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A B S T R A C T

Background

Traumatic brain injury (TBI) is a leading cause of death and disability. A reliable prediction of
outcome on admission is of great clinical relevance. We aimed to develop prognostic models
with readily available traditional and novel predictors.

Methods and Findings

Prospectively collected individual patient data were analyzed from 11 studies. We considered
predictors available at admission in logistic regression models to predict mortality and
unfavorable outcome according to the Glasgow Outcome Scale at 6 mo after injury. Prognostic
models were developed in 8,509 patients with severe or moderate TBI, with cross-validation by
omission of each of the 11 studies in turn. External validation was on 6,681 patients from the
recent Medical Research Council Corticosteroid Randomisation after Significant Head Injury
(MRC CRASH) trial. We found that the strongest predictors of outcome were age, motor score,
pupillary reactivity, and CT characteristics, including the presence of traumatic subarachnoid
hemorrhage. A prognostic model that combined age, motor score, and pupillary reactivity had
an area under the receiver operating characteristic curve (AUC) between 0.66 and 0.84 at cross-
validation. This performance could be improved (AUC increased by approximately 0.05) by
considering CT characteristics, secondary insults (hypotension and hypoxia), and laboratory
parameters (glucose and hemoglobin). External validation confirmed that the discriminative
ability of the model was adequate (AUC 0.80). Outcomes were systematically worse than
predicted, but less so in 1,588 patients who were from high-income countries in the CRASH
trial.

Conclusions

Prognostic models using baseline characteristics provide adequate discrimination between
patients with good and poor 6 mo outcomes after TBI, especially if CT and laboratory findings
are considered in addition to traditional predictors. The model predictions may support clinical
practice and research, including the design and analysis of randomized controlled trials.

The Editors’ Summary of this article follows the references.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and
disability. Establishing a reliable prognosis early after injury is
notoriously difficult, as is captured in the Hippocratic
aphorism, ‘‘No head injury is too severe to despair of, nor
too trivial to ignore.’’ Following the development of the
Glasgow Coma Scale (GCS) [1] and the Glasgow Outcome
Scale (GOS) [2], it was found that confident predictions could
be made after 24 h following the injury, but were difficult to
establish on admission [3]. Prognostic models with admission
data are essential to support early clinical decision-making,
and to facilitate reliable comparison of outcomes between
different patient series and variation in results over time.
Furthermore, prognostic models have an important role in
randomized controlled trials (RCTs), for stratification [4] and
statistical analyses that explicitly consider prognostic infor-
mation, such as covariate adjustment [5,6].

Many models include data obtained after admission, and
most were developed on relatively small sample sizes
originating from a single center or region [7,8]. Many models
lack external validation, which is essential before the broad
application of a model can be advised [9,10]. Furthermore,
few models are presented in a clinically practical way.

We aimed to develop prognostic models based on
admission characteristics, which would allow application of
the model before in-hospital therapeutic interventions. We
used several large patient series for model development as
available in the International Mission for Prognosis and
Analysis of Clinical Trials in TBI (IMPACT) project [11], as an
extension of multivariable analyses reported before [12].
External validation was possible on data from a large, recently
completed RCT [13]. This RCT was used to develop a series of
prediction models with a specific focus on non-Western
countries [14]. In parallel with this work and as part of a
collaboration between CRASH and IMPACT investigators, we
developed and describe here a basic model that includes
easily accessible clinical features, and additional models that
included findings from computed tomography (CT) scanning,
and laboratory measurements.

Methods

Patients
The IMPACT database includes patients with moderate and

severe TBI (GCS � 12) from eight randomized controlled
trials and three observational studies conducted between 1984
and 1997 [11]. Detailed characteristics of these 11 studies and
data management have been described previously [15]. The
endpoint for the prognostic analyses was the 6 mo GOS, which
is an ordered outcome with five categories: 1, dead; 2,
vegetative state; 3, severe disability; 4, moderate disability;
and 5, good recovery. In patients whose 6 mo assessment was
not available we used the 3 mo GOS (n ¼ 1,611, 19% of the
patients). We selected 8,509 patients aged � 14 y [12].

We externally validated prognostic models using patients
enrolled in the Medical Research Council Corticosteroid
Randomisation after Significant Head Injury (MRC CRASH)
trial (trial registration ISRCTN74459797, ISRCTN Register,
http://www.controlled-trials.com/), who were recruited be-
tween 1999 and 2004 [13]. This was a large international
double-blind, randomized placebo-controlled trial of the

effect of early administration of a 48-h infusion of methyl-
prednisolone on outcome after head injury. It was found that
the risks of death and disability were higher in the cortico-
steroid group than in the placebo group. The trial included
10,008 adults with GCS � 14, who were enrolled within 8 h
after injury. We selected 6,681 patients with a GCS � 12 and
with complete 6 mo GOS. Secondary analyses considered only
placebo patients (n ¼ 3,287) and patients from high-income
countries (n ¼ 1,588). For the validation we focused on
prediction of mortality (GOS 1) versus survival (GOS 2–5) and
of unfavorable (GOS 1–3) versus favorable outcome (GOS 4–
5).

