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[1] Due to the combination of rapid global urbanization and climate change, urban climate
issues are becoming relatively more important and are gaining interest. Compared to rural
areas, the temperature in cities is higher (the urban heat island effect) due to the modifications
in the surface radiation and energy balances. This study hypothesizes that the urban heat island
can be mitigated by introducing open surface water in urban design. In order to test this, we
use the WRF mesoscale meteorological model in which an idealized circular city is designed.
Herein, the surface water cover, its size, spatial configuration, and temperature are varied.
Model results indicate that the cooling effect of water bodies depends nonlinearly on the
fractional water cover, size, and distribution of individual lakes within the city with respect to
wind direction. Relatively large lakes show a high temperature effect close to their edges and
in downwind areas. Several smaller lakes equally distributed within the urban area have a
smaller temperature effect, but influence a larger area of the city. Evaporation from open water
bodies may lower the temperature, but on the other hand also increases the humidity, which
dampens the positive effect on thermal comfort. In addition, when the water is warmer than the
air temperature (during autumn or night), the water body has an adverse effect on thermal
comfort. In those cases, the water body eventually limits the cooling and thermal comfort in
the surrounding city, and thus diverges from the original intention of the intervention.

Citation: Theeuwes, N. E., A. Solcerová, andG. J. Steeneveld (2013),Modeling the influence of open water surfaces on the
summertime temperature and thermal comfort in the city, J. Geophys. Res. Atmos., 118, 8881–8896, doi:10.1002/jgrd.50704.

1. Introduction

[2] In the last century, the percentage of people living in
cities increased from 13% in 1900 to 49% in 2005 [United
Nations, 2005]. This number is projected to increase even fur-
ther in coming years and decades. A second important aspect
for the urban environment is the projected climate change
[McCarthy et al., 2010]. In a changing climate, the number
of heat waves is expected to increase in the next century,
e.g., up to a factor of nine for Chicago [Peng et al., 2011].
This has aggravated effects on the urban area [Tan et al.,
2010], and the added pressure on cities shows the importance
and urgency of understanding the physics of the urban climate.
[3] One of the key aspects of the urban climate is the higher

nocturnal temperature in cities compared to the rural surround-
ings. This phenomenon is known as the urban heat island
(UHI) and may cause severe discomfort to inhabitants, espe-
cially during hot summer days and nights [Patz et al., 2005;
Vandentorren et al., 2006, Tomlinson et al., 2011]. This
research focuses on the evolution of the urban temperature
during a full diurnal cycle (24 h) and studies the effectiveness

of water bodies in the city as intervention tools, for both day
and night. We assess the instantaneous air temperature at the
2m level and quantify the modeled urban temperature with
and without intervention using lakes.
[4] The main objective of this work is to quantitatively

investigate the influence of the water bodies on the urban
temperature and human thermal comfort. This objective is
divided into four separate subtopics. First, we study how the
spatial distribution of water bodies and water fraction in the
city influences the temperature in the urban area. Second, we
quantify the influence of the lake water temperature on the
urban temperature. The third topic covers the technical aspect
of the model, i.e., how the selected atmospheric boundary
layer (ABL) schemes can influence the results. The final topic
is a quantification of the results for thermal comfort.
[5] This research is not based on field measurements, but

approaches the objectives with a mesoscale meteorological
model. In this way, we are able to study a city with an ideal-
ized setup, which allows us to draw general conclusions
rather than conclusions for a specific city. Experiments in
which lakes can be modified are virtually impossible in prac-
tice. In addition, field observations around different water
bodies are not representative of only the studied feature
(in our case, it would be the presence of an open water body),
but are also influenced by several other aspects like orogra-
phy or land use. These issues can be easily solved in a model
environment by changing the spatial characteristics of the
city and its surrounding rural areas. We used this possibility
to create a circular city and study the temperature change
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under influence of different size and distribution of water
bodies within the urban area.
[6] This paper is organized as follows. Section 2 gives a

theoretical background of the problem and reviews the liter-
ature related to the topic. Section 3 describes the used
methods and different approaches to assess the influence of
water bodies on the urban temperature. Section 4 describes
the results connected to the different approaches, followed
by a short assessment of the influence on human thermal
comfort. Finally, we discuss the results in section 5 and give
some conclusions in section 6.

2. Theoretical Background

[7] The UHI, here defined as the air temperature difference
between a rural grass field and the urban canopy layer
temperature [Stewart and Oke, 2012], is mainly caused by a
different energy balance in cities compared to rural areas,

Q*þ ANT ¼ SH þ LH þ G (1)

where Q* is the net radiation (Wm�2), ANT the anthropo-
genic heat production, SH the sensible heat flux, LH the latent
heat flux, andG the storage flux (positive downward). Within
cities, the lower albedo generally results in a slightly higher
Q* [Christen and Vogt, 2004]. In addition, the LH compo-
nent is significantly reduced compared to rural areas due to
a lower vegetation cover and consequently lower evapo-
transpiration. In addition, the soil moisture in urban areas is
relatively low, because most of the precipitation runs off
directly to the wastewater system. Thus, the net radiation is
mostly partitioned into the SH and G. The sensible heat flux
increases (in particular during daytime) due to the larger
vertical temperature gradient, between the surface and air
temperature. Finally, the storage or soil heat flux is larger
than in rural areas due to the larger surface area and different
building materials.
[8] Additional factors contributing to the UHI magnitude

are the anthropogenic heat flux (maximum ~1.102 Wm�2

[Kato and Yamaguchi, 2005]), surface roughness, or the spe-
cific topography of the cities, where buildings are organized
in urban canyons. All these factors cause a heat accumulation
in the urban areas during the day and a release of stored heat
at night, resulting in higher temperature in cities compared to
rural areas [Oke, 1982]
[9] Enhanced evaporation can lower the air temperature

and thus mitigate the UHI and increase the thermal comfort
of inhabitants. More evaporation increases LH and affects
the energy partitioning of SH and G, such that an SH reduc-
tion and a decrease in the magnitude ofG introduce a relative
temperature decrease in the urban canyon. Increased evapora-
tion can be achieved by increasing vegetation or the amount of
surface water.
[10] Several studies concerning the influence of vegetation

on urban temperatures are available. For example, Huang
et al. [2011] assessed the impact of the size and distribution
of vegetation in a city during daytime. On the other hand, stud-
ies reporting the effectiveness of water in mitigating the urban
heat are relatively scarce. Only a few studies hypothesize wa-
ter bodies as the strongest cooling element in the city during
hot summer days [Rinner and Hussain, 2011; Oláh, 2012].
However, these studies are mostly from a measurement per-
spective, either using field observations or remote sensing data

and with a strong focus on the daytime. Therefore, the current
study focuses on the influence of open water on day- and
nighttime urban temperatures and thermal comfort.
[11] Water is commonly used in urban planning as a deco-

rative aspect of public places [Kleerekoper et al., 2012]. The
cooling effects of water bodies, such as lakes, rivers, or foun-
tains, have been studied and known for quite some time [e.g.,
Xu et al., 2009 and Sun and Chen, 2012]. In some cities,
water is an inseparable part of everyday life, e.g., for cities
on a riverside or next to lakes. For example, Xu et al. [2009]
used observations to study the influence of a water body on
thermal comfort, for very hot days with air temperatures
above 35°C. Their results indicate that the water bodies with
a surface area larger than 2.104m2 significantly cool their
littoral zones. Concurrently, a modeling study conducted by
Robitu et al. [2004] showed that small ponds (4m2) have a
cooling effect on their surroundings as well. Another study
focused on the cooling effect of water-holding pavements; this
showed a temperature decrease of several degrees centigrade
[Nakayama and Fujita, 2010].
[12] The impact of water bodies on urban temperatures has

not been completely unraveled [Steeneveld et al., 2011]. In
addition, a systematic study (i.e., excluding local effect of
city specific issues) to the role of the spatial distribution of
water bodies has not been performed yet. Most of the studies
also focus on either nighttime, when the UHI is strongest, or
daytime, when the extreme temperatures in the city may be
potentially dangerous to the health of inhabitants.
[13] In this study, a lake with a constant temperature shifts

the energy balance partitioning above the lake to cause a
decrease in the sensible heat, leading to an increase in latent heat.
This limits the heat in the city. On the other hand, with higher
evaporation, the air humidity increases as well. Thermal com-
fort is a combination of many factors, such as, temperature,
wind speed, or the relative humidity, radiation, clothing, and
metabolism [Budd, 2001]. Higher air humidity lowers the
thermal comfort and counteracts the effect of evaporation on
temperature. The net effect on the thermal comfort of inhabi-
tants is given by superposition of these aspects.

