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This paper proposes a novel theoretical framework to assess common price jumps in a

multivariate framework using the notion of co-features, i.e. the existence of a linear combi-

nation of time series in which individual features are eliminated, as originally proposed by

Engle and Kozicki (1993) and more recently reconsidered in the special issue of Journal of

Business and Economic Statistics (2007).

There is a huge body of literature on the identification of price jumps in the univariate

context. Several procedures have been proposed to test for the presence of price jumps

defined as discontinuity in the price process. See, for example, Aït-Sahalia and Jacod (2009),

Aït-Sahalia and Jacod (2011), Aït-Sahalia and Jacod (2012), Andersen et al. (2011, 2012),

Barndorff-Nielsen and Shephard (2004b, 2006), Jiang and Oomen (2008), Lee and Mykland

(2008), Lee and Hannig (2010), Huang and Tauchen (2005), and Mancini (2009). Dumitru

and Urga (2012) evaluate the performance of alternative non parametric price jump tests.

In contrast, a multivariate framework allows one to identify common jumps between

stochastic processes as highlighted in the seminal work by Barndorff-Nielsen and Shephard

(2004a). Bollerslev et al. (2008) test for the presence of portfolio-wide systemic price jumps

and focus in particular on systemic common jumps without counterparts on the individual

time series level. This framework is extended by Liao and Anderson (2011) using the range-

based indicators proposed by Bannouh et al. (2009). Jacod and Todorov (2009) propose a

procedure to test for the joint occurrence of price jump arrivals at a pair of time series. In

an empirical study, Lahaye et al. (2011) estimate the joint probabilities of common price

jump arrivals and also suggest a joint statistic for the estimation of common price jumps

and map common jumps in response to specific macro-news for a broader range of assets

such as USD exchange rates, US Treasury bonds futures and US equity futures. Based on

factor regressions techniques in Bollerslev et al. (2013), Bollerslev et al. (2016) relate the

identification of co-jumps to estimating factors and loadings for the strict factor model and

verify the method on the sensitivity of the stock price jumps of Microsoft to the market

jumps. In the case of an unknown factor structure Aït-Sahalia and Xiu (2015) and Pelger
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(2016) provide estimators based on principal component analysis. Li et al. (2016) propose a

framework to evaluate the dependency between jumps of two processes and to test for the

relationship implied by the linear standard factor model. Caporin et al. (2015) introduce

a non-parametric test based on the smoothed estimators of integrated variance to provide

evidence for statistically significant multivariate jumps in stock prices. Gilder et al. (2014)

analyze the contemporaneous co-jumps of US equities and link them to Federal Fund Target

Rate announcements. Jiang et al. (2011) conclude that surprises related to macroeconomic

news announcements have limited power in explaining jumps for bonds. Aït-Sahalia et al.

(2009) use common price jumps for assets in the same sector to evaluate the optimal portfolio

in the presence of jumps. Finally, in a recent paper, Bandi and Renò (2016) propose a novel

identification strategy for price and volatility co-jumps to relate some significant price changes

to volatility jumps.

This paper contributes to the current literature on common price jumps as follows: We

propose a novel notion of co-jumps identified within the co-feature framework. In particular,

the notion of co-jumps is linked to the diversification of price jumps out of a basket of assets.

Thus, co-jumps can be intuitively understood as a possibility to diversify the price jumps

completely out of a portfolio. Bollerslev et al. (2008) discuss the case of a portfolio of common

jumps which cannot be diversified out, and as such it serves to identify common jumps. We

further extend the notion of co-jumps to cases where each asset has idiosyncratic price jumps,

implying the absence of co-jumps. We define weak co-jumps as a linear combination of assets

with minimum contribution of price jumps to the quadratic covariance. This notion is further

supported by the empirical results of Bollerslev et al. (2008) and Lahaye et al. (2011). We

report an empirical illustration of the co-jump framework using the individual assets of the

Dow Jones Industrial Average 30 (DJIA 30) index running from 1 January 2010 to 30 June

2012, sampled at a 5-minute frequency.

The paper is organized as follows: In Section 1, we provide the definition and the main

properties of co-jumps, and specify the procedure to test for the presence of co-jumps. In
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Section 2, we report an empirical illustration of the co-jumps using constituents of the DJIA

30 index and provide a robustness check with respect to the multiple testing bias. Section 3

concludes.

