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The importance of prior error correlations in data assimilation has long been known;
however, observation-error correlations have typically been neglected. Recent progress has
been made in estimating and accounting for observation-error correlations, allowing for the
optimal use of denser observations. Given this progress, it is now timely to ask how prior and
observation-error correlations interact and how this affects the value of the observations in
the analysis. Addressing this question is essential to understanding the optimal design of
future observation networks for high-resolution numerical weather prediction. This article
presents new results, which unify and advance upon previous studies on this topic.

The interaction of the prior and observation-error correlations is illustrated with a series
of two-variable experiments in which the mapping between the state and observed variables
(the observation operator) is allowed to vary. In an optimal system, the reduction in
the analysis-error variance and spread of information is shown to be greatest when the
observation and prior errors have complementary statistics: for example, in the case of
direct observations, when the correlations between the observation and prior errors have
opposite signs. This can be explained in terms of the relative uncertainty of the observations
and prior on different spatial scales. The results from these simple two-variable experiments
are used to inform the optimal observation density for observations of a circular domain
(with 32 grid points). It is found that dense observations are most beneficial when they
provide a more accurate estimate of the state at smaller scales than the prior estimate.
In the case of second-order auto-regressive correlation functions, this is achieved when
the length-scales of the observation-error correlations are greater than those of the prior
estimate and the observations are direct measurements of the state variables.
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1. Introduction

Variational data assimilation (DA) combines observations and a
prior estimate (background) of the state of the system, weighting
them according to the inverse of their specified error covariances.
The output, referred to as the analysis, should theoretically be
more accurate than either individual source of information. Data
assimilation has proven to be essential for accurate weather
forecasting by providing the initial conditions for numerical
weather prediction (NWP) (Rabier et al., 2000; Rawlins et al.,
2007).

It has long been known that background-error correlations
(BECs) are important in DA. The structure of BECs describes
how corrections of the prior estimate of one variable should spread
to another. As such, the modelling of the BECs has received much
attention (e.g. Bannister, 2008a, 2008b).

Observations can also have significant error correlations.
However, until recently, observation-error correlations (OECs)
have been neglected in NWP. To account for this, the data
may be thinned (Dando et al., 2007) or ‘super-obbed’ (Berger
and Forsythe, 2004; van Leeuwen, 2015) or the error variances
inflated (Hilton et al., 2009). Therefore, accounting for OECs
correctly could allow for denser observations to be assimilated,
which could be important for high-resolution weather forecasting
(Browne et al., 2014; Sun et al., 2014).

Correlations in observation errors have a very different origin
from those in the background. In general, OECs can be attributed
to errors in the comparison of observations with model variables,
known as representation error, rather than instrument noise
(Janjic and Cohn, 2006; Waller et al., 2014b; Hodyss and Nichols,
2015; Hodyss and Satterfield, 2017; Janjic et al., 2017). As such,
they can be state- and model-dependent (Waller et al., 2014a) and
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are found predominantly in observation types with complex
observation operators (such as satellite radiances: Bormann
and Bauer, 2010; Stewart et al., 2014; Bormann et al., 2016;
Waller et al., 2016a; Campbell et al., 2017), observation types
measuring features with natural length- and time-scales that
are different from those resolved by the model (e.g. Doppler
radial winds: Waller et al., 2016c) and high-level observation
products that go through a large amount of preprocessing
(e.g. atmospheric motion vectors (AMVs) derived from satellite
radiances: Bormann et al., 2003; Cordoba et al., 2017).

The inclusion of OECs clearly has the potential to improve
the optimality of the DA system in the case in which they were
previously neglected, or only accounted for by the inflation of
diagonal error variances. Evaluating the problems caused by
erroneously not including OECs has been the subject of many
recent articles, e.g. Liu and Rabier (2002, 2003), Stewart et al.
(2008, 2013), Miyoshi et al. (2013), Jacques and Zawadzki (2014)
and Rainwater et al. (2015).

The first attempts at operational centres to account for Infrared
Atmospheric Sounding Interferometer (IASI) inter-channel error
correlations (which previously relied on variance inflation) have
been shown to lead to an improvement in forecast skill scores
(Weston et al., 2014; Bormann et al., 2016; Campbell et al., 2017).
This has motivated estimation of OECs for a range of other
observations, for example using methods based on innovation
consistency diagnostics (Desroziers et al., 2005). The question
is: how do the background and observation-error correlations
interact and how does this affect the value of the observations in
the analysis? Addressing this question is essential to understanding
how future observation networks should be designed in order to
meet the needs of high-resolution NWP. A brief review of the
literature, addressing aspects of this question, is provided below.
This article aims to unify these previous works and provide new
insight in order to extend these previous conclusions.

When the OECs are positive, modelling OECs correctly has
been shown to allow an instrument to provide more information
about small scales (Seaman, 1977; Rainwater et al., 2015). As
such, observations with correlated errors may provide a more
accurate analysis of gradients and small-scale but intense features
compared with observations with uncorrelated errors. We will
show in section 3 how these results can be extended to explain
how the scales at which the observations are able to constrain the
analysis depend not only on OECs but also upon BECs and the
mapping between state and observation variables. The latter is
described by the observation operator.

Miyoshi et al. (2013) and Terasaki and Miyoshi (2014)
showed that the interaction between OECs and the observation
operator are very important. In particular, they showed that
when the observations are direct measurements of the state
variables, observations with correlated errors (either positive or
negative correlations) can reduce the entropy of the posterior
probability distribution function (PDF) compared with the case
when the observation errors are uncorrelated. However, when
the observation operator is expressed as a linear combination of
the state variables with positive coefficients, the sign of the OECs
becomes important. In this case, OECs only reduce the entropy
of the posterior PDF, compared with uncorrelated errors, if the
OECs are negative. Through a series of idealized experiments,
we will show how these results can be explained in terms of the
analysis scales that the observations can constrain (see section 4).

Liu and Rabier (2002) studied the case in which OECs originate
from the observations measuring different scales from those
modelled. This effect was simulated in these experiments by
generating observations from a model run at a higher spectral
resolution than that used in the assimilation. In this case, the
OECs and the observation operator are intrinsically related. Liu
and Rabier (2002) presented results on the optimal thinning of
these observations with correlated errors. They found that if the
OECs are correctly modelled, then increasing the observation
density beyond a certain threshold does not reduce the analysis

error significantly. In contrast, if the errors are uncorrelated,
denser (i.e. more) observations will always lead to a reduction in
analysis error. This was similarly the conclusion of Bergman and
Bonner (1976), who also studied analysis errors as a function of
observation density with spatially correlated errors. We are able to
extend these results using metrics other than analysis root-mean-
square error (RMSE), to show that this is only half the picture. In
section 6, the value of dense observations is shown to depend not
only on OECs but how they relate to BECs. In particular, here we
also consider the case in which the OEC length-scales are longer
than the BEC length-scales, which may be the case, for example,
for AMVs (Cordoba et al., 2017).

This article is structured as follows. In section 2, we will
provide the theoretical background on three different metrics
of the observation impact on the analysis. In section 3, these
metrics will be considered for the case in which the background-
and observation-error covariances and the observation operator
can all be described by circulant matrices. In sections 4 and
5, a series of numerical experiments is presented. It is shown
that the reduction in analysis-error variances and spread of
information is greatest when the observation and prior errors
have complementary statistics. This is explained by the fact that
the different correlation structures allow the observations and
prior to provide accurate estimates of the state at different scales.
In section 6, the implications of these results on the optimal
thinning of a variety of observations will be demonstrated. It
is found that dense observations are most beneficial when they
provide more small-scale information than that available from
the prior estimate. In the case of second-order autoregressive
correlation functions, this may be achieved when the length-
scales of the OECs are greater than those of the BECs and the
observations are direct measurements of the state variables.

2. Variational data assimilation

Variational data assimilation aims to find the most probable
state, xa ∈ R

n, given a prior estimate (commonly known as the
‘background’), xb ∈ R

n, and observations, y ∈ R
p. The back-

ground in general will represent the discretized model variables
(known as state space). The observations are not necessarily in
state space and the mapping between the state and observation
space is characterized by the observation operator, h : R

n → R
p.