3. Methodology

[14] In this section, the methodology are presented. First,
the numerical model (WRF) is described and its settings
are explained. Second, a general case description is given
with the specific approaches to the sensitivity experiments.
Finally, the analysis is shortly explained.

3.1. Model Description

[15] In order to investigate the influence of surface water on
urban temperature and thermal comfort, we use the Weather
Research and Forecasting (WRF) Model version 3.2.1 with
the ARW core [Skamarock et al., 2008]. The most important
settings of the model are displayed in Table 1. In order to rep-
resent the urban canopy in the model, the single layer urban
canopy model [Kusaka et al., 2001, Chen et al., 2011] with
adjustments from Loridan et al. [2010] is used, which is
coupled to the NOAH land surface scheme [Ek et al., 2003].
It calculates the momentum and energy exchange between
atmosphere and three types of urban facades: roofs, walls,
and roads. This model also takes into account the influence
of specific geometry of the street canyons and includes the
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shadowing from buildings. The single layer urban canopy
model is used in this study because the temperature within
the city is analyzed during day- and nighttime. In particular,
during nighttime, an urban canopy model represents the urban
boundary layer better than a slab model, due to the trapping of
radiation included in the urban canopy model.
[16] Several versions of this model along with many other

urban canopy models are studied in Grimmond et al. [2010,
2011]. Their study showed that no urban canopy model
performed best for all parts of the energy balance. Loridan
et al. [2010] andWang et al. [2011] found that within the sin-
gle layer urban canopy model used in this study, the net radi-
ation is vulnerable to changes in the albedo of the facades and
to the urban geometry. In addition, the sensible heat flux is
especially sensitive to thermal properties and the thickness
of the roof and the geometry of the street canyon (building
height and roof width). Finally, the storage heat flux responds
largely to changes in the thickness of the facades and again
the canyon geometry.
[17] Since this study aims to formulate generally valid

conclusions, i.e., not restricted to one particular city or
water body, the research uses an idealized case. Hence, it is
difficult to validate this case with observations. A brief
quality check will be presented in section 4.1. However,
WRF is a widely used tool in urbanmodeling and has been val-
idated for different cities, such as Beijing [Miao et al., 2009],

New York City [Holt and Pullen, 2007], London [Loridan
et al., 2013], and Taiwan [Lin et al., 2008] as summarized in
Chen et al. [2011].
[18] The model setup contains three nested domains with

32 × 32, 60 × 60, and 100 × 100 grids. The grid length for
these domains equals 25, 5, and 1 km respectively. This
domain setup is required for the downscaling from the one-
degree resolution boundary conditions (1° × 1° six hourly
NCEP-FNL data) to 1 km resolution of the smallest domain.
In the middle of the third domain, a circular city is created.
The simulations use 35 eta levels in the vertical direction with
nine levels below 1000m, and with the lowest model level at
~22m. In addition, the model spin-up is 24 h.
[19] In order to study the sensitivity to the selected ABL

scheme, we repeated our study using two different permuta-
tions of the ABL schemes, described in more detail in section
3.5. The nonlocal, Medium-Range forecast scheme (MRF)
[Troen and Mahrt, 1986] and the local, Mellor-Yamada-
Janjic (MYJ) [Mellor and Yamada, 1982; Janjic, 1990] are
used. The simulations with the MYJ scheme generated some
rolls-type structures in vertical cross section of potential tem-
perature. The same structures were observed by Salamanca
et al. [2012] as well, who used a fixed diffusion coefficient
to circumvent this model artifact. For this reason, we use
the same value of horizontal diffusion; 300 m2s�1, with the
horizontal Smagorinsky first-order closure scheme.
[20] For completeness, our runs use the WSM3 simple ice

microphysics scheme [Hong et al., 2004], the CAM [Collins
et al., 2004] longwave radiation scheme,Dudhia [1989] for the
shortwave radiation, and theGrell-Devenyi convection scheme.
Finally, the sixth-order numerical diffusion, prohibiting up-
gradient diffusion is used.

3.2. Numerical Setup

[21] An idealized, circular city with monotonous natural
surroundings is created in the model environment. In order
to ensure a substantial effect in the mesoscale model sensitiv-
ity studies, the city has a 50 km diameter; almost 2.103 grid
cells. This diameter is representative for cities as London,
Paris, or Phoenix [Chow et al., 2012]. The parameters used
in the urban canopy model are the default parameters for a
high-intensity residential area as defined by Chen et al.
[2011]. The only deviation from these default values is that
no anthropogenic heat flux is prescribed.
[22] The city is located in Europe (52°N, 7.5°E), relatively

far from the sea (not closer than 150 km) in order to prevent
the influence of a sea breeze, which is beyond the scope of
this paper. For the initialization and boundary conditions,
weather conditions from 7–10 May 2008 have been selected.
These days were relatively warm (18–25°C) and sunny with-
out clouds over this part of Europe. This was dictated by a
high-pressure system with its center located north of the
Netherlands (Figure 1). The 10m wind speed was between
2.5 and 5ms�1 from a southeasterly direction.
[23] The simulation time was 84 h, starting on 7May 06:00

and ending on 10 May 18:00, 2008. The first 24 h are spin-up
time and were not included in the analysis.
[24] In order to exclude local effects of the surrounding

rural areas such as orographic effects or the effect of variable
land use, the area surrounding the city has been set to grass-
land with a fixed terrain height of 10m. The prescribed
roughness lengths are 0.33m for the urban canopy, based

Table 1. A Summary of the Most Important Model Settings

General Settings

Time 7 May 2008, 06:00 – 10 May 2008, 18:00 UTC
Grid size D1: 32 × 32

D2: 60 × 60
D3: 100 × 100

Horizontal resolution D1: 25 × 25 km
D2: 5 × 5 km
D3: 1 × 1 km

Vertical resolution 35 eta levels
Initial, boundary
conditions

1° × 1° six-hourly NCEP-FNL data

Parameterizations

Land surface NOAH
Urban canopy model Single layer urban canopy model with:

Default settings for high-intensity residential area
Anthropogenic heat: 0 Wm�2

Boundary layer MRF (default)
MYJ (sensitivity analysis)

Eddy coefficient Smagorinsky first-order closure
Horizontal diffusion Sixth-order numerical diffusion, prohibiting

up-gradient diffusion
Microphysics WSM3 simple ice
Longwave radiation CAM
Shortwave radiation Dudhia
Convection scheme Grell-Devenyi

Surface Properties

Roughness length Grass: 0.12m
Albedo Grass: 0.19
Emissivity Grass: 0.985
Soil moisture Grass: 0.27 m3m�3