1. Modeling Co-Jumps

In this paper, we introduce the notion of co-jumps within the co-feature framework.

Consider an N -dimensional vector of log-prices, logP = {logPt}0≤t≤T , defined on a filtered

probability space
(
Ω,F , (Ft)t≥0 ,P

)
over the finite time interval [0, T ]. The vector of log-

prices is a semi-martingale Ft-adapted and its continuous-time dynamics can be specified by

the following stochastic differential equation

d logPt = µtdt+ σtdBt + dJt , (1)

where µt is N -dimensional vector of drift processes, σt is the (N×N)-dimensional covariance

matrix, dBt is the N -dimensional vector of independent standard Brownian motions, and

dJt is the N -dimensional vector of pure jump Lévy processes.

The presence of price jumps in (1) implies that a (N ×N)-dimensional quadratic variation

process Σt can be written as

Σt = Σ(c)
t + Σ(d)

t , (2)

where Σ(c)
t represents the continuous part of the semi-martingale process,

Σ(c)
t =

∫ t

0
σsσ

′
sds , with

{
Σ(c)
t

}
i,j
<∞ , i, j = 1, . . . , N ,<∞ , (3)

and Σ(d)
t represents the discontinuous part of the semi-martingale process,

Σ(d)
t =

Nt∑
j=1

cjc
′
j , with

{
Σ(d)
t

}
i,j
<∞ , i, j = 1, . . . , N ,<∞ , (4)
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where cj is an N -dimensional vector for which there exists at least one i = 1, . . . , N such that

d logP (i)
tj− > 0, and Nt is the number of tj ≤ t. The decomposition of the quadratic variance

allows us to map the presence of price jumps in terms of quadratic variation.

1.1. Co-jumps

Consider the integrated counterpart of the N -dimensional process described in (1)

logPt =
∫ t

0
µsds+

∫ t

0
σsdBs +

Nt∑
j=1

cj , (5)

where each of the components has discontinuities in the interval [0, t]. The N -dimensional

Brownian semi-martingale process with finite-activity jumps is closed with respect to the

stochastic integration under a linear transformation given by a (p×N)-dimensional matrix

Ω, where the matrix can in general be time-dependent (see Jacod and Shiryaev, 2003). The

p-dimensional process given as a linear transformation of logPt can be written as

Ω logPt =
∫ t

0
Ωµsds+

∫ t

0
ΩσsdBs +

Nt∑
j=1

Ωcj

=
∫ t

0
µ(p)
s ds+

∫ t

0
σ(p)
s dBs +

Nt∑
j=1

c
(p)
j , (6)

which is a p-dimensional Brownian semi-martingale with finite activity jumps. If logPt is a

Brownian semi-martingale, the product Ω logPt is Brownian semi-martingale as well.

Our aim is to find a Ω such that Ω logPt is a Brownian semi-martingale with Σ(d)
t ≡ 0.

If Ω exists, Ω logPt does not have any price jumps despite the presence of price jumps in

each component. This characteristic is in fact the notion of co-features, as introduced by

Engle and Kozicki (1993), and in the special issue of the Journal of Business and Economic

Statistics (2007).

Definition of co-jumps. For the N -dimensional process logPt defined in (5) with each of

the components having a discontinuity in the interval [0, t], co-jumps are defined as the
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existence of the N -dimensional constant vector Ω, different from the zero vector, such that

for the process Ω logPt the discontinuous part of the semi-martingale process in the covariance

disappears

Σ(d)
t =

Nt∑
j=1

Ω′cjc′jΩ = 0 .

The vector Ω is called the co-jump vector and the space of all co-jump vectors spans the co-

jump space. The vector is an ex-post computation that sheds some light on the commonality

of equity price jumps, and the task of finding an ex-ante co-feature vector is deferred to

future research.

1.2. Identification of Jumps

Following Barndorff-Nielsen and Shephard (2006), let us now consider the ĜΩ-statistic

defined as

ĜΩ = M1/2 ÎV M − Q̂V M

ÎQM

, (7)

where ÎV M is the estimator of the Integrated Variance
(
ÎV M

p→
∫ t

0 σ
2
sds

)
, Q̂V M is the esti-

mator of the Quadratic Variance
(
Q̂V M

p→
∫ t

0 σ
2
sds+∑Nt

j=1 c
2
j

)
, ÎQM is the estimator of the

Integrated Quarticity
(
ÎQM

p→
∫ t

0 σ
4
sds

)
. For a univariate log-price process logPt generated

by (1), under the null hypothesis of no price jumps, ĜΩ
D→ N (0, ϑ) with D→ denoting a sta-

ble convergence in law and ϑ is some known constant depending on the particular choice of

estimators used.