Predictors and Model Development
We considered patient characteristics that could be

determined easily and reliably within the first few hours
after injury. We initially examined a set of 26 potential
predictors [12]. These included demographics (age, sex, race,
education), indicators of clinical severity (cause of injury,
GCS components, pupillary reactivity), secondary insults
(hypoxia, hypotension, hypothermia), blood pressure (sys-
tolic, diastolic), various CT characteristics and various
biochemical variables. For the present analyses, we selected
predictors that were important in predicting outcome
(according to the Nagelkerke R2 in multivariable analyses),
and available for a substantial numbers of patients in the
development cohort [12]. Three prognostic models were
defined: (1) The core model included age, the motor score
component from the GCS, and pupillary reactivity; (2) the
extended model included the three predictors from the core
model plus information on secondary insults (hypoxia,
hypotension), CT characteristics (Marshall CT classification
[16]), traumatic subarachnoid hemorrhage (tSAH), and
epidural hematoma (EDH); and (3) the lab model included
the characteristics from the extended model and additional
information on glucose and hemoglobin (Hb). Definitions of
predictors have been described in detail [15].
Age and motor score were available for all patients. Missing

values occurred for several other predictors, especially
because some predictors were not recorded in some studies.
Within studies, predictor values were generally over 90%
complete if the predictor was recorded [15]. Pupillary
reactivity was not recorded in two trials (n¼ 1,045), but were
nearly complete in the other studies (338 missing values
among 7,474 patients).
For the extended model we excluded one trial, since

hypoxia, hypotension, and the CT classification were not
recorded, leaving 6,999 patients. For the development of the
lab model, we were limited to four studies in which glucose
and Hb had been recorded (n ¼ 3,554). Missing values
occurred for 167 glucose values (5%), and 132 Hb values (4%).
We multiply imputed ten sets of data that were identical in

known information, but could differ on imputed values for
missing information. We used the method of chained
equations, sampling imputed values from the posterior
predictive distribution of the missing data [17–20]. We used
the MICE algorithm [21], which works with R software [22].
The imputation models used all the variables that we
considered as potential predictors as well as the 6 mo GOS.
In total, 1,383 of the required 25,527 values (5%) in the core
model were imputed, 7,477 of the 55,992 required values in
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the extended model (13%), and 2,965 of the 35,540 required
values in the lab model (8%).

Statistical Analysis
Proportional odds logistic regression analysis was per-

formed with the 6 mo GOS as an ordinal outcome [23]. This
analysis efficiently summarizes predictive relationships with
an ordinal outcome such as the GOS. The proportionality
assumption was checked for each selected predictor and
found to be reasonable [12]. Interaction terms between
predictors were examined with likelihood ratio tests, but
none was of sufficient relevance to extend the models beyond
the main effects for each predictor. Similarly, study-specific
effects were assessed with interaction terms between study
and each predictor. Final prognostic models were developed
with logistic regression analysis for dichotomized versions for
the GOS: mortality (versus survival) and unfavorable outcome
(versus favorable outcome). All analyses were stratified by
study.

For the continuous predictors age, glucose, and Hb, a
linear relationship with outcome was found to be a good
approximation after assessment of nonlinearity using re-
stricted cubic splines [24]. The odds ratios (ORs) were scaled
so that they corresponded to a change from the 25th
percentile to the 75th percentile of the predictor distribu-
tion. This scaling allowed for a direct comparison of the
prognostic value of predictors that had been recorded in
different units or on different scales. Pooled ORs were
estimated over the imputed datasets (fit.mult.impute

function from the Harrell Design library [25]). All analyses
were repeated using only complete data, which gave similar
results (unpublished data).

Internal Validation
The discriminatory power of the three models was

indicated by the area under the receiver operating character-
istic curve (AUC). The AUC varies between 0.5 (a non-
informative model) and 1.0 (a perfect model). AUC was
calculated in a cross-validation procedure, where each study
was omitted in turn. Results were pooled over the ten
imputed datasets for eight studies with sufficient numbers for
reliable validation (n . 500) [26].