Urban: 0.33 m3m�3

Soil temperature Grass and Urban:
L1: 290.0K
L2: 285.5K
L3: 284.5K
L4: 283.0K
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on the building and displacement height, and 0.12m for grass
(with a few shrubs), and in the city the albedo is 0.20 for
individual facades (road, roof, and walls) and the grass has
an albedo of about 0.19, while the emissivity is set to 0.90
for the roof and wall and 0.95 for the road within the city
and 0.985 for grass. In addition, the soil type and initial soil
moisture have been modified. These factors can influence
the air temperature development and therefore they have
been unified all over the domains. As soil type, we selected
the most common type in this region (i.e., loam) and the soil
moisture was adjusted after a number of consecutive test run
for the resulting soil moisture; in this case, 0.27 m3m�3.
Within the city, the soil moisture as provided by NCEP was
higher than realistic for a city, i.e., 0.439 m3m�3 for all
levels, and the soil temperature was relatively low, i.e.,
283K for all soil levels. As a result, during the simulation,
the soil was warming and drying for more than two days
before reaching an equilibrium value. To avoid the possible
consequences of this spin-up artifact on the air temperature,
we have set the equilibrium values of the soil temperature
achieved after multiple iterations of the WRF forecast, as
initial for all the model runs. The soil temperature is changed
to 290K, 285.5K, and 284.5K for the soil surface, first,
and second level, respectively. The third soil level is left
unchanged, because it does not experience any significant
temperature change within the simulated four days. In
addition, the soil moisture in the urban area is changed to
0.33 m3m�3 for all levels in an analogue procedure similar
to the soil temperature.
[25] Three approaches are used to meet the research objec-

tives. Initially, the different water temperatures are evaluated,
secondly, the distribution and surface area of the water over
the city is varied, and finally, the study compares two ABL

schemes. Two reference runs are performed: one run with
the city without any water bodies inside and another with
neither a city nor a lake.
3.2.1. Water Temperature
[26] The first sensitivity experiment evaluates the influence

of open water bodies on urban temperatures for different lake
water temperatures. We hypothesize that colder water has a
larger cooling effect and very warm water may even increase
the urban temperature. This situation may occur when the air
cools to below the water temperature. In order to investigate
these possibilities, we prescribe three different lake tempera-
tures, constant in time. For deep, well-mixed lakes or rivers,
it is not unrealistic to assume the water temperature stays
constant over a period of three days.
[27] In the first case, the lake water temperature is 10°C,

which is always lower than the air temperature in the city.
The second lake water temperature, 15°C, has been chosen
as a typical water temperature for May in western part of
Europe. However, that time of the year is when the water
temperature changes. Therefore, also the 10°C can be consid-
ered realistic for this time of the year. The third lake water
temperature is 20°C; this temperature can easily be reached
during autumn, when the air temperature is similar to spring,
but the water has been heated during summer.
3.2.2. Lake Distribution and Percentage
of Surface Water
[28] Additional important factors connected to the influence

of a water body on the air temperature are the sizes and distri-
bution of the water masses. Typical percentage of water cover
in European cities typically varies between 6% in Berlin and
25% in Amsterdam. During this experiment, the percentage
of water in the city varied between 5, 10, and 15% of a total
size of the city, with 10% for the default experiment.

Figure 1. Synoptic situation in Europe on 7May 2008 at 12 UTC. H and L indicate the center of high- and
low-pressure systems, respectively. Semi-circles indicate warm fronts, triangles indicate cold fronts and
combined semi-circles and triangles represent the occlusion fronts.
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[29] In order to study temperature effects of spatially dif-
ferently distributed water surfaces for each lake temperature,
three percentages of surface water and both ABL parameter-
ization options, four different spatial distributions are ana-
lyzed (see Figure 2). First of them is the default lake case;
here all water is stored in one big lake in the middle of the city
(case A). The second and third cases have two lakes, each on
one of the diagonals of the city (cases B and C). Because the
temperature effect in an urban area usually occurs downwind
from the lakes, the different locations of these lakes in the
city should simulate how it will be affected if the wind is
from a different direction. These two particular ways of posi-
tioning the two lakes are chosen such that one of them repre-
sents a case where a large part of the city experiences the
influence of the lakes (case C). In the other case, the lakes
are behind each other with respect to wind (case B) and there-
fore the influenced area is expected to be smaller than in the
previous case. The last approach shows the influence of four
small lakes evenly distributed over the city (case D).
3.2.3. ABL Schemes
[30] The topic we study is a typical ABL phenomenon, and

as such it is valuable to quantify the sensitivity of the results
to different ABL schemes. Therefore, the results for two dif-
ferent ABL schemes are compared, MYJ and MRF. The
MRF scheme is a first-order, nonlocal closure, which means
that it accounts for large eddies that effectively transport
energy and mass through the ABL. The MYJ scheme is a
local scheme that only accounts for vertical transport from
neighboring grid cells. The literature indicates that MRF has
more skill in representing the heat transfer between surface
layer and the ABL than the MYJ scheme and therefore is more
advantageous during the day [e.g.,Holtslag and Boville, 1993].

On the other hand, earlier model evaluations revealed that
MRF might overestimate the surface sensible heat flux
[e.g., Steeneveld et al., 2008], especially in convective condi-
tions for areas with high surface roughness. In contrast, the
MYJ scheme gives a better representation of the ABL during
night [e.g., Willett and Sherwood, 2012], when MRF over-
estimates the turbulent transport. MYJ also tends to produce
a colder and shallower ABL during the day [Mellor and
Yamada, 1982].
[31] To simplify the discussion of our model results, we

introduce abbreviations for each run composed from the
ABL scheme, lake distribution case (described in section
3.2.2), and water temperature. For example, the run with
MRF, with one lake covering 10% of the city area with water
temperature of 20°C is labeled MRF_A10_20. For the run
without lakes and the run without city or lake, we use
“MRF_city” and “MRF_nocity,” respectively.

3.3. Analysis

[32] This study mostly focuses on the temperature change
caused by the introduction of open water in an urban area.
Several methods are used to assess the effects of the modifi-
cations. First, we use a method that averages the temperature
change over the entire city, providing a rough estimate of
how the particular case influences the whole city. A second
method only assesses the part of the city that is directly
influenced by the water bodies, the plume. Then, we compare
the average temperature change downwind of the lake, the
temperature change on the edge of the lake, and further in
the city. In addition, we analyze which areal percentage of
the city experiences a substantial change in temperature.

Figure 2. Case setup of different distributions of surface water in the city.
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[33] In order to investigate the influence on human thermal
comfort, the wet bulb globe temperature (WBGT) is used,
defined as [Willett and Sherwood, 2012]:

WBGT ¼ 0:567Ta þ 0:393eþ 3:94; (2)

where Ta [°C] is the air temperature and e [hPa] water vapor
pressure. This index depends on air temperature and humid-
ity of the air and therefore is well applicable for this case.

4. Results

[34] This section summarizes the results of our model
experiments. As a start, we assess the UHI generated by
the model and describe the general patterns in the tempera-
ture change caused by the introduction of a water body.
Subsequently, a detailed description of results connected to
different sensitivity analyses is presented. The last paragraph
of this section describes the influence of the introduction of
the lakes in a city on thermal comfort.

4.1. General Results

[35] First, the magnitude of the UHI generated by the
default simulation (MRF_city) is determined. In Figure 3,
the UHI is defined as the difference between the 2m air
temperature in the city center and in the rural center
(MRF_nocity). Hence, there is no chance that the rural
temperature is influenced by the urban plume. It appears that
the modeled UHI varies from around 1°C during late
morning and early afternoon to values around 6°C in the
early night (Figure 3). This seems a realistic UHI, consi-
dering findings in earlier observational studies within
Europe [e.g., Hidalgo et al., 2008, Steeneveld et al., 2011].