Thus, for the N -dimensional process logPt in the interval [0, t] there is a co-jump if a

vector Ω exists such that the ĜΩ-statistic for the univariate process Ω logPt does not reject

the null hypothesis. The asymptotic properties of the ĜΩ-statistic under the null hypothesis

hold when there is no discontinuous part of the price process Ω logPt. We identify co-jumps

when the discontinuous part of the quadratic variance disappears, i.e. Σ(d)
t = 0.

In this paper, we consider a sparse sampling approach to deal with market micro-structure
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noise since it provides a reasonable trade-off between accuracy and numerical feasibility at

chosen sampling frequency. However, our framework can be extended to employ alternative

techniques such as the pre-averaging method by Podolskij and Vetter (2009), employed by

Aït-Sahalia and Jacod (2009) and Aït-Sahalia et al. (2012), or the combination of different

time scales by Zhang et al. (2005), and Zhang (2011).

1.3. An Additional Co-jumps Feature: Weak Co-jumps

The notion of co-jumps introduced above, aims to find a linear combination which elimi-

nates the jumps. When idiosyncratic price jumps are present for each component logPt (see,

for instance, Jiang et al., 2011; Lahaye et al., 2011; Lee, 2012) co-jumps do not exist as they

cannot be fully eliminated. To this purpose, we modify the notion of co-jumps such that we

weaken the requirement for the elimination of the jump term in (6).

Definition of Weak Co-jumps. We define weak co-jumps as a linear combination which min-

imizes the presence of price jumps in Ω logPt. The minimisation of price jumps is done

through the ĜΩ-statistic. In the presence of price jumps, i.e., when the null hypothesis does

not hold, ĜΩ
p→ ∞, with p→ denoting convergence in probability. Thus, we define a weak

co-jump as a linear combination(s), Ω, which maximizes the ĜΩ-statistic. Then, the weak

co-jump portfolio (vector) is

Ω = arg max
Ω∗,|Ω∗|=1

ĜΩ∗ .

Thus, for an N -dimensional process logPt we evaluate the difference between two vectors

Ω(1) and Ω(2) via the ĜΩ-statistic.

2. An Empirical Illustration

In this section, we illustrate the empirical validity of the proposed theoretical framework

by evaluating the presence of co-jumps in high-frequency data.
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2.1. Data and Index Selection

We use the individual assets of the DJIA 30 index running from 1 January 2010 to 30

June 2012 provided by the NYSE TAQ database. We use data on trades only and utilize

the appropriate cleaning mechanism by Barndorff-Nielsen et al. (2009). As a result, the data

are sampled at a 5-minute frequency. Such a sampling frequency filters out the presence of

the market micro-structure noise, while preserving the high-frequency features. The trading

day starts at 9:30:00 and ends at 16:00:00, which yields 79 log-prices per day. Our sample

contains 621 trading days in total. We split the DJIA 30 index into six indices, each with

five companies, based on the capitalization at the beginning of the sample. We illustrate the

notion of co-jumps using the High-cap index containing the five most capitalized companies,

and the Low-Cap Index the the five least capitalized companies in the DJIA 30. Table

1 presents the composition of each of the indices as well as the market capitalization of

companies at the beginning of the sample. The results using the indices with the remaining

DJIA 30 companies are available upon request.

The descriptive statistics reported in Table 1 reveal the large kurtosis for each asset and

support the deviation from normality at a 5-minute frequency consistently across all equities.

[Table 1 should be inserted here.]

