.e. strength of evidence quantified in posterior probabilities
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of models and marginal probabilities of associations. The priors used in my models

were uninformative and sensitivity analysis showed that the priors did not affect the

results.

7.4 Future Work

Both methods are attempting to explain complex genetic relationships. I believe that

the future of genetic research is in gene-environment interplay. More information and

methodology that allow for highly correlated factors in analysis are needed. The key to

how genetics affects diseases is in understanding how genes and environmental factors

are interlinking. Fine mapping projects using re-sequencing are emerging such as the

1,000 Genomes project [23]. This is an example of biology and genome-wide associ-

ation studies brought together. These projects collect data with complicated pathways

and there are likely to be a lot of SNPs in high LD interacting with other biological

factors to be disentangled. It is becoming more and more apparent that genes act with

other biological factors in complex pathways.

The BMARS methodology used in this PhD, in my opinion, could be helpful in iden-

tifying causal SNPs (or clusters of SNPs) for further analysis in these large, complex

datasets. The BMARS model already allows for epistatis, in that it is very flexible in

allowing for interactions between genotypes and different genotypic effects on the out-

come (due to the spline feature for dominance, additivity, etc.). The BMARS method-

ology could also easily be extended to include other factors such as multiple pheno-

types. I believe that BMARS is a computationally efficient way to establish causal

SNPs from large datasets.

My methodology for networks could be expanded to allow for more variables compu-

tationally, to investigate further these complex relationships. With more and more data

being collected, we are likely to have larger sample sizes, which would be better for

detecting small genotypic effects due to an increase in power. This would be useful

to disentangle the many questions we have about gene-environment interaction, and

direction of effects. The variables would be modelled jointly and hopefully find true
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effects from spurious ones once everything in the model has been adjusted for. The

methodology could also be extended to include nodes for genotype-phenotype interac-

tion.
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CHAPTER

8

BMARS APPENDIX

8.0.1 Data Overview

Initial analysis of the dataset showed that there were a maximum of 126 (4.3%) geno-

types missing over anyone SNP, or a maximum of 116(9.4%) missing genotypes by

individual. There were 368 SNPs (30%) with no missing genotypes and 1067(36.5%)

individuals with no missing genotypes. The plots below show the distribution of miss-

ing genotypes.
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Missing Genotype Count by Individual

Number 01Missing Genolypes

Figure 8.1: Missing genotype count by individual

Missing Genotype Count by SNP

Number 01 Missing Gonotypes

Figure 8.2: Missing genotype count by SNP

Figure8.1 shows that the majority of individuals who have any missing gen typ at

all (approximately 900) are missing only 1 genotype out of 1230 SNPS in th datas t.

As the number of genotypes missing increa es, the frequency of individual rapidly

decreases. One individual has the maximum of 116 mi ing genotype.

Figure 8.2 shows the number of individuals missing for each loci. There are 214 I 'i

with 1 individual missing a genotype. Again, as the number of individual' mi. ing

genotypes increases for each loci, the frequency of occurren e decrease. nly one

17]



loci has genotypes missing for 126 individuals.

Analysis of missing genotypes within the Spanish data showed similar level of miss-

ing data.

The Spanish dataset contained genotype information for 813 individuals on 5375 SNPs

on chromosome 6. Initial analysis of the dataset showed that there were a maximum

of 42 out of 813 (5.2%) genotypes missing over anyone SNP, or a maximum of 141

missing genotypes out of 5375 (2.6%) by individual. There were 3304 (61.5%) SNPs

with no missing genotypes and 4 (0.5%)individuals with no missing genotypes. The

plots below show the distribution of missing genotypes.

Missing Genotype Count by Individual

Number or Missing Gonotypes

Figure 8.3: Missing genotype count by individual
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Missing Genotype Count by SNP

Number at Msslng Genotypes

Figure 8.4: Missing genotype count by SNP

Figure 8.3 shows that the majority of individuals who have any missing genotypes at

all (99.5% of them) are missing approximately 10 out of 5375 SNPs. As the number

of genotypes missing increases, the frequency of individuals again decreases. One in-

dividual has the maximum of 141 missing genotypes.

Figure 8.4 shows the number of individuals with a missing genotype at each loci. There

are 671 loci with 1 individual missing a genotype. As the number of individuals miss-

ing genotypes by loci increases, the frequency decreases. 1 loci has genotype mis ing

at 42 individuals.

8.1 LD Plots
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8.2 Posterior Probability Plots of UK vs US Data

Posterior Probabilities of Association with SLE by SNP lor UK Subjects

"':~1 r55587021
.. r.'269652

__ ~ __ ILJLtII~" _
o

Posterior Probabilities of Association with SLE by SNP for US Subjects

~1 rsssaroa r~'
o -U .~----

Figure 8.8: Posterior Probabilities by UK and US Datasets

8.3 Posterior Densities of f3 for UK/US Analysis

Plots of posterior densities of (3 coefficients of top SNPs given they are in the UK/US

model
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Posterior Density 01 Beta lor AS3135388
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8.4 Posterior Densities of f3 for Spanish Analysis

Plots of posterior densities of J3 coefficients of RS3129768 given it is in the model
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8.5 Convergence Plots of Combined UKIUS and Span-

ish Datasets Model

Posterior Probability of RS3135391
having an Association with SLE
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Figure 8.9: Convergence Plot of Posterior Probability of RS3135391 having an Associa-

tion with SLE
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Posterior Probability of AS3135388
having an A.soelatlon with SLE
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Figure 8.10: Convergence Plot of Posterior Probability of RS3135388 having an Associ-

ation with SLE

Posterior Probability of AS1269852
having an Association wllh SLE
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Figure 8.11: Convergence Plot of Posterior Probability of RS 1269852 having an Associ-

ation with SLE
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9.1 Convergence Plots of Model 1

All plots are for first 100,000 iterations with a thin of 100.
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Figure 9.1: Autocorrelation function
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Figure 9.2: Density plots
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Figure 9.3: Trace plots
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9.2 Convergence Plots of Model 2

All plots are for first 100,000 iterations with a thin of 100.
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Figure 9.4: Autocorrelation function
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Figure 9.5: Density plots
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Figure 9.6: Trace plots
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9.3 Convergence Plots of Model 3

All plots are for first] 00,000 iterations with a thin of 100.
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Figure 9.7: Autocorrelation function
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Intercept tor HDL level Effect 01 lPL Genotype on HOllevei
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Figure 9.8: Density plots
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Figure 9.9: Trace plots
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9.4 Convergence Plots of Model 4

All plots are for first 100,000 iterations with a thin of 100.
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Figure 9.10: Autocorrelation function
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Figure 9.11: Density plots
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Figure 9.12: Trace plots
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