In addition, the UHI diurnal cycle is similar to the classical
behavior for an urban-rural temperature contrast as described
by Oke [1982].
[36] The order of magnitude of the UHI in the model

results for this particular case has been corroborated by
analyzing the observed UHI in an urban area closed to
the modeled location. As an example, the Ruhrgebied in
Germany (including Essen, Bochum, Duisburg, Dusseldorf,
etc.) is an urban area of similar size as the city in this study.
Two hobby meteorologist urban stations in Bochum in two
different environments are used for this, compared to the
same rural station (lat: 51.647, lon: 7.199). The first station
is located close to an area with very little vegetation and high
emissions of anthropogenic heat (lat: 51.477, lon: 7.159).
The second station is located close to the center of the city
and to a park (lat: 51.486, lon: 7.211). The measurements
indicated a UHI of 3°C at 21:00 local time during the first
night shown in Figure 3. This value increased during the
night until the maximum UHI of 7.8°C was reached at 6:00
local time. In contrary to the measurements of the first
station, the second urban measurement station recorded the
maximum UHI of 2.7°C at 22:00 local time and decreased
slowly to remain around 1.5°C for the remainder of the night.
These two stations show the diversity of the UHI within the
city. Therefore, it is not possible to correctly compare this
idealized case with homogeneous surroundings to real urban

Figure 3. Diurnal variation of temperature in degrees
Celsius. Dashed line indicates the temperature at a point in
the middle of the domain (x= 50, y = 50) where no city is
simulated, full lines give the same point in the domain in
the city simulation, and the dotted line is the difference
between these two. Grey panels depict night hours.

Figure 4. Diurnal variation of (a) temperature in a city
without a lake (solid line) and with a lake in the middle of
the domain (dashed line) and (b) the temperature difference
between the simulation with and without a lake (dotted line),
from MRF_A10_15 at a chosen point close to the lake
(x = 40, y = 55). Grey panels depict night hours.
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field measurements. However, the model shows UHI results
in between these measurements, indicating the correct order
of magnitude.
[37] Apart from the temperature effect, the city also affects

wind speed and direction. Urban areas have a higher
roughness length than the grassland surrounding the city.
Therefore, the wind is slowed down and funneled. As a
result, we find a difference in wind pattern between the
MRF_city run and the MRF_nocity run. The largest differ-
ence in the wind speed occurs at night; when the 10m wind
is 2.5ms�1 lower in the city center than in the areas not
influenced by the city, and when the air above the city is still
unstable or neutral and the air above the rural area is stable.

The smallest differences are around noon, when the deviation
of the 10m wind speed in the city center and the rural area is
around 0.5ms�1 (not shown). During daytime, the difference
in wind speed between rural and urban areas is small because
the turbulent mixing is high. At this time, the atmosphere is
unstable and turbulence is dominantly produced by buoy-
ancy. This buoyancy is strong enough to mix air parcels with
a high momentum toward the surface. The efficiency of the
turbulence is approximately similar in the city and over
the grassland.
[38] Another aspect that influences the wind speed and

direction is the UHI itself. Generally, the warmer air in the
city rises and transports in the air from the rural surroundings
into the city itself; this effect is called the urban breeze and
has been described a number of times before [e.g., Hidalgo
et al., 2008]. However, this phenomenon has not been
discovered in this modeling study. This is caused by a rela-
tively high background wind speed in this case, which is
around 5ms�1 during the day and 2.5ms�1 at night.
[39] In order to streamline the description of the model

results, the MRF_A10_15 run is selected to be the default
simulation and in each analysis only one of the aspects is
varied: the ABL scheme, the water distribution and percentage
of water cover, or the water temperature. In order to assess the
different water temperatures, we use runs with one lake and
the MRF ABL scheme.

4.2. Water Temperature

[40] This section illustrates the influence of different lake
water temperatures on the urban air temperature. Therefore,
we prescribe the water temperature to constant values of
10, 15, and 20°C.
[41] Figure 4 shows the comparison of the diurnal cycle of

temperature and the temperature change caused by the intro-
duction of a lake with 15°C water. The diurnal temperature
change has two maxima and two minima. The first tempera-
ture change minimum occurs in the early morning (10:00 LT)
and represents the time of strongest cooling. This situation
takes place when the city temperature rises rapidly, but the
water temperature stays constant. In addition, the develop-
ment of the turbulent ABL starts and allows the relatively
cold air originating from the lake to enter the built-up parts.
Later during the day, the ABL is deeper, and the cooling by
the lake is distributed over a relatively deep layer and there-
fore the actual cooling is weakened compared to the morning
conditions. In addition, during the day, the atmospheric insta-
bility downwind of the lake is slightly strengthened by
advection of relatively cold air from the lake over a relatively
warm surface. This will enhance the vertical turbulent trans-
port of heat away from the surface.
[42] The second minimum occurs around 22:00 LT, i.e.,

shortly after the sunset, when the city is cooling (most
pronounced before sunset of the second day in Figure 4).
This minimum is much smaller than the early morning mini-
mum and corresponds to peaks in the components of the
energy balance above the lake (negative for SH, positive for
LH; see Figure 5b) and a vanishing SH and LH for the city
(Figure 5a). The peak in the SH causes a higher turbulence
intensity above the lake.
[43] The explanation for the small secondary peak origi-

nates in the turbulent transfer in stable conditions, as over
a lake during the day. From basic micrometeorological

Figure 5. Energy balance components (a), the sensible
(solid lines), latent (dashed lines), and storage flux (dotted
lines) leeward (x = 42, y = 53) (black) and windward (x = 60,
y = 40) (light grey) of the lake within the city and (b) the
sensible (solid lines) and latent heat flux (dashed lines) over
the lake (x= 50, y = 50) (dark grey). (c) Shows the potential
temperature gradient between the temperature at the first
model level (22m) and the surface temperature leeward
(black), windward (light grey), and above the lake (dark
grey). Vertical black line highlights the situation at 21:00
local time 9 May 2008.
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principles, the turbulent heat flux under stable conditions has
an optimum with respect to the atmospheric stability [e.g.,
Holtslag et al., 2007]. For small stability an increase in stabil-
ity will enhance the magnitude of the flux, since the tempera-
ture difference between surface and air increased (regime I).
For an already very strong stability, an increase in stability will
reduce the fluxmagnitude since the strong stability inhibits the
vertical turbulent transfer (regime II).
[44] Hence, in our case, the stability over the lake is very

strong during the day (regime II). The stability over the lake
decreases before sunset (Figure 5c), which can increase the
turbulent intensity. This enhances the LH and SHmagnitudes
from the lake, allowing for a temporary faster cooling of the
air above the lake. Subsequently, this additionally cooled air
is advected downwind and observed as a secondary mini-
mum in the receptor point in Figure 4.
[45] At night, the cooling effect weakens until it vanishes

(approximately around 4:00 LT) after which the lake stops
acting as a cooling element. This is simply caused by the
air temperature being lower than the water temperature.
From this time on, the lake starts to warm up its surroundings
with the highest intensity around 6:00 LT, when the temper-
ature change is between 0.7 and 1.0°C. The comparison of
the simulations with different water temperatures shows that
the maximum temperature change is always located on the
northwestern coast of the lake (Figures 6 and 7), because
the wind direction is southeasterly. The wind is transporting
the air from above the lake toward west or northwest

(the wind direction slightly changes during the simulation
period) and creates a plume of colder or warmer air down-
wind in the city and further in rural areas. The plume is still
present at 22 m as well (Figure 7).
[46] The main difference between the plume at 2 m