External Validation
We aimed to validate all models externally using data from

selected patients in the CRASH trial. However, lab values
were not recorded in this trial, nor were hypoxia, hypo-
tension, and EDH. We therefore validated the core model,
and a variant of the extended model, in which only the
Marshall CT classification and presence of tSAH were added
to the core model (i.e., the core þ CT model). Results are
shown for patients with complete data (core model: n¼ 6,272;
extended model variant, n ¼ 5,309). Imputation of missing
values was performed as for the IMPACT studies, leading to
similar results (unpublished data). Performance criteria
comprised discrimination (measured using the AUC) and
calibration (agreement of observed outcomes with predicted
risk). Calibration was assessed with the Hosmer-Lemeshow
test and graphically using a calibration plot [24].

Model Presentation
The final models were presented in a score chart, with

scores based on the regression coefficients in the propor-

tional odds models [27]. Coefficients were scaled such that the
same rounded score was obtained for predictors that were
used across the different models (e.g., age, motor score,
pupils). Logistic regression was subsequently used to calibrate
the risks of mortality and unfavorable outcome according to
the scores, with the model intercept referring to the Tirilazad
international trial [15]. This intercept was chosen since it
represented typical proportions of mortality (278/1,118, 25%)
and unfavorable outcome (456/1,118, 41%). Predictions can
be calculated from an Excel spreadsheet and from a Web page
(Text S1 is also available at http://www.tbi-impact.org/).

Results

The characteristics of IMPACT and CRASH patients with
GCS � 12 were fairly comparable (Table 1). CRASH trial
patients were marginally older than in IMPACT, and
admission motor scores were somewhat higher. Six-month
mortality was 28% in IMPACT and 32% in CRASH, and
unfavorable outcomes occurred in nearly half of the patients
(48% in IMPACT, 47% in CRASH). Mortality was slightly
lower in the placebo group of the selected CRASH patients
(mortality 988/3,287, 30%; unfavorable outcome 1,524/3,287,
46%), and in the patients from high-income countries
(mortality 405/1,588, 26%; unfavorable outcome 747/1,588,
47%).
All predictors had statistically significant associations with

6 mo GOS in univariate and multivariable analyses (Table 2).
An increase in age equal to the interquartile range (24 y) was
associated with approximately a doubling of the risk of poor
outcome. A poor outcome occurred especially for those with
motor scores 1 (none) or 2 (extension). Pupillary reactivity,
hypoxia, and hypotension also had strong prognostic effects.
CT classifications showing mass lesions or signs of raised
Intracranial Pressure (CT class III to VI) had similar increases
in risk as the presence of tSAH (OR around 2). An EDH was a
relatively favorable sign on a CT (compared to not having an
EDH on CT). Higher glucose levels and lower Hb levels were
associated with a poor outcomes, but effects were more
moderate than, for example, for age.
A simple score chart for the sequential application of the

models is presented in Figure 1, which can be used in
combination with Figure 2 to obtain approximate predictions
for individual patients. For example, a 35-y-old patient, with a
motor score of 3 (abnormal flexion), and both pupils reacting,
has a core model score of 1 þ 4 þ 0¼ 5 points. According to
Figure 2, this score corresponds to risks of mortality and
unfavorable outcome of approximately 20% and 50%,
respectively. If this patient had suffered from hypoxia but
not hypotension before admission, and the CT showed a mass
lesion and tSAH, the extended model score becomes 5 for the
core model þ 1 þ 2 þ 2 þ 0 ¼ 10 points. The corresponding
risks are approximately 40% for mortality and 70% for
unfavorable outcome. When glucose is 10 mmol/l and Hb 11
g/dl, the lab model score increases by 2þ2 to 14 points, which
corresponds to slightly higher predictions of mortality and
unfavorable outcome than those estimated with the extended
model (Figure 3).

Cross-Validation and External Validation
The discriminatory ability of the models increased with

increasing complexity (Table 3). Within the IMPACT data, the
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best cross-validated performance was seen for the three
observational studies, with AUCs over 0.80. Evaluation in the
RCTs showed lower AUCs. External validation confirmed the
discriminatory ability of the core model in the CRASH trial
(AUC 0.776 and 0.780 for mortality and unfavorable outcome,
respectively, Figures 4 and 5). When CT classification and
tSAH were considered as well, the performance increased to
0.801 and 0.796 for mortality and unfavorable outcome,
respectively, for 5,309 patients in CRASH. Outcomes in
CRASH were systematically poorer than those predicted for
both the core and core þ CT models, for both mortality and
unfavorable outcome (Hosmer-Lemeshow tests, p , 0.001,
Figures 4 and 5). This miscalibration was slightly less but did
not disappear when only the placebo patients were consid-
ered. Calibration was better for the patients from high-
income countries, with near perfect calibration (Hosmer-
Lemeshow tests, p . 0.1) for the extended model predicting
mortality (n¼ 1,351, Figure 4) and the core model predicting
unfavorable outcomes (n ¼ 1,466, Figure 5).