The observation operator can be used to relate the observations
to the discretized version of the truth (in state space), xt:

y = h(xt) + ε, (1)

where ε is the observation error. The observation operator may
be as simple as linear interpolation from the model grid to the
observation, for example in the case of radiosonde measurements
of temperature and humidity or sea-surface temperature products
derived from satellite instruments. Alternatively the observation
operator may be more complicated, for example it may include
a radiative transfer model in the case of top-of-the-atmosphere
radiances measured from satellite instruments (Rodgers, 2000).
In this case, the linearized radiative transfer model can be
interpreted as weighting functions representing the sensitivity of
the measured radiance to the state variables, with the altitude of
the peak of the weighting function and its width depending on
the instrument characteristics and the wavelength observed. If the
satellite instrument measures at a number of close wavelengths,
it can be expected that the weighting functions will overlap
(Rodgers, 2000).

It is assumed that both the background and observations are
unbiased estimates of the truth with Gaussian errors. The error
covariances are given by B ∈ R

n×n and R ∈ R
p×p, respectively.

The DA problem can therefore be expressed in terms of Bayes’
theorem, as finding the state that maximizes the posterior PDF,
p(x|y). Bayes’ theorem states:

p(x|y) ∝ p(x)p(y|x), (2)

where p(x) is the prior PDF and p(y|x) is the likelihood PDF.
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Although the observation error, ε, is in observation space, in
calculating (2) the likelihood may be thought of as a function of
the state variables, x. If the observation operator is (near) linear,
observation errors with a Gaussian distribution will result in a
(near-) Gaussian likelihood in state space. Note that in practice
p is generally less than n, so that there will be directions of state
space for which the likelihood has infinite uncertainty, i.e. the
observations provide no information.

Variational data assimilation computes an analysis at a given
time by minimizing the cost function, J = −2 ln(p(x|y)), with
respect to x. The minimum of J can be shown to correspond to
the maximum a posteriori state (which due to the Gaussian and
linear assumptions is also the minimum variance estimate) and is
given by

xa = xb + K
(

y − h
(

xb
))

, (3)

where K ∈ R
n×p is known as the Kalman gain matrix, K =

BHT(HBHT + R)−1, with H ∈ R
p×n the observation operator

linearized about the best estimate of the state (see Kalnay (2003)
for an introduction to variational data assimilation).

2.1. The analysis accuracy

On assimilation of the observations, it is assumed that the analysis
is a more accurate estimate of the state than the background. That
is, the volume of the region of high probability in the posterior is
reduced compared with the prior.

Under the assumption of an optimal B, R and H, the analysis-
error covariance matrix, Pa ∈ R

n×n, is given by

Pa = (I − KH)B = (HTR−1H + B−1)−1 (4)

(Kalnay, 2003). The accuracy of the analysis (given by (Pa)−1) is
therefore the sum of the accuracy of the background (B−1) and the
accuracy of the observations mapped to state space (HTR−1H).
In the case when n > p, H will have a null space and in this part
of state space the accuracy of the analysis will equal the accuracy
of the background.

The success of the DA system can be judged in terms of the
magnitude of Pa, for example in terms of the trace of this matrix,
which should be related to the analysis RMSE. The analysis RMSE
was used as a metric of the impact of OECs in many previous
studies, e.g. Bergman and Bonner (1976), Seaman (1977), Liu
and Rabier (2002), Miyoshi et al. (2013), Stewart et al. (2013) and
Rainwater et al. (2015). However, in the results presented here, we
will show that the impact of OECs on analysis-error correlations
is just as important as their impact on the analysis-error variances.

The Gaussian, unbiased and linear assumptions mean that Pa

describes the uncertainty of the posterior fully. From (2), we see
that the posterior PDF is a product of the prior and likelihood.
The seemingly trivial statement that high posterior probability
will be in regions of state space with high prior and likelihood
probability will turn out to be crucial for understanding how
the structure of R, B and H interacts in the computation of Pa.
This will be illustrated in section 4.1 for a simple two-variable
experiment.

2.2. The sensitivity matrix

In addition to the analysis-error covariances, it is interesting to
study the influence of the observations on the analysis itself. This
can be quantified by the sensitivity matrix, S ∈ R

p×p, defined as

S = ∂h(xa)

∂y
≈ HK = HBHT(HBHT + R)−1 (5)

(Cardinali et al., 2004). In an optimal system, the sensitivity
matrix can be related to the analysis-error covariances as
S = HPaHTR−1.

The diagonal elements of the sensitivity matrix, Sii, i =
1, 2, ..., p, known as the self-sensitivities, measure the sensitivity of
h(xa)i to yi. The off-diagonal elements, Sij, j = 1, 2, ..., p, known
as the cross-sensitivities, measure the sensitivity of h(xa)i to yj.
The cross-sensitivities therefore provide a measure of the spread
of information from the observations.

The sensitivity matrix can be summarized to give the overall
information content of the observations. One way to do this is to
calculate the trace of S that gives the degrees of freedom for the
signal (dfs: Cardinali et al., 2004). The dfs, by definition, is only
a function of the self-sensitivities. The dfs has previously been
used for objectively choosing a subset of the most useful channels
for IASI, which measures more channels than can practically be
stored, transmitted and assimilated (Rabier et al., 2002; Collard,
2007; Eresmaa et al., 2014; Ventress and Dudhia, 2014).

2.3. Mutual information

A second way to summarize the sensitivity matrix is based
on mutual information, also known as Shannon information
content. Mutual information measures the reduction in entropy
(uncertainty) due to assimilation of the observations and has also
previously been used in the objective selection of IASI channels
(Rabier et al., 2002; Fowler, 2017).

Mutual information measures the change in entropy from the
prior to the posterior. For a general PDF, ξ , entropy is defined as

E(ξ) = −
∫

ξ(x) ln ξ(x) dx. (6)

The entropy of a Gaussian distribution with covariance matrix
� ∈ R

n×n is therefore

E(ξ) = n ln(2πe)1/2 + 1

2
ln[det(�)] (7)

(Rodgers, 2000).
The effect of error correlations on the entropy is directly related

to the effect on the determinant of the covariance matrix. For
example, let a given covariance matrix, � ∈ R

n×n, be decomposed
in terms of its standard deviations, D ∈ R

n×n (=
√

diag(�)), and
correlations, C ∈ R

n×n, such that

� = DCD. (8)

Let λc
i be the ith eigenvalue of C for i = 0, 1, ..., n − 1. The trace

of C is a constant (
∑n−1

i=0 λc
i = n). However, the determinant of C,

det(C) = ∏n−1
i=0 λc

i , is sensitive to the structure of the correlations
and is known to satisfy

0 < det(C) ≤ 1. (9)

This is a special case of Hadamard’s inequality (see Pahl and
Damrath, 2012, p914). The upper bound is attained when C = I,
i.e. no correlations are present and λc

i = 1, ∀i. For a perfectly
correlated matrix, C is a matrix populated by ones. In this case,
the largest eigenvalue is n and the rest are zero. Heuristically, we
might therefore expect that, as the errors become more correlated,
det(C) tends to zero and the region of uncertainty collapses along
the leading eigenvector.

This is illustrated in Figure 1, which shows the region of 95%
probability of a Gaussian PDF for a two-variable case when the
covariance matrix is given by (i) I (black dashed line) and (ii)
[(1, 0.99)T, (0.99, 1)T] (solid line). In the first case the entropy is
2.8379 and in the second case the entropy is 0.8794. Note that the
entropy effectively measures the volume of the uncertainty and
not its shape or orientation, so a Gaussian PDF with covariance
matrix given by [(1, −0.99)T, (−0.99, 1)T] would also have an
entropy of 0.8794, as would a Gaussian PDF with covariance
matrix given by 0.1411I.
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Figure 1. Illustration of the 95th percentile of the region of uncertainty given
by a Gaussian distribution when the errors in x1 and x2 are uncorrelated (black
dashed) and correlated with a coefficient of 0.99 (solid). The cross marks the
mean value. [Colour figure can be viewed at wileyonlinelibrary.com].