(Figure 6) and at 22 m (Figure 7) is the temperature difference
outside the city during the night. Close to the surface, where
the air above grassland is stable, the warm air of the lake
(and the city) traveling over the cool air of the rural area can
make the air more stably stratified and decrease the tempera-
ture in some areas. This effect is strongest with the largest
temperature difference, where the lake is 20°C (Figure 6c).
[47] Figure 8 shows the difference in air temperature

between the simulations with and without a lake with the
distance from the lake in the wind direction. For a water tem-
perature of 10°C, the water body in the city always works as a
cooling element. Here, the air temperature is never below the
lake water temperature. For a water temperature of 15°C, the
situation is already different. During the day, when the air
temperature is more than 20°C, the lake works as a cooling
element of the city downwind of the lake. During the night,
when the air temperature is below 15°C, the influence of
the lake changes. Suddenly, the air temperature is lower
than the water temperature and therefore the lake warms its
surroundings. In this way, the presence of the lake causes
an increase in the air temperature.
[48] Figure 8 shows that the lake has a larger influence on

its direct surroundings than on the areas further downwind

Figure 6. The difference in 2 m temperature between the simulation with and without a lake for different
water temperatures, (MRF_A10_10 (10°C a,d), MRF_A10_15 (15°C b,e), and MRF_A10_20 (20°C c,f)
for 6:00 and 16:00 local time (UTC +2).
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of the lake. The cooling effect of a lake with 15°C tempera-
ture can reach 1.5°C or 2°C in areas close to the lake and only
0.5°C or 1°C in the urban location further downwind of the
lake (Figure 9b).
[49] The lake with a water temperature of 20°C has a much

stronger warming effect during the night than the cooling
effect during the day. During the day, the lake cools the city
only by about 0.5°C and the shore areas by 1°C (Figure 9c).
However, this is not such a significant difference with the

15°C lake. The temperature experiences a much higher influ-
ence at night. Close to the lake, the air temperature can be
as much as 3.5°C higher than in a case without a lake. This
influence again weakens with distance. However, the city
location further downwind of the lake experiences air temper-
atures almost two degrees higher than in a city without lake.
This result is consistent with observational findings of
Heusinkveld et al. (Spatial variability of the Rotterdam urban
heat island as influenced by vegetation cover and building

Figure 8. The 2 m temperature difference between the (a) MRF_A10_10, (b) MRF_A10_15, (c)
MRF_A10_20, and MRF_city in the urban area with the distance from the lake for several times (local
time) during the day. The direction of the line drawn from the lake corresponds with the background wind
direction at that time.

Figure 7. Same as Figure 6 with the temperature difference at 22 m (first model level).
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density, submitted to Journal of Geophysical Research, 2013),
who found analogue results over the river Meuse in Rotterdam
(Netherlands). Also note that the spread in the influence of the
lake on the air temperature increases when the lake tempera-
ture increases (Figures 8 and 9)
[50] It is important to note that our model simulation does

not account for possible heterogeneity in building properties.
In reality, building density and building height can be orga-
nized such that the flow is obstructed in certain preferential
directions. In addition, the urban parameters, prescribed in

the model setup, are able to alter the results as well.
Consequently, in reality, the flow could follow a different
path than shown in Figures 6 and 7. However, our results
are inherent to the model setup in which we wish to answer
our research question for general conditions.

4.3. Lake Distribution and Percentage of SurfaceWater

[51] The second analysis concerns the effect of alternative
spatial distributions of the water within the city. Figure 10
depicts the percentage of the city that experiences a temperature

Figure 9. Influence of the lakes of different temperatures on the difference in 2 m temperature at a point
close to the lake (x= 42, y = 53) (solid) and further in the city (x = 31, y = 58) (dashed). Figure depicts the
temperature difference between runs (a) MRF_A10_10, (b) MRF_A10_15, (c) MRF_A10_20, and
MRF_city. Grey panels depict night hours.

Figure 10. Percentage of the city influenced by the presence of the lake. (a–d) Show the percentage of the
city influenced more than 0.1°C and (e–h) percentage of the city influenced more than 0.5°C. Each graph
represents one of the model runs for different lake distributions (from left to right MRF_A10_15,
MRF_B10_15, MRF_C10_15, and MRF_D10_15). Grey panels depict night hours.
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change larger than 0.1 and 0.5°C, either warming or
cooling. The timing of the transitions from cooling and
warming does not change substantially, as well as the ap-
proximate times of maximum and minimum temperature
changes. However, the percentage of the city influenced
by the water body changes significantly. For the simulation
with one big lake, 19.3% of the city experiences a temper-
ature change. This percentage can reach up to 26.8%. When
the water is distributed more equally over the city, these
percentages are significantly higher. For the simulation
with four small lakes, an average of 34.3% of the city expe-
riences a significant temperature effect. The largest area of
warming of 47.7% is reached at 6:00 LT. At this time,
23.7% of the city area with one lake (MRF_A10_15) expe-
riences this change. The percentage of the city influenced
by the temperature change higher than 0.5°C does not show
such a large variability within the different cases (bottom
panels of Figure 10)

[52] Since the percentage of water in the city was fixed at
10% in the reference case, a higher number of lakes implies
that each lake has a smaller size. The area of the water body
influences the resulting air temperature change. According to
our results, a bigger lake causes stronger cooling than a
smaller one (Figure 11). The largest lake cools its closest
surroundings up to 2.4°C, while the temperature change at
the edge of the lake with four times smaller area only reaches
up to 1.4°C.
[53] By examining whether introducing lakes where the

water covers ranges from 5 to 15%, it generally appears that
a large areal water cover provides a stronger effect on the
temperature (Table 2). We can focus on two different situa-
tions: the extremes, when the cooling or warming is strongest
(maximum warming and maximum cooling), and the average
over the city (average cooling, average warming, and average
influence). Table 2 shows that the spatial influence increases
with the spatial variability of the lakes, as well as with the
total water fraction. However, the influence is not linear over
the range of water fraction. The temperature effect between 5
and 10% water fraction is more pronounced than between 10
and 15% water fraction. For example, the change between
MRF_D5_15 and MRF_D10_15 reaches 9%, while the
change between MRF_D10_15 and MRF_D15_15 is only
3.4%. This suggests that a larger spatial water cover does
have a nonlinear effect on the air temperature. Therefore, a
strategic distribution of a lower amount of water can be more
effective than simply adding more surface water.

4.4. Sensitivity to Selected ABL Schemes

[54] As described in section 3.2.3, both ABL schemes
cause a different model response. Figure 12 shows that
MYJ generates an ABL that is shallower than MRF since
the cooling over the lakes is distributed over a smaller layer.
We also find that the vertical heat transport at night is stron-
gest with MRF, because the warming is distributed over a
deeper layer than with MYJ, which is consistent with results
in, e.g., Garcia-Diez et al. [2013]. The MRF scheme is a
nonlocal scheme and accounts for vertical gradients over
the entire ABL. Contrarily, MYJ is a local scheme and only
accounts for local gradients and therefore does not spread
the warming effect over the complete ABL.
[55] The general results for MRF as described in the previ-

ous section are approximately similar for MYJ. The ABL
schemes provide the most prominent differences in the
extremes. In Figure 13, it appears that the temperature change
due to the lake spread over a wider range with MRF than with

Figure 11. The 2 m temperature difference between the
simulations with and without a lake at a point on the coast
of lakes of different sizes: MRF_A10_15 (x = 42, y= 53)
(solid line), MRF_B10_15 (x= 53, y = 46) (dashed line),
and MRF_D10_15 (x= 55, y= 44) (dotted line). Grey panels
depict night hours.