Discussion

In this paper we describe the development of a series of
prognostic models of increasing complexity, based on
admission characteristics, to predict the risk of 6-mo mortal-
ity and unfavorable outcomes in individual patients after
moderate or severe TBI. The models discriminated ad-
equately between patients with poor and good outcomes,
especially in the relatively unselected observational studies.
Patients in the randomized trials were selected according to
various enrollment criteria, which led to more homogeneous
samples, as reflected in a lower discriminative ability of the
models. We found a small but systematic difference between
predicted and observed outcome in a large, relatively recent,
external validation set [13] with recently treated patients
from both high- and low/middle-income countries. This
miscalibration largely disappeared when we considered only
patients from high-income countries.
The largest amount of prognostic information was con-

tained in a core set of three predictors: age, motor score, and

Table 1. Patient Characteristics of 11 Studies in the IMPACT Database and the CRASH Trial

Characteristics Measure or Category IMPACT Database (n ¼ 8,509) CRASH Triala (n ¼ 6,681)

Age, years Median (25 �75 percentile) 30 (21–45) 32 (23–47)

Motor score None (1) 1,395 (16%) 785 (12%)

Extension (2) 1,042 (12%) 515 (8%)

Abnormal flexion (3) 1,085 (13%) 658 (10%)

Normal flexion (4) 1,940 (23%) 1,156 (17%)

Localizes/obeys (5/6) 2,591 (30%) 3,567 (53%)

Untestable/missing (9) 456 (5%) 0

Pupillary reactivity Total 7,126 6,272

Both pupils reacted 4,486 (63%) 4,956 (74%)

One pupil reacted 886 (12%) 530 (8%)

No pupil reacted 1,754 (25%) 786 (12%)

Hypoxia Total 5,452 NA

Yes or suspected 1,116 (20%) NA

Hypotension Total 6,420 NA

Yes or suspected 1,171 (18%) NA

CT classificationb Total 5,192 5,654

I 360 (7%) 954 (17%)

II 1,838 (35%) 1,517 (27%)

III 863 (17%) 604 (11%)

IV 187 (4%) 133 (2%)

V 1,435 (28%) 815 (14%)

VI 509 (10%) 1,631 (29%)

Traumatic subarachnoid hemorrhage Total 7,393 5,653

Yes 3,313 (45%) 2,045 (36%)

Epidural hematoma Total 7,409 NA

Yes 999 (13%) NA

Glucose (mmol/l) Total 4,830 NA

Median (25–75 percentile) 8.2 (6.7–10.4) NA

Hb (g/dl) Total 4,376 NA

Median (25–75 percentile) 12.7 (10.8–14.3) NA

Six-month outcome Dead 2,396 (28%) 2,146 (32%)

Vegetative 351 (4%) 993 (15%)c

Severe disability 1,335 (16%) —

Moderate disability 1,666 (20%) 1,224 (18%)

Good recovery 2,761 (32%) 2,318 (35%)

All values are given as number (percentage of listed total) unless indicated otherwise.
aSelected for GCS � 12
bCT classification: I, no visible intracranial pathology on CT scan; II, midline shift 0–5 mm; III, cisterns compressed or absent with midline shift 0–5 mm; IV, midline shift . 5 mm; V, any
lesion surgically evacuated; VI, high- or mixed-density lesion . 25 mm, not surgically evacuated.
cVegetative and severe disability were not separately recorded in CRASH.
NA, not available.
doi:10.1371/journal.pmed.0050165.t001
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pupillary reactivity at admission. These characteristics were
already considered in the first well-known model for TBI [3]
and in many subsequent prognostic models [7,8]. Information
from the CT scan provided additional prognostic informa-
tion, although we did not exploit all the prognostic
information contained in a CT scan. The Marshall CT
classification combines several characteristics, and we pre-
viously proposed a more detailed scoring for prognostic
purposes [28]. Further validation of this score is necessary,
but the required data were not sufficiently available in most
studies from IMPACT. The presence of EDH was associated
with a better outcome after trauma, which may be explained
by the possibility of emergent surgical evacuation of such
hematomas. An EDH often disturbs brain function because of
compression, although there is generally little intrinsic brain
damage. If compression is relieved in time, full recovery will
more likely occur. Laboratory parameters have not yet been
widely used for prognosis after TBI [29]. Glucose and
hemoglobin were shown to contribute to outcome prediction,
although their effects are smaller than other predictors, e.g.,
age. Coagulation parameters may also be very relevant for
outcome prediction [29], but these parameters were not
sufficiently available in our studies. These biochemical
parameters warrant further exploration, especially since they
are amenable to intervention. For example, in critical care,

intensive hyperglycemia management has been shown to
reduce mortality [30]. We could not include effects of
extracranial injuries, since measures such as the ISS (injury
severity score) were not consistently recorded in the IMPACT
studies. Major extracranial injury was included as a predictor
in recently developed prognostic models from the CRASH
trial [14]. It is likely that the AUC of our models would have
been even better if this variable had been available [31,32]