Mutual information is given by the difference between the prior
and posterior entropy and hence is a function of the background
and analysis-error covariances only:

MI = 0.5 ln
(

det
[

B
(

Pa
)−1

])
(10)

(Rodgers, 2000).
This can be written as a function of the sensitivity

matrix, S, using the identities B(Pa)−1 = (In − KH)−1, and
det(In − KH) = det(Ip − HK) (Pozrikidis, 2014, p271):

MI = −0.5 ln det(Ip − S) = −0.5

p−1∑
k=0

ln(1 − λs
k), (11)

where λs
k is the kth eigenvalue of the sensitivity matrix and Im

is the identity matrix with dimension m. MI therefore differs
fundamentally from the degrees of freedom for the signal, as it
takes into account the cross-sensitivities and can therefore lead to
a different interpretation of how the information content of the
observations depends on the inputs of the DA system. From the
previous discussion of entropy, we can expect MI to be greatest
when the observations not only have had the effect of reducing
the analysis-error variances compared with the background-error
variances but also have resulted in strongly correlated analysis
errors.

2.4. Interpretation of measures of observation impact when errors
are uncorrelated

Both the analysis-error covariance matrix, Pa, and the sensitivity
matrix, S, are functions of only the error covariances, B and R,
and the observation operator, H. If B and R are diagonal and
H = I, then Pa and S will also be diagonal, with diagonal elements
Pa

ii and Sii given by

Pa
ii = (σ o

i )2(σ b
i )2

(σ o
i )2+(σ b

i )2 (12)

and

Sii = (σ b
i )2

(σ o
i )2+(σ b

i )2 , (13)

where σ o
i and σ b

i are the observation- and background-error
standard deviations of the ith variable, respectively.

In this case, the analysis-error variances will decrease as either
the background- or observation-error variances decrease and the
analysis will become more sensitive to the observations as either
the observation-error variances decrease or the background-error
variances increase.

The mutual information, in this case, is given by

MI = 0.5

p−1∑
k=0

ln
(σ o

k )2 + (σ b
k )2

(σ o
k )2

. (14)

In a similar way to the sensitivity of the analysis to the observations,
MI is seen to increase as the observation-error variances decrease
and the background-error variances increase.

When the errors are correlated or the observations are no
longer direct, it is less straightforward to interpret how the
analysis-error covariance and sensitivity matrix depend on the
error characteristics. In the next section, we introduce a theoretical
framework to give insight into how these measures change as a
function of the error correlation length-scales of the background
and observation errors and the structure of the observation
operator.

3. Circulant matrices

A matrix C ∈ R
N×N can be described as circulant if it can be

expressed in the following way:

C =

⎛
⎜⎜⎜⎝

c0 c1 . . . ci . . . cN

cN c0 . . . ci−1 . . . cN−1
...

...
...

...

c1 c2 . . . ci+1 . . . c0

⎞
⎟⎟⎟⎠ , (15)

that is each row vector is shifted cyclically one element to the right
relative to the preceding row vector. For this circulant matrix
also to be a correlation matrix, it must be symmetric such that
ci = cN−i, reducing the number of independent elements, Nc, to
N/2 if N is even or (N + 1)/2 if N is odd. As the matrix, C, is
fully specified by one vector ( c0 c1 . . . cNc . . . c1 ), the
structure of the covariance matrix can be described in terms of a
single correlation function.

The eigenvalues of a circulant matrix can be found using
a discrete Fourier transform, with the eigenvectors being the
discrete Fourier basis (Gray, 2006). The mth eigenvector is
therefore given by

1√
N

(1, e−2πm/N , ..., e−2πm(N−1)/N )T. (16)

It can be seen from (16) that the eigenvalues are ordered according
to wave number, with the first eigenvalue relating to the Fourier
mode with the largest length-scales. In general, this ordering is not
linked to the magnitude of the eigenvalues. The mth eigenvalue
for any circulant matrix is given by

lm =
N−1∑
k=0

cke−2πimk/N , (17)

where ck is the kth element of the vector characterizing the
circulant matrix. Note that the eigenvalues of a correlation matrix
are always greater than or equal to zero.

Circulant matrices of the same dimension have identical
eigenvectors (seen from (16)). Therefore, assuming both the
background and observations are vectors of the same length,
p = n, their error covariances can be described by a circulant
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Figure 2. (a) The SOAR function and (b) its eigenspectrum for varying correlation length-scales, assuming a circulant correlation matrix of the form (15) and
�x = π. The expression for the SOAR function is given by (19). [Colour figure can be viewed at wileyonlinelibrary.com].

matrix and the observation operator is also of the same form, we
can write them as

B = βF
FT,
R = ρF�FT,
H = FFT,

(18)

where F is a matrix containing the eigenvectors common to
each circulant matrix and β and ρ are the error variances
of the background and observations, respectively, which we
have assumed to be constant. The diagonal matrices 
 and �

contain the eigenvalues of the correlations of the background and
observation errors respectively. The diagonal matrix  contains
the eigenvalues of the observation operator.

This framework allows us to give insight into how changing the
error correlation length-scales changes the uncertainty at different
wave numbers. We know that, as the trace of the correlation matrix
is conserved, the effect of changing the correlation structure will
mean that at some scales the eigenvalues will be increased whilst
at other scales the eigenvalues will decrease. When the correlation
coefficients are positive and monotonically decreasing, increasing
the correlation length-scale will result in an increase in the
magnitude of the eigenvalues at small wave number and a decrease
at large wave number (Seaman, 1977; Rainwater et al., 2015;
Waller et al., 2016b). This is illustrated in Figure 2 for the case in
which the correlations are described by a SOAR (Second-Order
AutoRegressive) function, defined as

ck = (1 + rk/L)e−rk/L, (19)

where rk is the distance between two points and L is the
correlation length-scale. We are therefore, in the case of positive
monotonically decreasing correlation functions, able to associate
an increase in error correlation length-scale with an increase in
uncertainty at large scales and a decrease in uncertainty at small
scales.

3.1. Application to measures of observation impact

We can substitute the expressions for B, R and H (with the
additional assumption of symmetry) in (18) into (4) and (5) to
show that the analysis-error covariance matrix and the sensitivity
matrix in this case will also be circulant, with the same eigenvectors
as H, B and R. The kth eigenvalue of Pa is given by

λa
k = ρβψkγk

βφ2
kγk + ρψk

, (20)

where ψk = �kk, γk = 
kk and φk = kk. The kth eigenvalue of
S is given by

λs
k = βφ2

k γk

βφ2
kγk + ρψk

. (21)

Note that ψk and γk will be greater than or equal to zero for
all k, due to the positive semi-definite constraint of correlation
matrices.

Let us first examine the case when φk = 1, ∀k (i.e H = I and
we have direct observations of the whole state). In this case,
the analysis uncertainty at scales associated with the kth wave
number, λa

k, will decrease as βγk and ρψk decrease. Additionally
the analysis will become more sensitive to observations at scales
associated with the kth wave number, λs

k, as βγk increases and
ρψk decreases.

Let LB and LR describe the correlation length-scales of B and
R in the case in which the correlation structures are assumed
to be given by the same positive function that is monotonically
decreasing with separation distance (e.g. the SOAR function)
as described in the introduction to this section. As LR and LB

increase, ψk and γk will therefore increase at small wave numbers
and decrease at large wave numbers (recall Figure 2). Hence,
we can conclude from (20) that, when LR and LB increase, the
analysis uncertainty will decrease at small scales and increase
at large scales. Similarly, from (21) we can conclude that when
LR < LB the analysis will be more sensitive to observations at large
scales than at small scales and vice versa when LR > LB. When
LR = LB and γk = ψk, ∀k, the analysis has the same sensitivity
(β/(β + ρ)) at all scales. This was also noted by Daley (1996,
section 4.8).