Table 2. Percentage of the City Influenced by the Presence of the Lake (ΔT2m >0.1°C) for Different Amounts of Water and Different
Distributions of the Open Water Surfaces in the Citya

[%] 5% Water 10% Water 15% Water

Case A B C D A B C D A B C D

Max warming 20.5 30.4 28.6 36 23.7 35.6 36.4 47.7 27.8 40.9 44.3 51.5
Max cooling 20.5 26.8 23.6 34.6 26.8 33.2 34.4 47.7 31 36.4 41.3 47.9
Avg warming 7.1 12 10.5 14 8.5 13.4 13 16.8 10.1 15.1 15.9 16.9
Avg cooling 12.6 16.2 15.1 19.9 17.3 22.4 22.4 29.5 20.1 24.7 27.8 32.2
Avg influence 14.2 19.2 17.6 23.3 19.3 25.9 26.5 34.3 23.4 29.3 32.2 37.8

aMax warming and max cooling show the percentage of the city at the time when the warming and cooling, respectively, are strongest (the peak values in
Figure 10). Avg warming and avg cooling show the average percentage (in time) of the city experiencing warming or cooling (the time averaged percentage in
Figure 10). Avg influence shows the average percentage of the city experiencing any temperature change (warming and cooling combined) caused by the
presence of the water.
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MYJ. During several hours at night, the average temperature
increase is almost 0.5°C and the strongest cooling effect
during the day reaches �1°C on average (Figure 13). On
the other hand, the number of hours with an extreme cooling
effect (air temperature effect higher than 0.5°C) is lower for
MRF than for MYJ. With the MYJ scheme, 14 h (out of
the simulated 60 h) resulted in a cooling effect higher than
0.5°C, while this is only 11 h with MRF.
[56] Even though the different ABL schemes influence the

extremes of the temperature change and the ABL develop-
ment, the major aspects are consistent, and as such our model
findings appear to be robust. Warming and cooling periods
have the same length, with exception of two additional hours
of warming with MRF compared to MYJ. This difference is
caused by the evening transition between the cooling and
warming effects of the lake.

4.5. Human Comfort

[57] The difference between the Ta and WBGT depends on
the water temperature (Figure 14). With a water temperature
of 10°C, the humidity in the air always lowers the perceived
cooling effect (Figure 14a). For example, in the morning,
when the cooling in the air temperature reaches 2.5°C, the

perceived cooling is only 0.5°C. This suggests that the
humidity causes a discrepancy in the actual and perceived
cooling up to more than half (60%). However, such a differ-
ence is dominantly visible during the periods of largest tem-
perature change; during the rest of the day, we find that the
difference between average air temperature change and aver-
age WBGT change amounts to 0.5°C.
[58] For a lake with a water temperature of 15°C

(Figure 14b), the difference between Ta and WBGT depends
on the time of the day as well. At night, during the warming
episodes, the influence of the air humidity on thermal
comfort seems negligible, while during the rest of the
day, the difference between the temperature change and
WBGT change is also around 0.5°C, with extremes reaching
0.8°C difference.
[59] The influence of the air humidity during a period

of warming is more pronounced when the warming is rela-
tively strong (Figure 14c). Here, the WBGT is lower than
the actual temperature and mitigates the warming effect by
about 0.8°C. The humidity effect during the cooling period
is the same as described above. Generally, the difference
between the Ta andWBGT change is most pronounced during
episodes of the strongest cooling or warming.

Figure 12. Vertical cross section through the third domain (at y = 50) showing the temperature differ-
ence between (a–c) MRF_A10_15 andMRF_city , and (d–f) MYJ_A10_15 andMYJ_city for three times
during the day: 4:00, 10:00, and 15:00 local time (UTC +2). Grey bars show the position of the city and
black the lake.
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5. Discussion

[60] A number of previous studies found that the water
bodies in urban areas have a cooling effect on their surround-
ings [e.g., Xu et al., 2009; Robitu et al., 2004]. On the
contrary, our results indicate that the cooling effect of lakes
is only relevant during the daytime, while at night, we find
a so far less discussed warming effect. Especially, at night,
the thermal comfort is necessary for getting asleep and the
critical WBGT threshold is lower than during the day.
Moriyama and Matsumoto [1988] showed that high temper-
ature and humidity inhibit sleep, which subsequently can
cause health problems. Our results indicate a warming
effect at night, which as such thus counteracts the intended
improvement to thermal comfort effect.
[61] Other studies mostly focused on influence of the

lakes in their close surroundings [Kleerekoper et al., 2012].

However, our study shows that the effect can also influence
more distant areas. Colder air originating from the lake is
transported by wind and creates a plume of air influenced
by the presence of the lake several kilometers long. The size
and length of the plume are mostly dependent on the wind.
The wind speed during the days of interest was between 2.5
and 5ms�1, but other wind speeds would lead to different
results. Another way to influence the wind over the city is
to increase the roughness of the terrain. For example, higher
buildings lead to a higher roughness length and slow down
the wind over the city. Therefore, various urban parameters
will alter the shape of the plume as well.
[62] Furthermore, the size of the lake and distribution of

the water over the city play their role. Relatively large lakes
also seem to have a relatively strong cooling effect on their
surroundings and also longer and colder plume influencing
the city downwind. However, several smaller lakes influence

Figure 13. Frequency of time steps of the 2 m temperature difference between simulations with and with-
out a lake, within the plume (�0.05°C>ΔT> 0.05°C), for the two boundary-layer schemes: (a)
MRF_A10_15 and (b) MYJ_A10_15 .

Figure 14. The 2 m temperature (solid lines) and the 2 m WBGT (dashed lines) difference between
simulations with and without a lake at a point close to the lake (x= 42, y = 53). Figure depicts the 2 m
temperature difference between (a) MRF_A10_10, (b) MRF_A10_15, and (c) MRF_A10_20 and MRF_city.
Grey panels depict night hours.
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higher percentage of the city. This corresponds to findings of
Sun and Chen [2012], who also considered influence of
the geometry of the water body. With use of large-eddy
simulation, they concluded that several smaller regularly
shaped water bodies have the most beneficial effect when it
comes to lowering extreme temperatures during the day.
[63] Lakes vary in their properties, e.g., well-mixed, deep,

large, or small. In this study, a well-mixed deep lake was
assumed and therefore a constant water temperature was
prescribed. However, during days with high solar radiation
and a small amount of mixing within the water, an assumption
of a constant water temperature is insufficient [Kaplan et al.,
2003; Vercauteren et al., 2011]. Therefore, Figure 15 shows
the diurnal temperature change for a constant lake temperature
(Figure 15a) compared to a simulation where the lake water
temperature has a diurnal cycle of two degrees varying between
15 and 17°C (Figure 15b). The maximum lake temperature has
a delay of 2 h compared to the maximum air temperature. The
second simulation has a diurnal cycle of four degrees varying
between 15 and 19°C (Figure 15c). These simulations show
analogue results for the city temperatures as with a constant
lake temperature. Enhancing the diurnal cycle leads to less
hours of cooling in the evening and more warming during
the night. This amounts to an addition 2 h of warming in the
case of a diurnally varying water temperature of 2°C and four
additional hours of warming where the water temperature is
varied 4°C. These results only enhance the critical point that
lakes not only cool during the day but can also be responsible
for significant warming in a city. Consequently, in the future,
it will be beneficiary to work with an interactive model to
simulate the water temperature interactively.
[64] In this study, the WBGT is used as an estimate of the

influence on thermal comfort. The WBGT index only incorpo-
rates temperature and humidity. However, this index does not
take into account radiation, (mean radiant temperature) the air
movement, and therefore the possibility or restriction of sweat
evaporation [Budd, 2008]. For a more elaborated assessment of
human thermal comfort, it would be necessary to use more
advanced index, such as Physiological Equivalent Temperature

(PET) [Mayer and Höppe, 1987], Predicted Mean Votes
(PMV) [Fanger, 1972], or the universal thermal comfort index
(UTCI) [Jendritzky et al., 2012]. These methods incorporate
various other atmospheric factors such as radiation or wind
speed, but also human properties such as age or clothing.
[65] Despite the obvious relation between the urban tem-

perature and the available surface water, a further under-
standing of the role of lakes in the urban climate needs
to be explored. In particular, different influencing factors
including the water body area, geometry expressed in the
landscape shape index, distance from the city center, and
the properties of the surrounding built-up area need to be
studied further [Sun and Chen, 2012].