Relationship of Our Model to Previously Published Models
Several models have been derived to estimate the proba-

bility of hospital mortality of adult intensive care unit
patients with physiological characteristics collected during
the first day(s), including APACHE (Acute Physiology and
Chronic Health Evaluation), SAPS (Simplified Acute Physiol-
ogy Score), and MPM (Mortality Prediction Model) [33–35].
Our models differ in several aspects, since we predicted long
term outcome, specifically for TBI patients, and used only
baseline characteristics. Recently, prognostic models for 14 d
mortality and 6 mo outcome were published by the MRC
CRASH trial collaborators. CRASH was a mega-trial, includ-
ing mild TBI (30% of n¼ 10,008), with a relatively simple data
collection in mostly patients from low-income countries
(75% of n ¼ 10,008) [14]. The IMPACT database involves
merged individual patient data from eight clinical trials and
three observational series, conducted over approximately 15

Table 2. Associations between Predictors and 6-Month Outcome in the IMPACT Data (n ¼ 8,509)

Characteristics Coding 6 Month Outcome Number (%) Odds Ratios (95% CI)

Dead (n ¼ 2,396) Unfavorable

(n ¼ 4,082)

Univariate Core Model

(n ¼ 8,509)

Extended Modela

(n ¼ 6,999)

Lab Modelb

(n ¼ 3,554)

Age, years 45 versus 21 years — — 2.2 (2.0–2.3) 2.4 (2.2–2.5) 2.2 (2.0–2.3) 1.9 (1.7–2.1)

Motor score None (1) 625 (45%) 894 (64%) 4.9 (4.3–5.5) 3.9 (3.4–4.5 ) 3.4 (2.9–4.0) 2.8 (2.1–3.7)

Extension (2) 496 (48%) 807 (77%) 7.2 (6.3–8.3) 5.7 (4.9–6.6) 4.6 (3.9–5.4) 4.3 (3.5–5.4)

Abnormal flexion (3) 326 (30%) 619 (57%) 3.5 (3.1–4) 3.0 (2.6–3.5) 2.8 (2.4–3.2) 2.7 (2.2–3.3)

Normal flexion (4) 411 (21%) 800 (41%) 1.8 (1.6–2) 1.7 (1.5–1.9) 1.6 (1.4–1.8) 1.5 (1.3–1.8)

Localizes/obeys (5/6) 383 (15%) 699 (27%) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

Untestable/missing (9) 155 (34%) 263 (58%) 2.2 (1.8–2.7) 2.1 (1.7–2.6) 2.0 (1.7–2.5) 1.3 (0.6–2.6)

Pupillary reactivity Both pupils reacted 790 (18%) 1,578 (35%) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

One pupil reacted 295 (33%) 521 (59%) 2.7 (2.4–3.1) 1.8 (1.6–2.1) 1.6 (1.4–1.8) 1.4 (1.1–1.7)

No pupil reacted 946 (54%) 1,351 (77%) 5.9 (5.3–6.6) 3.3 (3.0–3.7) 2.7 (2.4–3.1) 2.1 (1.6–2.6)

Hypoxia Yes or suspected 481 (43%) 713 (64%) 2.1 (1.9–2.4) — 1.3 (1.1–1.5) 1.4 (1.2–1.7)

No 1,158 (27%) 1,928 (44%) 1.0 (ref) — 1.0 (ref) 1.0 (ref)

Hypotension Yes or suspected 578 (49%) 794 (68%) 2.7 (2.4–3.1) — 1.8 (1.6–2.1) 1.5 (1.2–1.8)

No 1,315 (25%) 2,263 (43%) 1.0 (ref) — 1.0 (ref) 1.0 (ref)

CT classificationc I 24 (7%) 50 (14%) 0.41 (0.33–0.52) — 0.64 (0.51–0.82) 0.65 (0.47–0.89)

II 256 (14%) 582 (32%) 1.0 (ref) — 1.0 (ref) 1.0 (ref)

III 287 (33%) 456 (53%) 2.6 (2.3–3) — 1.7 (1.5–2.0) 1.7 (1.4–2.0)

IV 86 (46%) 107 (57%) —

V 422 (29%) 709 (49%) 2.3 (2–2.6) — 1.6 (1.4–1.9) 1.8 (1.5–2.2)