Now, consider the case in which the observation operator also
has a length-scale, LH , describing a positive weighting function.
In this case, analogous to an increase in the correlation length-
scales, as LH increases φk will increase at small wave numbers and
decrease at large wave numbers. We can see from (20) that this
would lead to a decrease in the analysis uncertainty associated with
large scales compared with direct observations and an increase
in analysis uncertainty at small scales. Likewise, we can see from
(21) that, as LH increases, the analysis will become more sensitive
to observations at large scales compared with direct observations
and less sensitive to observations at small scales. This will be
illustrated further in the numerical results of section 4.

In this circulant framework, the mutual information (10) can
be expressed as

MI = 0.5

p−1∑
k=0

ln

(
(βγkφ

2
k + ρψk)

ρψk

)
. (22)
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When φk = 1, ∀k and γk = ψk, ∀k (e.g. H = I and LR = LB), the
mutual information reduces to

p

2
ln

(
β + ρ

ρ

)
.

Therefore in this special case MI is independent of the exact value
of the background- and observation-error correlation length-
scales. To provide some intuition as to how MI may depend on
the structure of H, B and R in the more general case, in the
next section we present numerical results for a series of simple
experiments.

4. Two-variable problem

Let us consider a simple experimental design in which OECs,
BECs and a non-identity observation operator are present. Let
the circulant error covariance and observation operator matrices
be given by

B = β

[
1 χb

χb 1

]
(23)

where −1 < χb < 1,

R = ρ

[
1 χr

χr 1

]
(24)

where −1 < χr < 1 and

H =
[

1 a
a 1

]
. (25)

This experimental design allows us to consider the case in
which the error correlations are negative as well as positive
and the observation operator is a linear combination of the state
variables with negative coefficients (e.g. a < 0) as well as positive
coefficients (e.g. a > 0).

Within this system, two scales are present; a large scale
associated with the first eigenvector and a small scale associated
with the second eigenvector. In this case the eigenvectors (see (16))
are given by (1/

√
2)

[
[1, 1]T, [1, −1]T

]
, respectively. Therefore,

the large scale is represented in eigenspace as a scaled version of the
mean value in physical space and the small scale is represented in
eigenspace as a scaled version of the gradient in physical space. The
eigenvalues of the correlation matrices and observation operator
given by (23)–(25) can be expressed as

γ0 = 1 + χb, γ1 = 1 − χb,
ψ0 = 1 + χr, ψ1 = 1 − χr,
φ0 = 1 + a, φ1 = 1 − a,

(26)

where γi, ψi and φi are the corresponding eigenvalues of B, R and
H, respectively.

In section 3.1, we discussed the effect of indirect observations
on the analysis uncertainty and analysis sensitivity to observations
for the case in which H can be described by a circulant matrix
with a positive weighting function. For the simple two-variable
problem described above, these conclusions also hold when a is
positive and less than 1. That is, as a increases, the observations
are able to constrain the analysis less at small scales but are able to
provide a greater constraint at large scales. As such, the analysis
becomes more sensitive to observations at large scales and less at
small scales than if the observations were direct measurements of
the state variable.

For this simple two-variable problem, it is also possible to
show that the reverse is true when the observation-operator
coefficient is negative. That is, when −1 < a < 0 as |a| increases,
the observations are able to constrain the analysis more at small
scales but provide a reduced constraint at large scales compared
with having direct observations. As such, the analysis becomes
less sensitive to the observations at large scales and more at small
scales than if the observations were direct measurements of the
state variable.

Table 1. The values of the analysis-error covariances for the two-variable cases
illustrated in Figure 3, for varying values of the observation-operator coefficient,
a, and the observation-error correlation, χr. B, R and H are given by (23)–(25)

with β = 1, ρ = 1 and χb = 0.9. The correlations (corr) are given by Pa
ij/Pa

ii.

a = 0 a = 0.5

|χb − χr| Pa
ii Pa

ij (corr) Pa
ii Pa

ij (corr)

0 0.500 0.450 (0.900) 0.332 0.252 (0.759)
0.9 0.370 0.282 (0.756) 0.229 0.131 (0.452)
1.8 0.095 0 (0) 0.071 −0.028 (−0.394)

4.1. Illustration in terms of Bayes’ theorem

To provide a geometrical interpretation of the interaction of H,
B and R, we first consider Bayes’ theorem (2). Figure 3 illustrates
the resulting posterior distribution for six different cases of H, B
and R. In each case, B is given by (23) with β = 1 and χb = 0.9,
R is given by (24) with ρ = 1 and χr allowed to vary and H is
given by (25) with a allowed to vary. It is assumed that the truth
is given by xt = (0, 0).

In Figures 3(a)–(c), the observation operator is taken to be the
identity, that is a = 0 in (25). We can see that the region of high
posterior probability (third column) coincides with the region
where the a priori (first column) and likelihood (second column)
high probabilities coincide. Therefore when the structure of the
prior and likelihood PDFs are very different from each other, the
region of high posterior probability is small and consequently the
analysis variance is small. In this example, we therefore see that
the analysis-error variance decreases as |χb − χr| increases (see
Table 1). The analysis-error correlations are also seen to reduce
as |χb − χr| increases.

In Figures 3(d)–(f), the observation operator is no longer the
identity and has the form (25) with a = 0.5; B and R remain the
same as in Figures 3(a)–(c). The first column shows the effect
this choice of observation operator has on the likelihood PDF in
state space.

As expected, we see that the effect of a = 0.5 is to rotate
and deform the likelihood in state space so that, as a function
of the state variables, it is more negatively correlated than as a
function of the observation variables. As discussed in section 3,
this is consistent with the observations providing a more accurate
estimate of the state at large scales and a less accurate estimate of
the state at small scales, compared with having direct observations.

The effect of H on the correlations explains the results given
by Miyoshi et al. (2013) and Terasaki and Miyoshi (2014), which
showed that when a and χr are different signs the observations
have the greatest information (see e.g. Figure 3(f)). This is because
under these conditions the observation-error correlations are
strengthened and the entropy of the likelihood is reduced.

In this case (H invertible), the observation-error covariance
mapped to state space is given by

H−1RH−1

= ρ

(a2 − 1)2

[
1 − 2aχr + a2 χr − 2a + a2χr

χr − 2a + a2χr 1 − 2aχr + a2

]
. (27)

(For practical applications, we note that H is rarely invertible.)
It can be shown that if

2aχr < a2(3 − a2), (28)

then the observation operator increases the variances of the
observation errors mapped to state space (i.e. (H−1RH−1)ii >

Rii). In the cases illustrated, a = 0.5, so we can expect the
variances to be increased when χr < 0.6875, as is the case in
Figures 3(e) and (f).

In the cases illustrated, the analysis-error variance is always
smaller when a = 0.5 compared with when a = 0 (see Table 1).
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Figure 3. Illustration of the effect of observation-error correlations on analysis-error covariances. (a)–(c) Colours show (from left to right) the prior PDF, likelihood
PDF in observation space and resulting posterior PDF when H = I. (d)–(f) Colours show (from left to right) the likelihood distribution in state space and resulting
posterior PDF when H =[(1, 0.5)T, (0.5, 1)T] (the prior PDF is the same as in (a)–(c), so is not replotted). In each example, the background and observation-error
variances are 1 and the background-error correlations χb are 0.9. The observation-error correlations χr are 0.9 in examples (a) and (d), 0 in examples (b) and (e) and
−0.9 in examples (c) and (f).

This is because, in this case (χb > 0), the background is more
accurate at small scales than at large scales and so the observation
operator (with a > 0) has a beneficial effect, by increasing the
influence of the observations at large scales.

These results could be expected to be sensitive to the
choice of structure of the observation operator. Other
observation operators for simple two-variable examples were
considered, such as H = [(

√
1 + a2, a)T, (a,

√
1 + a2)T] and

H = [1/(1 + a)][(1, a)T, (a, 1)T]. It was found that the first
(which conserves det(H) = 1) had little effect on the results.
In contrast, the latter (H = [1/(1 + a)][(1, a)T, (a, 1)T]) had a
large impact on the variances of the likelihood in state space,
increasing them substantially.