6. Conclusion

[66] This study investigates the influence of urban water
bodies on the urban air temperature and thermal comfort,
using a mesoscale modeling setup of an idealized city and
various surface water distributions, area sizes, and tempera-
tures. The air temperature change due to the introduction of
a lake depends on the size and number of lakes, distance from
the lake, and water temperature. Generally, we find that the
influence of the water decreases with the distance from the
lake. However, the influence of the lake is still measurable
several kilometers downwind of the lake.
[67] Within urban design studies, often the paradigm exists

that surface water acts as a cooling element in cities. On
the contrary, this study shows that the water temperature
(changing per season) mostly dictates the temperature
change, overshadowing the cooling due to evaporation.
Water with a lower temperature than its surroundings always
works as a cooling element and vice versa. This way, the lake
works as a buffer of the diurnal cycle of the temperature:
cools the environment during the day and warms it at night.
A consequence of this finding: when water bodies have
reached a higher temperature at the end of the summer season,
they can act as nocturnal warming elements and are adverse to
thermal comfort.

Figure 15. The difference in 2 m temperature for simulations with and without a lake at a point close to
the lake (x = 42, y = 53) (solid) and further in the city (x = 31, y = 58) (dashed) for (a) constant lake water
temperature, (b) a lake water temperature with a diurnal cycle of 2°C, and (c) a diurnal cycle of 4°C.
Grey panels depict night hours.
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[68] In addition, the temperature effect of a lake on the city
differs for various distributions of the same amount of water
over the city. One large lake has a strong effect on its
surroundings, while several smaller lakes influence a higher
percentage of the city. Moreover, increasing the surface
water in a city does not necessarily lead to a linear relation-
ship with the temperature change within a city. Thus, proper
weighing of the size and location of the lake can be beneficial
to urban planning.
[69] Concerning the sensitivity of our results to the bound-

ary layer schemes, we find that the variance in cooling and
warming is similar for the studied MRF and MYJ schemes;
however, their results differ in the extreme values. The
MRF scheme models a stronger warming and cooling effect
of the lake. On the other hand, the MYJ scheme forecasts
more hours with very strong cooling (more than 0.5°C differ-
ence) than the MRF scheme.
[70] The increased atmospheric humidity caused by evapo-

ration from the introduced lakes decreases the perceived
thermal effect of the lake. However, the difference between
the air and the WBGT change is substantial and amounts to
a maximum of ~0.8°C in some cases. This implies that up
to ~60% of the comfort achieved by the cooling effect is
cancelled out by the humidity change. These findings can
be used in urban planning, where the mitigation of UHI and
adverse human thermal comfort becomes more important
due to extensive urbanization in the last century.

[71] Acknowledgments. We would like to express our appreciation to
NCEP-FNL for providing the model input data files for our modeling study,
to Rijkswaterstaat for providing the lake temperatures in the Netherlands,
and to Weather Underground for the air temperatures in cities and its
surroundings. KNMI is acknowledged for providing figure 1. Finally, we
would like to thank Thomas Loridan and two anonymous reviewers for their
useful suggestions on the manuscript.

References
Budd, G. M. (2001), Assessment of thermal stress-The essentials, J. Therm.
Biol., 26, 371–374.

Budd, G. M. (2008), Wet-bulb globe temperature (WBGT)-its history and its
limitations, J. Sci. Med. Sport, 11, 20–32.

Chen, F., et al. (2011), The integrated WRF/urban modelling system:
development, evaluation, and applications to urban environmental problems,
Int. J. Climatol., 31, 273–288, doi:10.1002/joc.2158.

Chow, W. T. L., D. Brennan, and A. J. Brazel (2012), Urban Heat Island
Research in Phoenix, Arizona: Theoretical Contributions and Policy
Applications, Bull. Am. Meteorol. Soc., 93, 517–530.

Christen, A., and R. Vogt (2004), Energy and radiation balance of a central
European city, Int. J. Climatol., 24, 1395–1421.

Collins, W. D., R. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa,
D. L. Williamson, J. T. Kiehl (2004), Description of the NCAR community
atmosphere model (CAM 3.0).

Dudhia, J. (1989), Numerical study of convection observed during the winter
monsoon experiment using a mesoscale two-dimensional model, J. Atmos.
Sci., 46, 3077–3107.

Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren,
G. Gayno, J. D. Tarpley (2003), Implementation of Noah land surface
model advances in the National Centers for Environmental Prediction
operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851,
doi:10.1029/2002JD003296.

Fanger, P. O. (1972), Thermal comfort, McGraw-Hill, New York.
Garcia-Diez, M., J. Fernández, L. Fita, and C. Yagüe (2013), Seasonal
dependence of WRF model biases and sensitivity to PBL schemes over
Europe, Q. J. R. Meteorol. Soc., 139, 501–514.

Grimmond, C. S. B., et al. (2010), The International Urban Energy Balance
Models Comparison Project: First Results from Phase 1, J. Appl. Meteorol.
Climatol., 49, 1268–1292.

Grimmond, C. S. B., et al. (2011), Initial results from Phase 2 of the interna-
tional urban energy balance model comparison, Int. J. Climatol., 31,
244–272, doi:10.1002/joc.2227.

Hidalgo, J., V. Masson, and G. Pigeon (2008), Urban-breeze circulation
during CAPITOUL experiment: numerical simulation, Meteorol. Atmos.
Phys., 102, 243–262.

Holt, T. J., and J. Pullen (2007), Urban Canopy Modeling of the New York
City Metropolitan Area: A Comparison and Validation of Single- and
Multilayer Parameterizations, Mon. Weather Rev., 135, 1906–1930.

Holtslag, A. A.M., and B. A. Boville (1993), Local versus nonlocal boundary-
layer diffusion in a global climate model, J. Clim., 6, 1825–1842.

Holtslag, A. A.M., G. J. Steeneveld, and B. J. H. van deWiel (2007), Role of
land surface temperature feedback on model performance for stable
boundary layers, Boundary Layer Meteorol., 125, 361–376.

Hong, S. Y., J. Dudhia, and S. H. Chen (2004), A Revised Approach to Ice
Microphysical Processes for the Bulk Parameterization of Clouds and
Precipitation, Mon. Weather Rev., 132, 103–120.

Huang, H. Y., S. A. Margulis, C. R. Chu, and H. C. Tsai (2011),
Investigation of the impacts of vegetation distribution and evaporative
cooling on synthetic urban daytime climate using a coupled LES-LSM
model, Hydrol. Processes, 25, 1574–1586.

Janjic, Z. I. (1990), The step-mountain coordinate: Physical package, Mon.
Weather Rev., 118, 1429–1443.

Jendritzky, G., R. De Dear, and G. Havenith (2012), UTCI--why another
thermal index?, Int. J. Biometeorol., 56, 421–428.

Kaplan, D. M., J. L. Largier, S. Navarrete, R. Guinez, and J. C. Castilla
(2003), Large diurnal temperature fluctuations in the nearshore water
column, Estuarine Coastal Shelf Sci., 57, 385–398.

Kato, S., and Y. Yamaguchi (2005), Analysis of urban heat-island effect
using ASTER and ETM+Data: Separation of anthropogenic heat
discharge and natural heat radiation from sensible heat flux, Remote
Sens. Environ., 99, 44–54.