VI 217 (43%) 293 (58%) —

Traumatic subarachnoid Yes 1,193 (36%) 1,925 (58%) 2.6 (2.4–2.9) — 1.7 (1.5–1.8) 1.8 (1.6–2.1)

Hemorrhage No 724 (18%) 1,462 (36%) 1.0 (ref) — 1.0 (ref) 1.0 (ref)

Epidural hematoma Yes 207 (21%) 358 (36%) 0.64 (0.56–0.72) — 0.61 (0.53–0.70) 0.56 (0.46–0.69)

No 1,794 (28%) 3,101 (48%) 1.0 (ref) — 1.0 (ref) 1.0 (ref)

Glucose 10.4 versus 6.7.mmol/l — — 1.7 (1.6–1.8) — — 1.3 (1.2–1.4)

Hb 14.3 versus 10.8 g/dl — — 0.66 (0.61–0.72) — — 0.78 (0.70 – 0.87)

ORs were calculated with logistic regression for the 6 mo GOS with five categories (proportional odds analysis, see text).
aCore plus hypoxia, hypotension, and CT characteristics.
bExtended plus glucose and Hb.
cCT classification: I, no visible intracranial pathology on CT scan; II, midline shift 0–5 mm; III, cisterns compressed or absent with midline shift 0–5 mm; IV, midline shift . 5 mm; V, any
lesion surgically evacuated; VI, high- or mixed-density lesion . 25 mm, not surgically evacuated. In the analysis, category III and IV were combined, as well as V and VI.
doi:10.1371/journal.pmed.0050165.t002
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y, and focused on severe TBI. The IMPACT data are available
in greater detail, especially with respect to CT scan character-
istics.

We externally validated modified versions of two of our
three IMPACT models in selected patients from the CRASH
trial with GCS � 12, similar to the external validation of two
modified versions of CRASH models for unfavorable out-
come at 6 mo in IMPACT [14]. Both studies confirmed the
external validity of the presented models. This collaboration
with reciprocal validation of CRASH and IMPACT models is

important for reliable application of models outside their
respective development settings.
Early prediction of outcome permits establishment of a

baseline risk profile for individual patients, thus providing a
reference for assessing quality of health-care delivery.
Prognostic models are particularly relevant for a more
efficient design and analysis of RCTs. For example, we can
exclude those with a very good or a very poor prognosis [4],
perform covariate adjustment of a treatment effect [6,36],
and consider other analyses that lead to increases in statistical
power [37].

Figure 1. Score Chart for 6 Month Outcome after TBI

Sum scores can be calculated for the core model (age, motor score, pupillary reactivity), the extended model (core þ hypoxia þ hypotension þ CT
characteristics), and a lab model (coreþhypoxiaþhypotensionþCTþglucoseþHb). The probability of 6 mo outcome is defined as 1 / (1þe�LP), where
LP refers to the linear predictor in a logistic regression model. Six LPs were defined as follows:
LPcore, mortality¼�2.55 þ 0.275 3 sum score core
LPcore, unfavorable outcome ¼�1.62 þ 0.299 3 sum score core
LPextended, mortality ¼�2.98 þ 0.256 3 (sum score core þ subscore CT)
LPextended, unfavorable outcome¼�2.10 þ 0.276 3 (sum score core þ subscore CT)
LPlab, mortality¼�3.42 þ 0.216 3 (sum score core þ subscore CTþ subscore lab)
LPlab, unfavorable outcome ¼�2.82 þ 0.257 3 (sum score core þ subscore CTþ subscore lab)
The logistic functions are plotted with 95% confidence intervals in Figure 2.
doi:10.1371/journal.pmed.0050165.g001
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The proposed scores may also support clinicians in their
initial assessment of the severity and prognosis of a TBI
patient. We note, however, that statistical models can only
augment, not replace clinical judgment, although it is unlikely

that any clinician has the equivalent systematic experience of
the outcomes of the thousands of patients underlying our
models. Predictions should be regarded with care and not
directly be applied for treatment-limiting decisions [38]. The

Figure 2. Predicted Probabilities of Mortality and Unfavorable Outcome at 6 Month after TBI in Relation to the Sum Scores from the Core, Extended, and

Lab Models

The logistic functions are plotted with 95% confidence intervals. Dot size is proportional to sample size. Sum scores can be obtained from Figure 1.
doi:10.1371/journal.pmed.0050165.g002

Figure 3. Screenshot of the Spreadsheet with Calculations of Probabilities for the Three Prediction Models

Predictions are calculated for a 35-y-old patient with motor score 3, both pupils reacting, hypoxia before admission, mass lesion and tSAH on admission
CT scan, glucose 11 mmol/l, and Hb 10 g/dl. A Web-based calculator is available at http://www.tbi-impact.org/.
doi:10.1371/journal.pmed.0050165.g003
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UK 4 Centres Study found that making predictions available
as part of a routine clinical service altered deployment of
resources [39].