In the remainder of this section, we will show what the results
presented for the Bayes’ illustration mean in terms of our three
metrics of observation impact. In each case, B and R are given
by (23) and (24), respectively, with β = 2 and ρ = 1. The choice
of unequal error variances is to highlight when the metric of
observation impact as a function of the error correlations depends
qualitatively on β/ρ and when it does not. The observation
operator is given by (25) with a = [−0.5, 0, 0.5]. We see that the
observation operator, H, given by (25) has the nice property that
the response of the different measures of observation impact is
symmetric between a positive and a negative.

4.2. Analysis-error covariance matrix

4.2.1. Analysis-error variances

For this simple experimental design, the analysis-error covariance
matrix is also circulant. Thus the error variance, Pa

ii, is the same
for each variable. Pa

ii can be written in terms of the eigenvalues of
the analysis-error covariance matrix as follows:

Pa
ii = (λa

0 + λa
1)/2, (29)

where λa
k for k = 0, 1 are given by (20). Pa

ii therefore depends
upon the analysis uncertainty at all scales.

Figure 4 shows the analysis-error variance, Pa
ii, as a

function of background-error correlation, χb, and observation-
error correlation, χr, for three different values of the
observation-operator coefficient: a = −0.5 (left), 0 (middle) and
0.5 (right).

We first consider the case in which a = 0 (middle panel).
As anticipated from the illustration in section 4.1, we see that
the analysis-error variance is greatest when χb = χr. This is
independent of the values of ρ and β (see Appendix A). This
is because when χb = χr the background and observations are
each most accurate at the same scales and so the assimilation
will provide an accurate analysis only at that scale. However, if
χb 
= χr and the background and observations are most accurate
at different scales, then the assimilation will be able to weight the
data appropriately to provide an accurate analysis at each of those
scales.

When a = 0.5 (right-hand panel), this corresponds to the cases
illustrated in Figure 3(d)–(f). We see that, when χb > 0.25 and
a is positive, for most values of χr the analysis-error variance is
reduced compared with the case when a = 0. This is because,
when χb is positive, the background estimate of the state is
more accurate at small scales than at large scales. In contrast,
a positive a reduces the accuracy of the observations in state
space at small scales but increases the accuracy at large scales,
as noted in the discussion of the eigenvalues of H−1RH−1 in
section 3. Each source of information is therefore able to reduce
the analysis uncertainty effectively at different scales. However,
when χb < 0 and a is positive, the analysis-error variance is
increased compared with when a = 0. This is because, when χb is
negative, the background estimate of the state is more accurate at
large scales than at small scales. Therefore the effect of a positive
a is no longer beneficial. The reverse argument can be used to
understand the pattern for the analysis-error covariances when a
is negative (left-hand panel).
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Figure 4. The analysis-error variance, Pa
ii, as a function of background-error correlation, χb, and observation-error correlation, χr. In each case, B and R are given by

(23) and (24), respectively, with β = 2 and ρ = 1. H is given by (25) with (a) a = −0.5, (b) a = 0 and (c) a = 0.5. The dash–dotted white line indicates the value of
χb that results in the maximum Pa

ii as a function of χr as derived in Appendix A; this is found to be independent of the choice of error variances, ρ and β.

4.2.2. Analysis-error covariances

Figure 5 shows the analysis-error covariance, Pa
ij, as a function

of background-error correlation, χb, and observation-error
correlation, χr, for the three different values of the observation-
operator coefficient shown in Figure 4. Pa

ij can be written in
terms of the eigenvalues of the analysis-error covariance matrix
as follows:

Pa
ij = (λa

0 − λa
1)/2. (30)

The sign of Pa
ij can be interpreted in terms of the analysis

uncertainty at different scales. Positive values (red) mean the
analysis is more uncertain at large scales than at small scales
(λa

0 > λa
1), negative values (blue) mean the analysis is more

uncertain at small scales than at large scales (λa
0 < λa

1). When Pa
ij

is zero, the uncertainty at both scales is the same.
When a is positive (right-hand panel), this has the effect of

making the analysis errors much more negatively correlated,
implying that there is much more uncertainty at smaller scales.
This is consistent with the effect of the observation operator in
reducing the accuracy of the observations in state space at small
scales. The reverse is true when a is negative (left-hand panel).

Unlike the analysis-error variances, we see that the exact
relationship between the analysis-error correlations and the
background- and observation-error correlations is dependent
on the error variances of the observations and the background.

4.3. The sensitivity matrix

4.3.1. Self-sensitivities

For this simple experimental design, the sensitivity matrix is also
circulant. An implication of this is that the self-sensitivity, Sii, is
the same for each variable.

The self-sensitivities for the same cases discussed in section
4.2 are plotted in Figure 6 as a function of background-error
correlation, χb, and observation-error correlation, χr. Again let
us first consider the case when a = 0 (middle panel). Mostly, an
increase in the magnitude of the BECs results in a decrease in the
self-sensitivity (as noted by Cardinali et al., 2004). This is because
the BECs allow for information in the observation of variable xj

to spread to the analysis of xi and so the observation of xi itself
has less weight. In contrast to this, we see that an increase in
the magnitude of OECs results in an increase in the influence
of an observation of the analyzed variable. This is because the
OECs allow an observation of xj to reinforce the information in
the observation of xi and so this has more weight in computing
the analysis of xi. This implies that OECs increase the amount of
information in the observations as measured by the dfs (as noted

by Stewart et al., 2008). In contrast, an increase in the magnitude
of the BECs generally results in a decrease in the dfs (as noted
by Cardinali et al., 2004). As noted by Eresmaa et al. (2014),
the self-sensitivities plotted in Figure 6 are not symmetric about
χr = 0 and χb = 0. This means that when χb is large there can be
a small decrease in the value of the dfs as χr increases.

When a 
= 0, we see that this generally reduces the self-
sensitivity. The maximum value of Sii now occurs when χr

and a are of the same sign. This is likely related to the fact
that this combination results in the smallest observation-error
variances mapped to state space (see Figure 4 and (28)). As with
the analysis-error correlations, the exact relationship between the
self-sensitivities and the error correlations is dependent on the
error variances of the observations and background.

4.3.2. Cross-sensitivities

In Figure 7, the cross-sensitivities are plotted. When a = 0 (middle
panel), we see that, when χr = 0, as |χb| increases there is an
increase in the magnitude of the cross-sensitivities. This supports
the argument that BECs allow for information in the observation
of variable xj to spread to the analysis of xi. We also see that when
χb = 0 an increase in the magnitude of the OECs, |χr|, results in
an increase in the magnitude of the cross-sensitivities as well as
the increase in self-sensitivities shown in Figure 6. However, note
that when χr is positive (and χb = 0) Sij is negative, whilst when
χb is positive (and χr = 0) Sij is positive. The cross-sensitivities
can be related to the difference in the eigenvalues of the sensitivity
matrix such that

Sij = (λs
0 − λs

1)/2. (31)

Therefore positive (negative) values of Sij mean that the analysis
at larger scales is more (less) sensitive to the observations than
the analysis at smaller scales. Therefore, as χr becomes more
positive, the analysis at smaller scales becomes more sensitive to
the observations (consistent with the results of Rainwater et al.
(2015) and Seaman (1977)), whereas when χb becomes more
positive the analysis at larger scales becomes more sensitive to the
observations.

An interesting consequence of this is that, when a = 0 and
χr = χb, an observation of a different variable, xj, has little
influence on the analyzed variable, xi, and the sensitivity of the
analysis to observations is the same at all scales, as noted in
the discussion of (21). In Appendix B, it is shown that this is
independent of the choice of ρ and β. In effect, the benefits of the
spread of information to the analysis of xi from an observation of
xj due to the BECs is cancelled out by the OECs.