Kleerekoper, L., M. van Escha, and T. B. Salcedob (2012), How to make a
city climate-proof, addressing the urban heat island effect, Resour.
Conserv. Recycl., 64, 30–38.

Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura (2001), A simple single-
layer urban canopy model for atmospheric models: Comparison with multi-
layer and slab models, Boundary Layer Meteorol., 101, 329–358.

Lin, C. Y., F. Chen, J. C. Huang, W. C. Chen, Y. A. Liou, W. A. Chen, and
S. C. Liu (2008), Urban heat island effect and its impact on boundary layer
development and land–sea circulation over northern Taiwan, Atmos.
Environ., 42, 5635–5649.

Loridan, T., C. S. B. Grimmond, S. Grossman-Clarke, F. Chen, M. Tewari,
K. Manning, A. Martilli, H. Kusaka, and M. Best (2010), Trade-offs and
responsiveness of the single-layer urban canopy parameterization in WRF:
an offline evaluation using the MOSCEM optimization algorithm and
field observations, Q. J. R. Meteorol. Soc., 136, 997–1,019, doi:10.1002/
qj.614.

Loridan, T., F. Lindberg, O. Jorba, S. Kotthaus, S. Grossman-Clarke, and
C. S. B. Grimmond (2013), High resolution simulation of the variability of
surface energy balance fluxes across central London with urban zones for
energy partitioning, Boundary Layer Meteorol., 147, 493–523, doi:10.1007/
s10546-013-9797-y.

Mayer, H., and P. Höppe (1987), Thermal comfort of man in different urban
environments, Theor. Appl. Climatol., 38, 43–49.

McCarthy, M. P., M. J. Best, R. A. Betts (2010), Climate change in cities due
to global warming and urban effects, Geophys. Res. Lett., 37, L09705,
doi:10.1029/2010GL042845.

Mellor, G. L., and T. Yamada (1982), Development of a turbulence closure
model for geophysical fluid problems, Rev. Geophys., 20, 851–875.

Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang (2009),
An Observational and Modeling Study of Characteristics of Urban Heat
Island and Boundary Layer Structures in Beijing, J. Appl. Meteorol.
Climatol., 48, 484–501.

Moriyama, M., and M. Matsumoto (1988), Control of urban night
temperature in semitropical regions during summer, Energy Build., 11,
213–219.

Nakayama, T., and T. Fujita (2010), Cooling effect of water-holding
pavements made of new materials on water and heat budgets in urban
areas, Landscape Urban Plann., 96, 57–67.

Oke, T. R. (1982), The energetic basis of the urban heat island, Q. J. R.
Meteorol. Soc., 108, 1–24.

Oláh, A. B. (2012), The possibilities of decreasing urban heat island, Appl.
Ecol. Environ. Res., 10, 173–183.

Patz, J. A., D. Campbell-Lendrum, T. Holloway, and J. A. Foley (2005),
Impact of regional climate change on human health, Nature, 438,
310–317.

Peng, R. D., J. F. Bobb, C. Tebaldi, L. McDaniel, M. L. Bell, and F. Dominici
(2011), Toward a Quantitative Estimate of Future Heat Wave Mortality
under Global Climate Change, Environ. Health Perspect., 119, 701–706.

Rinner, C., andM. Hussain (2011), Toronto’s Urban Heat Island – Exploring
the Relationship between Land Use and Surface Temperature, Remote
Sens., 3, 1251–1265.

THEEUWES ET AL.: SURFACE WATER AND URBAN TEMPERATURES

8895



Robitu, M., C. Inard, M.Musy, and D. Groleau (2004), Energy balance study
of water ponds and its influence on building energy consumption, Build.
Serv. Eng. Res. Technol., 25, 171–182.

Salamanca, F., A. Martilli, and C. Yagüe (2012), A numerical study of the
Urban Heat Island over Madrid during DESIREX (2008) campaign with
WRF and evaluation of simple mitigation strategies, Int. J. Climatol., 32,
2372–2386.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
M. G. Duda, X. Y. Huang, W. Wang, W. G. Powers (2008), A Description
of the Advanced Research WRF Version 3, NCAR technical note;
Boulder, USA.

Steeneveld, G. J., T. Mauritsen, G. Svensson, E. I. F. De Bruijn,
J. Vilà-Guerau de Arellano, and A. A. M. Holtslag (2008), Evaluation of
Limited-Area Models for the Representation of the Diurnal Cycle
and Contrasting Nights in CASES-99, J. Appl. Meteorol. Climatol., 47,
869–887.

Steeneveld, G. J., S. Koopmans, B. G. Heusinkveld, L. W. A. van Hove,
A. A. M. Holtslag (2011), Quantifying urban heat island effects and
human comfort for cities of variable size and urban morphology in
Netherlands, J. Geophys. Res., 116, D20129, doi:10.1029/2011JD015988.

Stewart, I. D., and T. R. Oke (2012), Local Climate Zones for Urban
Temperature Studies, Bull. Am. Meteorol. Soc., 93, 1879–1900.

Sun, R., and L. Chen (2012), How can urban bodies be designed for climate
adaptation?, Landscape Urban Plann., 105, 27–33.

Tan, J., Y. Zheng, X. Tang, C. Guo, L. Li, G. Song, X. Zhen, D. Yuan,
A. J. Kalkstein, and F. Li (2010), The urban heat island and its impact on
heat waves and human health in Shanghai, Int. J. Biometeorol., 54, 75–84.

Tomlinson, C. J., L. Chapman, J. E. Thornes, and C. J. Baker (2011), Including
the urban heat island in spatial heat health risk assessment strategies: a case
study for Birmingham, UK, Int. J. Health Geographics, 10, 42.

Troen, I. B., and L. Mahrt (1986), A simple model of the atmospheric bound-
ary layer; sensitivity to surface evaporation, Boundary Layer Meteorol.,
37, 129–148.

UnitedNations (2005),WorldUrbanisation Prospects: The 2005Revision, United
Nations, DESA, Population Division, online available: http://www.un.org/esa/
population/publications/WUP2005/2005WUPHighlights_Exec_Sum.pdf.

Vandentorren, S., P. Bretin, A. Zeghnoun, L. Mandereau-Bruno, A. Croisier,
C. Cochet, J. Riberon, I. Siberan, B. Declercq, and M. Ledrans (2006),
August 2003 heat wave in France: risk factors for death of elderly people
living at home, Eur. J. Public Health, 16, 583–591.

Vercauteren, N., H. Huwald, E. Bou-Zeid, J. S. Selker, U. Lemmin,
M. B. Parlange, and I. Lunati (2011), Evolution of superficial lake water
temperature profile under diurnal radiative forcing, Water Resour. Res.,
47, W09522, doi:10.1029/2011WR010529.

Wang, Z.-H., E. Bou-Zeid, A. Siu Kui, and J. A. Smith (2011), Analyzing the
Sensitivity of WRF’s Single-Layer Urban Canopy Model to Parameter
Uncertainty Using Advanced Monte Carlo Simulation, J. Appl. Meteorol.
Climatol., 50, 1795–1814.

Willett, K. M., and S. Sherwood (2012), Exceedance of heat index thresholds
for 15 regions under a warming climate using the wet-bulb globe temper-
ature, Int. J. Climatol., 32, 161–177.

Xu, J., Q. Wei, X. Huang, X. Zhu, and G. Li (2009), Evaluation of human
thermal comfort near urban water body during summer, Build. Environ.,
45, 1072–1080.

THEEUWES ET AL.: SURFACE WATER AND URBAN TEMPERATURES

8896

http://www.un.org/esa/population/publications/WUP2005/2005WUPHighlights_Exec_Sum.pdf
http://www.un.org/esa/population/publications/WUP2005/2005WUPHighlights_Exec_Sum.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