The validity and applicability of the prognostic models is

affected by various factors. The local level of care may vary
between regions, which may result in differences in outcome.
Previously we found unexplained outcome differences
between the US and the international part of the Tirilazad

Table 3. Discriminative Ability of the Models at Cross-Validation in IMPACT Patients (Studies with n . 500), and External Validation in
Patients from the CRASH Trial

Dataset Selection Study n Mortality Unfavorable Outcome

Core Extended Lab Core Extended Lab

Cross-validation in IMPACT RCTs TirInt 1,118 0.70 0.78 0.80 0.75 0.80 0.80

TirUS 1,041 0.74 0.77 0.79 0.78 0.80 0.82

Saphir 919 0.66 0.71 0.72 0.70 0.73 0.75

Pegsod 1,510 0.76 — — 0.77 — —

HIT-II 819 0.72 0.77 — 0.74 0.78 —

Observational studies UK4 791 0.81 0.81 — 0.81 0.80 —

TCDB 604 0.81 0.83 — 0.82 0.83 —

EBIC 822 0.84 0.87 — 0.81 0.84 —

External validation in CRASH All with GCS �12 CRASH 6,272 0.78 0.80 — 0.78 0.80 —

Placebo with GCS �12 CRASH 3,075 0.78 0.81 — 0.78 0.79 —

HIC with GCS �12 CRASH 1,466 0.80 0.83 — 0.77 0.80 —

Values are AUCs for models predicting 6 mo mortality (GOS 1) and models predicting 6 mo unfavorable outcome (GOS 1–3).
CRASH, Corticosteroid Randomization after Significant Head Injury trial (1999–2004); EBIC, European Brain Injury Consortium survey (1995); HIC, high-income countries; HIT-II, Nimodipine
trial (1989–1991); Pegsod, Pegsod trial (1993–1995); Saphir, Saphir trial (1995–1997); TCDB, Traumatic Coma Data Bank (1984–1987); TirInt, International Tirilazad (enrollment 1992–1994);
TirUS, US Tirilazad (1991–1994); UK4, UK 4 Centres study (1986–1988) [15].
doi:10.1371/journal.pmed.0050165.t003

Figure 4. External Validity for the Core and Core þ CT Model Characteristics for Prediction of Mortality in the CRASH Trial

The distribution of predicted probabilities is shown at the bottom of the graphs, by 6-mo mortality. The triangles indicate the observed frequencies by
decile of predicted probability.
doi:10.1371/journal.pmed.0050165.g004
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trials [40]. In the CRASH trial, outcomes were better for
patients from the high-income countries [14]. One explan-
ation is that facilities were more extensive than in the low-
and middle-income countries that participated in this trial.
Predictions for TBI patients in low- and middle-income
countries may best be obtained from the CRASH models that
were specifically developed for these countries [14]. Our
model predictions may be better than the CRASH predictions
for high-income countries, because of the more detailed
information in the models and larger patient numbers used
in model development. Predictions may, even on average, be
too poor, considering that treatment standards have im-
proved over time, including trauma organization, diagnostic
facilities such as CT scanning, and critical care management.
We did not, however, find a clear trend of better outcomes in
more recently treated patients when we applied identical
selection criteria to the studies in the IMPACT database. Both
the CRASH and IMPACT model predictions may require
regular updating according to specific population character-
istics, such as calendar year, treatment setting, or local
trauma organization [41,42].

Limitations of These Models
Our study has several limitations. Patients in our studies

were treated between 1984 and 1997. Even though evaluation

in the more recent CRASH trial data confirmed the validity of
the model predictions to more recent times (enrollment
between 1999 and 2004), we cannot exclude that better
outcomes are obtained nowadays. Also, the motor score is not
always available in current clinical practice, or can be
unreliable even when it is available, due to the effects of
early sedation or paralysis. Furthermore, missing variables
and missing values were a problem in the development of the
models. Multiple imputation of the relatively few missing
values allowed us to use the information from other
predictors. Both theoretical and empirical support is growing
for the use of such imputation methods instead of traditional
complete case analyses [19,43]. However, more complete data
would have been preferable. Furthermore, some misclassifi-
cation may have occurred in classification of unfavorable
versus favorable outcome. Mortality at 6 mo has the
advantage that it suffers less from such a potential bias.
In conclusion, prognostic models are now available that

provide adequate discrimination between patients with good
and poor 6-mo outcome. These models may be useful for
providing realistic information to relatives on expectations of
outcome, for quantifying and classifying the severity of brain
injury, for stratification and covariate adjustment in clinical
trials, and as a reference for evaluating quality of care.