The magnitude of the cross-sensitivities increases when jointly
χb → ±1 and χr → ∓1. We therefore see that the greatest
spread in information also corresponds to the lowest analysis-
error variance seen in Figure 4. In contrast, the pattern of the
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Figure 5. The analysis-error covariance, Pa
ij, plotted as in Figure 4. Negative contours are represented by a dashed line. [Colour figure can be viewed at
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Figure 6. The self-sensitivities, Sii, plotted as in Figure 4.

greatest self-sensitivities seen in Figure 6 has little agreement with
the pattern in the lowest analysis-error variances.

When a is positive, the cross-sensitivity becomes more positive.
This is because the effect of a being positive is to magnify the
importance of the large-scale uncertainty in B and so the analysis
at large scales becomes more sensitive to the observations. The
reverse is true when a is negative.

4.4. Mutual information

MI summarizes both the self- and cross-sensitivities (11), but
is defined in terms of the entropy reduction of the posterior

compared with the prior. As such, MI is also a function of
both analysis-error variances and correlations (10). This is
demonstrated in Figure 8, in which MI is plotted for the same cases
discussed in sections 4.2 and 4.3 as a function of background-error
correlation, χb, and observation-error correlation, χr.

When a = 0 (middle panel), we see that in general MI increases
as |χr| increases, but it is greatest when |χr − χb| is large. The
smallest MI occurs when |χb| is large and |χr − χb| is small. Note
that these figures look quite different from the self-sensitivities in
Figure 6, which are proportional to the dfs, demonstrating that
the spread in information described by the cross-sensitivities is
very important for MI.
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χb that results in Sij = 0 as a function of χr as derived in Appendix B. This is the same value of χb that maximizes the analysis-error variance shown by the white
dash–dotted line in Figure 4. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 8. Mutual information, MI, plotted as in Figure 4.

When a is positive (right-hand panel), χr is positive and χb

is negative, the value of MI is reduced, compared with direct
observations. The opposite is true when χr is negative and χb is
positive. This can only be explained by the effect of assimilating the
observation on both the analysis-error variances and the analysis-
error correlations. From section 2.3, we know that the entropy is
smallest when both the variance is small and the correlations are
large. By comparing Figure 8 with Figures 4 and 5, therefore, we
see that the maximum MI is a compromise between the minimum
analysis-error variance and maximum analysis-error correlations.

5. 32 variable problem

In this section, we show how the two-variable numerical
results extend to higher dimensions. In the following numerical
experiments the state is represented on a circular domain of length
32π, discretized into 32 evenly spaced points. B and R are both
circulant (see section 3) with a SOAR correlation function (19).
The length-scale of the background-error correlations used in
these experiments is LB = 5. The length-scale of the observation-
error correlations, LR, is allowed to vary. The SOAR correlation
function has previously been used to model the background-error
correlations in operational systems (e.g. Ingleby, 2001; Simonin
et al., 2014). Each state variable and observation has an error
variance of 1.

The observations, made at every grid point, measure a weighted
average of the surrounding state points. The observation operator
is defined by a triangular weighting function, given by

h(xi) =
i+a∑

j=i−a

a + 1 − |j − i|
a + 1

xj, (32)

where a ∈ N defines the weighting length-scale.
In Figure 9, the eigenvalues of B (black line with crosses), R

(black line with pluses) and H (black line) are given as a function
of wave number (computed using (17)). Also plotted are the
resulting eigenvalues of the sensitivity matrix (thick red line) and
the analysis-error covariance matrix (thick dashed blue line) as
computed from (21) and (20), respectively. The corresponding
values for the trace of Pa (tr(Pa)), dfs and MI are given in Table 2.

The top row of Figure 9 shows the case when H = I (a = 0)
and LR < LB (left), LR = LB (middle) and LR > LB (right). It can
be seen from the eigenvalues of the sensitivity matrix, λs

k, that,
as LR increases, the analysis at larger scales become less sensitive
to observations, but the analysis at smaller scales becomes more
sensitive to observations. When LR = LB (middle), we see that the
analysis has the same sensitivity at all scales, as predicted by (21).
Table 2 shows that an increase in LR also coincides with a general
increase in information content of the observations as measured
by the MI and dfs.

We also see from the eigenvalues of the analysis-error
covariance matrix, λa

k, that, when a = 0, as LR increases the

Table 2. The values of the trace of the analysis-error covariance matrix, degrees of
freedom for the signal and mutual information for the 32 variable cases illustrated

in Figure 9.

a = 0 a = 1
LR tr(Pa) dfs MI tr(Pa) dfs MI

1 10.2 8.2 6.4 4.9 10.2 11.1
5 16.0 16.0 11.1 7.4 13.8 11.8

10 14.3 25.6 28.0 6.5 20.2 22.5

In each case, B and R are circulant with correlations described by (19). The
background-error correlation length-scale, LB, is 5, and the observation-error
correlation length-scale, LR, is allowed to vary. The error variances are 1. H is
circulant, with weighting function given by (32), with a allowed to vary.

analysis uncertainty becomes greater at larger scales and smaller
at small scales. However, the trace of the analysis-error covariance
matrix is at a maximum when LR = LB (see Table 2), which was
explained for the two-variable case in section 4.2.

The bottom row of Figure 9 shows the case when a = 1 and
again LR < LB (left), LR = LB (middle) and LR > LB (right).
Unlike the case when a = 0, we note that the observations now lie
in a different space from the state. We see, in general, that when
a = 1 this reduces the accuracy of the analysis and its sensitivity to
observations at small scales compared with the case when a = 0.
We also see in the lower right-hand part of the figure (where
LR > LB) that the eigenvalues of Pa are larger than those of R
at small scales. This is consistent with the averaging effect of the
observation operator, meaning that the accuracy of the observed
estimate of the state, given by HTR−1H, is reduced at small
scales (compared with direct observations). The reduction in the
accuracy of the analysis at small scales coincides with an increase
in the accuracy of the analysis and its sensitivity to observations
at large scales; again, this is consistent with the averaging effect of
the observation operator.

Table 2 shows that an increase in LR is still seen to coincide
with a general increase in information content of the observations
as measured by MI and dfs when a = 1. Again, the trace of the
analysis-error covariance matrix is at a maximum when LR = LB.
In all cases, tr(Pa) is reduced when a = 1 compared with the case
when a = 0.

Experiments were also performed (not shown) in which the
OECs were modelled by the following Gaussian function:

ck = e−rk/2L2
R , (33)

whilst the BECs were still modelled by the SOAR function given
by (19). It was found that in this case the general conclusions
still hold: i.e. the trace of the analysis-error covariances still peaks
when LR ≈ LB and the values of the dfs and MI still increase as
LR increases. It was also found that, when a = 1, the trace of
the analysis-error covariances decreased compared with the case
when a = 0.

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 9. Example of the eigenvalues of the analysis-error covariance matrix (λa, thick dashed line) and sensitivity matrix (λs, thick solid line) plotted as a function
of wave number. The error covariance matrices B and R are described in section 5. In each case, the correlation length-scale of the background errors is LB = 5 and
the correlation length-scale of the observation errors is (a, d) LR = 1, (b, e) LR = 5 and (c, f) LR = 10. The observation operator is given by (32), with a = 0 (top row,
i.e. direct observations) and a = 1 (bottom row). The observation- and background-error variances are 1. [Colour figure can be viewed at wileyonlinelibrary.com].

6. Data thinning

In sections 4 and 5, it was seen that the impact of observations is
highly dependent upon both the observation- and background-
error correlations and the observation operator. In this section,
we investigate how these results could be used for the design of
instruments and observation networks.

In practice, we have little control over the error correlation
length-scales or the observation operator. However, we can show
how the results presented could be used to influence the choice
of the density of data we assimilate.

One of the motivating factors for accounting for OECs is that
it will assist the use of denser observations, which could be useful
for high-resolution and high-impact weather forecasting. In this
section, we perform experiments using the same circular grid and
experimental design presented in section 5. However, now we
investigate the effect of reducing the number of the observations
(keeping them evenly spaced). An important consequence of this
is that the circulant matrix assumption is no longer applicable, as
now n ≥ p and hence the linearized observation operator, H, is
not necessarily square.