2.2. Co-jumps

We now employ the notion of co-jumps with the ĜΩ-statistic calculated for each trading

day. We use α = 0.05 to test for the null hypothesis that there is no price jump(s) during

the given trading day. Following Barndorff-Nielsen and Shephard (2006), we estimate the

Integrated Variance,
(
Q̂V

)
, the Integrated Variance,

(
ÎV
)
, and the Integrated Quarticity,(

ÎQ
)
as:
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Q̂V D =
MD∑
i=1

r2
i,D , (8)

ÎV D = MD

MD − 1µ
−2
1

MD∑
i=2
|ri−1,D| |ri,D| , (9)

ÎQD = MD

MD − 3
1
MD

µ−4
1

MD∑
i=4
|ri−3,D| |ri−2,D| |ri−1,D| |ri,D| . (10)

where ri,D is the i-th log-return on the day indexed by D, where each day is divided into

MD = 78 equally-sized 5-minute buckets, and µ1 = E [|z|] =
√

2/π with z ∼ N (0, 1). In

such a case, the Ĝ-statistic converges as ĜD
D→ N (0, ϑ) with ϑ = (π2/4) + π − 5 ∼= 0.609.

The test for the presence of price jumps during the trading day D at α = 0.05 has the form

H0 : ĜΩ(D) ≥
√
ϑΦ−1 (α) no jump

HA : ĜΩ(D) <
√
ϑΦ−1 (α) jump(s)

,

where Φ−1 is the inverse cumulative function of the standard normal distribution giving
√
ϑΦ−1 (α) ∼= −1.284.

In Figure 1, Panels (a) and (b) depict the results of the co-jumps exercise for the High-

Cap and Low-Cap Indices, the most and the least capitalized set of assets in the DJIA 30

respectively. For every trading day, we find the co-jump vector Ω such that it maximizes the

ĜΩ-statistic (red dots). For every trading day and each Index, we test for the presence of

co-jumps and confirm the presence of co-jumps as ĜΩ(D) ≥ −1.284, which is captured by the

black long-dash line. This means that at the given sampling frequency, a linear combination

of assets exists in the Index such that the price jumps diversify out.

[Figure 1 should be inserted here.]

Further, each of the two figures depicts the range (gray shaded area) of the individual

Ĝ-statistics calculated for each asset in the Index. The results show that, for the majority of

the trading days, at least one asset exists in the Index such that the null is rejected for both
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Indices. At the same time, there is no case where the null would be rejected for every asset

and, therefore, there is no co-jump for all five assets at the same time.

In addition, the two figures report the ĜΩ-statistic for equally weighted index (blue dots).

The results indicate that in the majority of cases, the ĜΩ-statistic for the equally weighted

index is in the range implied by the individual assets. However, a significant number of cases

show that the equally weighted index may either amplify or suppress the presence of price

jumps. Table 2 suggests that the popular “1/N” strategy, or employing the equally weighted

index, is not optimal for dealing with price jumps.

[Table 2 should be inserted here.]

To assess how much the individual assets contribute to the co-jumps, Figure 1, panels

(c) and (d), present the range of the components of each co-jump vector identified above for

the High-Cap and Low-Cap Indices, respectively. We consider co-jump vectors, normalized

such that ∑5
i=1 Ω(i)2 = 1. First, the figure depicts the minimum (green) and maximum (red)

of the magnitude of the co-jump vectors. In particular, for High-Cap Index, the maximum

magnitude oscillated around 0.75, while the minimum oscillated around 0.1 with the least

magnitude taking the value of 2.02·10−5 and the largest one 9.87·10−1, taken from all Indices.

Therefore each asset significantly contributes to the co-jump vector and the diversification

of price jumps is clearly not caused by picking up an asset with few or no price jumps. The

Low-Cap Index provides the same qualitative conclusion.

The results show the presence of co-jump vectors. From the index perspective, the price

jumps can be ex post diversified out at a 5-minute frequency. Further, the equally weighted

index is not in general sufficient to eliminate price jumps. In some cases, it amplifies price

jumps and thus the deviation from Gaussianity.

3. Conclusions

In this paper, we employed the co-feature framework to introduce the notion of co-jumps

defined as a linear combination of assets which is free of price jumps. We extended the
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notion of co-jumps to assets with idiosyncratic price jumps to define the weak co-jumps as

a linear combination which minimizes the price jumps. We then linked the concept to the

optimization of an index of assets with price jumps.

We evaluated the empirical validity of the proposed framework using assets from the Dow

Jones Industrial Average 30 Index from 1 January 2010 to 30 June 2012 sampled at a 5-minute

frequency. We considered two indices, the High-Cap Index and the Low-Cap Index, based

on the market capitalization and tested for co-jumps. The results showed the presence of

co-jumps at 5-minute frequency, meaning that price jumps could be diversified out. However,

our analysis showed that such diversification in general could not be achieved by creating

equally weighted indices. Thus, the optimization in terms of removing price jumps should

be considered as independent criteria.