Figure 5. External Validity for the Core and Core þ CT Model Characteristics for Prediction of Unfavorable Outcomes in the CRASH Trial

The distribution of predicted probabilities is shown at the bottom of the graphs, by 6-mo outcome. The triangles indicate the observed frequencies by
decile of predicted probability.
doi:10.1371/journal.pmed.0050165.g005
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Supporting Information

Text S1. Excel File That Can Be Used to Calculate Predictions with
Increasingly Complex Models

Found at doi:10.1371/journal.pmed.0050165.sd001 (185 KB XLS).
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Editors’ Summary

Background. Traumatic brain injury (TBI) causes a large amount of
morbidity and mortality worldwide. According to the Centers for Disease
Control, for example, about 1.4 million Americans will sustain a TBI—a
head injury—each year. Of these, 1.1 million will be treated and released
from an emergency department, 235,000 will be hospitalized, and 50,000
will die. The burden of disease is much higher in the developing world,
where the causes of TBI such as traffic accidents occur at higher rates
and treatment may be less available.

Why Was This Study Done? Given the resources required to treat TBI, a
very useful research tool would be the ability to accurately predict on
admission to hospital what the outcome of a given injury might be.
Currently, scores such as the Glasgow Coma Scale are useful to predict
outcome 24 h after the injury but not before.

Prognostic models are useful for several reasons. Clinically, they help
doctors and patients make decisions about treatment. They are also
useful in research studies that compare outcomes in different groups of
patients and when planning randomized controlled trials. The study
presented here is one of a number of analyses done by the IMPACT
research group over the past several years using a large database that
includes data from eight randomized controlled trials and three
observational studies conducted between 1984 and 1997. There are
other ongoing studies that also seek to develop new prognostic models;
one such recent study was published in BMJ by a group involving the
lead author of the PLoS Medicine paper described here.

What Did the Researchers Do and Find? The authors analyzed data
that had been collected prospectively on individual patients from the 11
studies included in the database and derived models to predict mortality
and unfavorable outcome at 6 mo after injury for the 8,509 patients with
severe or moderate TBI. They found that the strongest predictors of
outcome were age, motor score, pupillary reactivity, and characteristics
on the CT scan, including the presence of traumatic subarachnoid
hemorrhage. A core prognostic model could be derived from the
combination of age, motor score, and pupillary reactivity. A better score
could be obtained by adding CT characteristics, secondary problems
(hypotension and hypoxia), and laboratory measurements of glucose
and hemoglobin. The scores were then tested to see how well they
predicted outcome in a different group of patients—6,681 patients from
the recent Medical Research Council Corticosteroid Randomisation after
Significant Head Injury (MRC CRASH) trial.

What Do These Findings Mean? In this paper the authors show that it is
possible to produce prognostic models using characteristics collected on
admission as part of routine care that can discriminate between patients
with good and poor outcomes 6 mo after TBI, especially if the results
from CT scans and laboratory findings are added to basic models. This
paper has to be considered together with other studies, especially the
paper mentioned above, which was recently published in the BMJ (MRC
CRASH Trial Collaborators [2008] Predicting outcome after traumatic
brain injury: practical prognostic models based on large cohort of
international patients. BMJ 336: 425–429.). The BMJ study presented a set
of similar, but subtly different models, with specific focus on patients in
developing countries; in that case, the patients in the CRASH trial were
used to produce the models, and the patients in the IMPACT database
were used to verify one variant of the models. Unfortunately this related
paper was not disclosed to us during the initial review process; however,
during PLoS Medicine’s subsequent consideration of this manuscript we
learned of it. After discussion with the reviewers, we took the decision
that the models described in the PLoS Medicine paper are sufficiently
different from those reported in the other paper and as such proceeded
with publication of the paper. Ideally, however, these two sets of models
would have been reviewed and published side by side, so that readers
could easily evaluate the respective merits and value of the two different
sets of models in the light of each other. The two sets of models are,
however, discussed in a Perspective article also published in PLoS
Medicine (see below).

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050165.

� This paper and the BMJ paper mentioned above are discussed further
in a PLoS Medicine Perspective article by Andrews and Young
� The TBI Impact site provides a tool to calculate the scores described in

this paper
� The CRASH trial, which is used to validate the scores mentioned here,

has a Web site explaining the trial and its results
� The R software, which was used for the prognostic analyses, is freely

available
� The MedlinePlus encyclopedia has information on head injury
� The WHO site on neurotrauma discusses head injury from a global

perspective
� The CDC’s National Center for Injury Prevention and Control gives

statistics on head injury in the US and advice on prevention
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