In the top row of Figure 10, tr(Pa) (left) and MI/p (right) are
plotted as a function of the thinning distance of the observations
for a = 0 (i.e. direct observations) and three different values
of LR = [1, 5, 10] (recall LB = 5 in each case). The ratio MI/p
quantifies the average information content of each observation
assimilated. It is therefore important for optimizing the efficiency
of a DA system. Conversely, tr(Pa) gives a measure of just the
variance of the analysis error and is insensitive to the analysis-error
correlations. A measure of tr(Pa) alone is therefore not a useful
diagnostic for optimizing the efficiency of the DA system, as more
observations (denser observations) in general will always mean a
smaller analysis-error variance.

Consistent with the results shown in sections 4 and 5, the
analysis-error variances are greatest when LR = LB (crosses; for
reference, the trace of B is plotted as a grey thick line). As such,
in this case tr(Pa) is least sensitive to an increase in the thinning

distance of the observations from 1�x to 2�x to 4�x when
LR = LB. When the thinning distance is greater than 8�x, tr(Pa)
increases by a similar amount irrespective of the OEC length-scale.

The average information content, MI/p, behaves in a different
way (as shown in sections 4 and 5). In the case of direct
observation (a = 0), the information increases as the OEC length-
scale increases (consistent with our previous results). The effect
of the density of the observations on MI/p can be understood
from the definition of MI in terms of the eigenvalues of S, given
by (11). Thinning the observations will only increase MI/p if
the sensitivity of the analysis to the observations at the smallest
scales resolved by the observations is less than the sensitivity at
larger scales (see Figure 9 for examples of how the eigenvalues
of S can be expected to change with wave number). This means
that reducing the number of observations has little effect on the
average information content per observation when LR = LB, as
the eigenvalues of S are constant (for the circulant case). In other
words, the analysis sensitivity to the observations is the same
at all scales and so MI is directly proportional to p. However,
when LR < LB, reducing the number of observations increases the
average amount of information per observation, as in this case the
background is more accurate at small scales than the observations
and so thinning the observations is not detrimental. Conversely,
when LR > LB, reducing the number of observations decreases
the average amount of information per observation, as in this case
the observations are more accurate than the background at small
scales and so thinning the observations loses valuable small-scale
information.

An example of a case where LR < LB is Doppler radial wind
observations. Waller et al. (2016c) estimated Doppler radial wind
observation errors to have correlation length-scales of the order
of 20 km, compared with background-error correlation length-
scales of the order of 100 km for the Met Office’s high resolution
U.K. (UKV) 1.5 km limited-area model (Lean et al., 2008). At the
UK Met Office, these data are currently thinned to a distance of
6 km (Simonin et al., 2014). From Figure 10, we can conclude
that, if the OECs were correctly modelled in the assimilation,
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5 (crosses) and 10 (circles). The observation operator is given by (32) with (a, b) a = 0 (i.e. direct observations) and (c,d) a = 1. [Colour figure can be viewed at
wileyonlinelibrary.com].

using all the data may see a small improvement in the analysis-
error variances, but could actually reduce the average amount of
information per observation as measured by MI/p. Therefore, it
may be beneficial to thin these data to allow for resources to be
used instead to assimilate a different data source, for example.

An example of a case where LR > LB is the winds derived from
atmospheric motion vectors. Cordoba et al. (2017) estimated
AMV errors to have correlation length-scales of the order of
150 km, compared with background-error correlation length-
scales of the order of 100 km for the UKV. At the UK Met Office,
these data are currently thinned to a distance of 20 km. From
Figure 10, we can conclude that, if the OECs were correctly
modelled in the assimilation, using all the data may again see
a small improvement in the analysis-error variances. However,
unlike when LR < LB, using denser AMVs could actually increase
the average amount of information per observation as measured
by MI/p.

In the bottom row of Figure 10, we see the effect of increasing
the weighting length-scale of the observation operator, a, in (32).
When a = 1 (i.e. each observation is modelled as a weighted
average of three neighbouring grid points), we see that the
analysis-error variance is still greatest when LR = LB, but in all
cases when we have dense observations, tr(Pa) is smaller than when
we had direct observations. The effect of overlapping weighting
functions reducing the analysis-error variance when the BECs are
positive was already noted in section 4. As a is increased, we also
generally see more information in the observations (as measured
by MI).

In each example of LR, we now find that a thinning distance
greater than the grid length increases the amount of information

per observation. This is because, as noted in section 3, the effect
of overlapping weighting functions is to reduce the accuracy of
the observation in state space at smaller scales, hence thinning
the observations becomes less detrimental. In particular, when
LR > LB we now have a peak at a thinning distance of 2�x and
so there is no longer a benefit to having observations at every
grid point. This can be explained by the fact that, at a thinning
distance of 2�x, the overlapping of the weighting functions is
reduced, so that each individual observation is able to provide
more independent information about the state; however, the
observation-error correlations are still significant and so further
thinning is not beneficial.

An example of observations for which this experimental
design could be relevant is satellite measurements of top-of-
the-atmosphere radiances at different wavelengths, which have
corresponding weighting functions peaking at different heights in
the atmosphere. Instruments such as IASI use objective channel-
selection methods to select a subset of the channels to be
assimilated based on their information content. Ventress and
Dudhia (2014) developed an efficient method for performing
the channel selection, whilst accounting for spectral correlations
using the dfs. From the results presented above, it is expected
that the OECs will be unlikely to have a significant impact on
the channel selection, unless the OECs are large in comparison
with the overlapping of the weighting functions, for example
comparing R with HHT. To maximize the average amount of
information per observation, spectral thinning should be done
in order to minimize the overlap of the weighting functions
in H if the OECs are large compared with the BECs mapped
to observation space. If the OECs are small compared with
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the BECs mapped to observation space, then the efficiency of
the DA system could be improved further by further spectral
thinning.

In practice, the correlation structure of B and R is unlikely
to coincide. For example, it has been seen that the observation-
error covariances are often a combination of white noise and
coloured noise, most likely due to different sources of observation
uncertainty (e.g. Waller et al., 2016c), whilst the background-error
correlation is more likely to be a smooth function of separation
distance. However, interpreting the optimum thinning distance in
terms of the relative sensitivity of the analysis to the observations
at small scales, as discussed above, allows the results to be extended
to other correlation structures.

7. Summary and conclusions

The inclusion of OECs in NWP DA is a relatively new area of
research. The first attempts to include OECs for IASI data have
been shown to have a positive impact on the skill scores of the
forecast (Weston et al., 2014; Bormann et al., 2016; Campbell
et al., 2017). This has led to a surge of research to estimate the
error correlations for a myriad of other observation types. This
article has aimed to give insight into how the expected benefits of
including OECs in DA depend on the other characteristics of the
DA system, namely the BECs and observation operator. To give
an insight into how the OECs, BECs and observation operator
interact, we have shown a series of two-variable experiments in
which the observation- and background-error correlations and
the correlations between the observations themselves (described
by the observation operator) were allowed to vary. The impact of
varying these correlations on the analysis was measured using a
variety of metrics: namely analysis-error covariances, sensitivity
of the analysis to the observations and mutual information. This,
therefore, differs from previous studies (e.g. Liu and Rabier, 2002;
Stewart et al., 2008, 2013; Rainwater et al., 2015) in which the
effect of OECs on only one metric was studied and the dependence
of the impact was largely considered in isolation from the BECs
and the observation operator.

For the idealized experiments shown, it was found that, in
general, as the magnitude of the OECs increases, the information
content of the observations as measured by the dfs (the sum
of the self-sensitivities) and MI increase; this agrees with the
results of Stewart et al. (2008) and Eresmaa et al. (2014).
However, the impact of the OECs on other metrics cannot
be understood in isolation from the background-error statistics
and the observation operator. It was found that the results could
be explained in terms of the scales of the greatest observation
and background uncertainties, as described by the likelihood
and prior PDFs respectively. When the prior and likelihood are
accurate at different scales, it was found that

• the analysis-error variances are smallest;
• there is the greatest spread in information (i.e. cross-

sensitivities are largest); and
• the observations have the greatest mutual information.