The findings in this paper suggest some further developments. First, it will be interesting

to extend the framework in this paper to the case of a more general price arrival process,

e.g., mutually correlated self-exciting price jumps. Second, the sensitivity of the proposed

framework, and in particular of the measure of commonality, can be transformed in the

proper testing procedure for asynchronicity among the price jumps. Finally, it will also be

interesting to develop an extension of the notion of co-arrivals to define the information

measures capturing the different features of the multivariate arrival process. This is part of

our ongoing research agenda.
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Table 1: Market capitalization and descriptive statistics for DJI30.

ID Index selection Descriptive statistics of 5-minute log-returns [%]
Market Cap ($bn) No. σ S K Min Max

XOM 360.98

High-Cap

0.129 -0.089 10.970 -1.627 1.586
MSFT 266.46 0.147 -0.069 12.601 -2.177 2.190
WMT 211.16 0.102 0.101 12.735 -1.518 1.222

PG 183.81 0.096 -0.038 15.844 -1.529 1.630
JNJ 175.23 0.096 -0.208 14.461 -1.368 1.238
BA 39.03

Low-Cap

0.160 -0.060 9.647 -1.737 1.658
CAT 37.16 0.191 -0.148 9.925 -2.282 1.949
DD 31.72 0.162 0.011 9.972 -2.035 1.924

TRV 28.74 0.129 0.077 12.942 -1.541 1.496
AA 12.47 0.223 -0.121 9.384 -2.722 2.178

Note: The table contains market capitalization in $bn as the markets closed on 31st
December 2009 as retrieved from Bloomberg and standard deviation (σ), skewness (S),
kurtosis (K), and minimum (Min) and maximum (Max) log-return of the five most
capitalized (XOM=Exxon Mobil Corp, MSFT=Microsoft Corp, WMT=Wal-Mart Stores
Inc., PG=Procter & Gamble Co., JNJ=Johnson & Johnson) and the five least capi-
talized (BA=Boeing Co., CAT=Caterpillar Inc., DD=E.I. DuPont de Nemours & Co.,
TRV=Travelers Cos. Inc., AA=Alcoa Corp.) members of the DJIA 30.

Table 2: Number of co-jumps vs. the individual assets.

Portfolio 1 2 3 4 5 6
(A) Ĝ

(1/N)
Ω < min Ĝ(i)

Ω 60 51 47 55 60 70
(B) min Ĝ(i)

Ω ≤ Ĝ
(1/N)
Ω ≤ max Ĝ(i)

Ω 494 492 466 484 469 469
(C) ĜΩ

(1/N)
> max Ĝ(i)

Ω 67 78 108 82 92 82
Note: The table evaluates the frequency of: (A) the equally weighted index amplifies price
jumps, the Ĝ(1/N)

Ω -statistic for the equally weighted portfolio is smaller than any individual
asset; (B) the price jumps for the equally weighted index are comparable with price jumps
at individual assets, the Ĝ(1/N)

Ω -statistic is in the range implied by the individual assets; (C)
the equally weighted index suppresses price jumps, the Ĝ(1/N)

Ω -statistic is higher than any
individual assets.
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Figure 1: Co-jumps properties.

(a) Co-jumps ĜΩ-statistic: High-Cap Index.
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(b) Co-jumps ĜΩ-statistic: Low-Cap Index.
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(c) Co-jump vector magnitudes: High-Cap Index.
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(d) Co-jump vector magnitudes: Low-Cap Index.
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Note: Panels (a) and (b) depict the ĜΩ-statistic for the co-jump vector (red dots), for the
equally weighted index (blue dots), and the gray shaded area captures the region in which
lies the ĜΩ-statistic for each individual asset in the index. The black long-dash line denotes
the α = 0.05 critical value to test for the presence of price jumps,

√
ϑΦ−1 (α) ∼= −1.284.

Panels (c) and (d) depict the minimum (green) and maximum (red) of the co-jump vectors.
The solid black line corresponds to the value of the equally weighted index. The vectors are
normalized as that ∑5

i=1 Ω(i)2 = 1.

18