If the observations measure the state variables directly, then
the scales of the observation and background uncertainty can be
interpreted by comparing R and B directly. However, if we have
indirect observations then we need to consider the effect of H on
the accuracy of the observations in state space (or equivalently
the projection of the background uncertainty into observation
space). The effect of a positive observation-operator coefficient
(i.e. observations themselves are positively correlated) was shown
to reduce the accuracy of the observations in state space at small
scales and increase the accuracy of the observations in state space
at large scales. This allows us to explain the results given by
Miyoshi et al. (2013), who found that the observations contained
more information (when the background errors are uncorrelated)
when the sign of the observation-operator coefficient and the
observation-error correlations was different. This is because, in

the case when the observations themselves are positively correlated
and the OECs are negative, they combine to enhance the accuracy
of the observations in state space at large scales. Similarly, if
the observations themselves are negatively correlated and the
OECs are positive, then they combine to enhance the accuracy
of the observations in state space at small scales. The positive
observation-operator coefficient was seen to have a beneficial
impact when the background errors were positively correlated,
i.e. the background is more accurate at small scales than at large
scales.

In section 5, it was shown that these conclusions can be
extended to higher dimensional cases. In particular, it was
demonstrated that there is a peak in the trace of the analysis-
error covariance matrix when the OECs and BECs are the
same. However, these experiments continued to assume that
the background- and observation-error covariances and the
observation operator could be described by a circulant matrix. A
limitation of this is that the error variances are the same for each
variable.

It is anticipated that these results could be used for the design
of instruments and observation networks. In section 6, the results
were used to inform the optimal thinning distance of observations
with a variety of error correlation length-scales and observation
operators. For these experiments, the assumption of a circulant
observation operator was no longer applicable, although the
background and observation-error covariances continued to have
circulant form. We found the following.

• When the observations measured the state variables
directly, it was most beneficial to have dense observations
when the sensitivity of the analysis to the observations at
the smallest scales was greater than the sensitivity at larger
scales.

• If the observations are not direct but instead are sensitive
to a range of state variables, such that the observations have
overlapping weighting functions (reducing the accuracy of
the observation in state space at small scales), thinning
should be performed in terms of reducing the overlap
of the weighting functions rather than the correlation
length-scales.

These conclusions differ from those of Liu and Rabier (2002) and
Bergman and Bonner (1976), who considered only OECs with
length-scales less than the BECs and only the effect on the analysis
RMSE.

A final point is that, in practice, the error correlations in B and R
may be flow-dependent. As the variances fluctuate, the impact of
the observations will fluctuate. Similarly, as the correlation length-
scales fluctuate, we have shown that the relationship between the
length-scales in B and R will largely determine how the impact of
the observations will fluctuate.

To conclude, for all observation types it is important that the
OECs are estimated and correctly allowed for. However, for some
observation types it may still be preferable to thin the data to the
assumed correlation length-scales rather than assimilating all data.
Future efforts should focus on accurately estimating and account-
ing for OECs for observation types that are thought to have longer
length-scales than the BECs. Increasing the density, when assimi-
lating these observations, will show the most benefit for improving
the efficiency of the assimilation system, particularly when ana-
lyzing small-scale features. However, we note that the software
engineering challenges of implementing such long length-scales
in high-performance computing environments are significant.

Appendix A: Maximum analysis-error variance of the two-
variable problem

For the two-variable problem introduced in section 4, it can
be shown that the background-error correlation, χb, which
results in the maximum analysis-error variance is a function of
the observation-error correlation, χr, and observation-operator
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coefficient, a, only. In particular, when the observations observe
the state directly, it can be shown that the analysis-error variance is
largest when the background and observation-error correlations
are identical, i.e. χb = χr.
From (17), it can be shown that the analysis-error variance for
the two-variable problem is given by Pa

ii = 1
2 (λa

0 + λa
1), where

λa
i is the ith eigenvalue of the analysis-error covariance matrix.

The eigenvalues of the analysis-error covariance matrix can be
written explicitly in terms of the eigenvalues of the background
and observation-error correlation matrices, γi and ψi, and their
variances, β and ρ respectively, and the eigenvalues of the
observation operator, φi (see (20)):

λa
i = ρβγiψi

βγiφ
2
i + ρψi

. (A1)

For the two-by-two circulant matrices described by (23) and (24),
the eigenvalues are given by (26).

To find the χb that results in the maximum Pa
ii, we find the

χb that satisfies dPa
ii/dχb = 0. The derivative of the analysis-error

variance with respect to the background-error correlations is
given by

dPa
ii

dχb
= 1

2

(∂λa
0

∂γ0

∂γ0

∂χb
+ ∂λa

1

∂γ1

∂γ1

∂χb
+ ∂λa

0

∂ψ0

∂ψ0

∂χb

+ ∂λa
1

∂ψ1

∂ψ1

∂χb
+ ∂λa

0

∂φ0

∂φ0

∂χb
+ ∂λa

1

∂φ1

∂φ1

∂χb

)
, (A2)

where

∂λa
i

∂γi
= β(ρψi)2

(ρψi + βγiφ
2
i )2

, (A3)

∂γ0

∂χb
= − ∂γ1

∂χb
= 1 (A4)

and

∂ψ0

∂χb
= ∂ψ1

∂χb
= ∂φ0

∂χb
= ∂φ1

∂χb
= 0. (A5)

Therefore

dPa
ii

dχb
= 1

2
β

(
(ρψ0)2

(ρψ0 + βγ0φ
2
0 )2

− (ρψ1)2

(ρψ1 + βγ1φ
2
1 )2

)
. (A6)

For this to equal zero, this implies that

(ρψ0)2

(ρψ0 + βγ0φ
2
0 )2

= (ρψ1)2

(ρψ1 + βγ1φ
2
1 )2

, (A7)

which is satisfied when

ρψ0

ρψ0 + βγ0φ
2
0

= ρψ1

ρψ1 + βγ1φ
2
1

. (A8)

Therefore dPa
ii/dχb = 0 when γ0φ

2
0ψ1 = γ1φ

2
1ψ0. Substituting

(26) into (A8), it is seen that this is satisfied when

χb = χr(1 + a2) − 2a

1 + a2 − 2aχr
, (A9)

with no dependence on the values of β and ρ. Further analysis
(not shown here) finds that, at this point, Pa

ii as a function of χb

is at a maximum.
In the case when we have direct observations of the state and

a = 0, we see that the maximum analysis-error variance occurs
whenχb = χr. Substitutingχb = χr and a = 0 into the expression
for Pa

ii implies that the maximum analysis-error variance is given
by

Pa
ii = βρ

β + ρ
.

Appendix B: The analysis cross-sensitivities of the two-variable
problem

For the two-variable problem introduced in section 4, it can be
shown that the background-error correlation, χb, that results in
zero analysis cross-sensitivity is given by the same function of
the observation-error correlation, χr, and observation-operator
coefficient, a, that results in the maximum analysis-error variance
derived in Appendix A.
From (26), it can be shown that the cross-sensitivities for the
two-variable problem are given by Sij = 1

2 (λs
0 − λs

1), where λs
i is

the ith eigenvalue of the sensitivity matrix.
As with the eigenvalues of the analysis-error covariance matrix,

the eigenvalues of the sensitivity matrix can be written in terms
of the eigenvalues of the background- and observation-error
covariances, γi and ψi, their variances, β and ρ respectively, and
the eigenvalues of the observation operator, φi (see (21)):

λs
i = βγiφ

2
i

βγiφ
2
i + ρψi

. (B1)

For the cross-sensitivities to be equal to zero, we require that

λs
0 = λs

1. (B2)

From (B1), we see that this is satisfied when γ0φ
2
0ψ1 = γ1φ

2
1ψ0.

Substituting this into (26) implies that Sij = 0 when

(1 + χb)(1 + a)2(1 − χr) = (1 − χb)(1 − a)2(1 + χr). (B3)

Rearranging for χb we see that this holds when

χb = χr(1 + a2) − 2a

1 + a2 − 2aχr
, (B4)

which is the same as Eq. (A9).
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