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   Abstract.   Malaria infection induces oxidative stress in the host cells. Antioxidant enzymes such as glutathione 
S-transferases (GSTs) are responsible for fighting reactive oxygen species and reduction of oxidative stress. Common 
GST polymorphisms have been associated with susceptibility to different diseases whose pathologies involve oxidative 
stress. In this study, we tested the hypothesis that GST polymorphisms that lead to reduced or lack of enzyme activity 
are associated with severe  Plasmodium falciparum  malarial anemia. We studied the genotypic distribution of  GSTM1 , 
 GSTT1 , and  GSTP1  polymorphisms between mild malaria ( N  = 107) and severe malarial anemia ( N  = 50) in Tanzanian 
children. We did not find a significant relationship with the  GSTT1  polymorphism.  GSTM1 -null was higher in the severe 
malaria anemia group but the difference was not significant ( P  = 0.08). However, a significant association of  GSTP1  I105V 
genotype with severe malarial anemia was discovered (26.0% against 10.3% mild malaria,  P  = 0.004). We concluded that 
 GSTP1  and possibly  GSTM1  may protect against severe falciparum malaria in children.   

   Oxidative stress plays an important role in malaria immunity 
and pathogenesis. Malaria-induced oxidative stress is thought 
to originate from immuno-defensive reactions of the host cells 
against the parasite and as a result of parasite metabolism. The 
parasite feeds on hemoglobin and releases the highly reactive 
and toxic heme. This can react with molecular oxygen to form 
hemin and superoxide radical (O 2  

− ), a highly reactive oxygen 
species. In the parasite’s food vacuole heme is, however, ren-
dered inert and nontoxic through conversion into hemozoin, 
the malaria pigment. 1  Most of the quinoline antimalarials 
interfere with the conversion of heme to hemozoin thereby 
inducing its accumulation inside the food vacuole and eventu-
ally killing the parasite. 2,3  

 In severe malaria, parasite toxins may trigger the release 
of oxygen free radicals and stimulate a variety of pro-
inflammatory cytokines, such as tumor necrosis factor-alpha, 
interleukins, gamma interferon, and nitric oxide. 4  These pro-
inflammatory factors are believed to cause much of the clini-
cal complications observed in severe malaria with multiple 
organ involvement. Several studies have implicated malaria-
induced oxidative stress in complications such as reduced 
macrophage function, reduced erythrocyte deformability, and 
increased activation of pro-inflammatory cytokines. 5–7  In chil-
dren with malaria, both blood plasma and erythrocytic lipid 
peroxidation are increased, whereas erythrocytic antioxidants 
such as glutathione (GSH) were shown to be lower in patients 
than in controls. 8  Polymorphisms resulting into absence or 
reduced enzyme activity have been identified and linked with 
pathogenesis in a number of disorders and diseases charac-
terized with increased oxidative stress. 9–11  In a previous study, 
we observed that  GSTM1 -null genotype was associated with 
severe malaria in Cameroonian children. 12  In this study, 
we have investigated the genotypic distribution of human 
 GSTM1 ,  GSTT1 , and  GSTP1  polymorphisms in mild versus 
severe malaria in Tanzanian children. 

 The clinical data and DNA samples of this study were col-
lected in the period between July and September 2006, in a drug 

efficacy study of mild malaria cases 13  in Mnyuzi, Tanga Region, 
Tanzania. Briefly, children 3–15 years of age with a temperature 
> 37.5°C or a history of fever within the last 48 hours and with 
 Plasmodium falciparum  mono-infection at a density between 
500 and 100,000 parasites/μL were eligible for recruitment. 
Children with a hemoglobin (Hb) concentration below 8 g/dL, as 
measured by HemoCue  (HemoCue AB, Ängelholm, Sweden), 
were excluded. Children with severe malaria were included for 
the current study in the same study period. Severe anemia (Hb 
< 5 g/dL) was observed in all children who attended the clinic 
with severe malaria. Additional signs of severe disease that were 
examined: hyper parasitaemia (≥ 250,000 parasites/μL), meta-
bolic acidosis manifested by respiratory distress as described by 
Marsh and others, 14  cerebral malaria presented as coma score 
≤ 2 (Blantyre coma scale) 15  or impaired consciousness with 
Blantyre score < 3 and prostration or extreme weakness (e.g., 
inability to sit or stand). For severe cases treatment was initi-
ated with quinine, according to Tanzanian National Guidelines 
and referred to the nearby district hospital in Korogwe in case 
the study physician considered this appro priate. There was no 
active follow-up of the outcome of severe malaria cases after 
the appropriate treatment was installed. 

 For all mild and severe malaria cases, a malaria blood slide, 
Hb measurement, and filter paper DNA sample were collected. 
A short questionnaire was used to obtain information on sex, 
age, disease presentation, and ethnicity of the patient. The 
ethical clearance for the collection of the mild malaria mate-
rial was obtained from the Tanzanian National Institute for 
Medical Research (NIMR/HQ/R.8a Vol. XIII/446) and clear-
ance for the collection of material of severe malaria cases was 
obtained from Kilimanjaro Christian Medical Center (KCMC 
2006#28). In the informed consent obtained from the parents 
or guardians of the children, they approved the use of their 
children’s DNA samples to study the relation between human 
genetic factors and malaria disease presentation. A total of 
107 mild and 50 severe malaria cases were enrolled. Parasite 
density in the severe malaria group ranged from 4,640–174,000 
parasites/μL and was higher than in the mild malaria group 
(Wilcoxon-rank sum test,  P  < 0.001). For more group charac-
teristics see  Table 1            . 

 The DNA extracted from the dried filter papers was 
done using Nucleospin Tissue kits (Macherey-Nagel, Düren, 
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Germany ), polymerase chain reaction (PCR) was performed 
using native, Taq polymerase (invitrogen) and all primers were 
purchased from Biolegio, Nijmegen, The Netherlands. Primers 
for  GSTT1, GSTM1,  and  GSTP1  were designed according to 
Pemble and others, 16  Bröckmoller and others, 17  and Watson 
and others, 18  respectively. The PCR conditions for  GSTM1 , 
 GSTT1,  and  GSTP1  were followed as previously described. 12  
Samples that gave negative results for  GSTM1  and  T1  were 
measured again with β-globin as a control. 

 The results of the polymorphism analysis in mild and severe 
malaria are depicted in  Table 2             . For  GSTM1  there was a higher 
prevalence of  GSTM1 -null genotype in the severe group (40%) 
than in the mild group (26.2%), although not statistically 
significant ( P  = 0.08).   The observed distributions in mild malaria 
are comparable to the reported distribution of  GSTM1 -null 
in African population (22–39%). 19–23  In Caucasian population, 
however, the  GSTM1 -null frequency is higher (around 50%) 
than in the African population. 21,23,24  In our previous study 
with 138 children from Cameroon, we found a statistically 
significant difference for the  GSTM1 -null frequency: 32% 
and 58% in uncomplicated malaria and severe malaria, 
respectively. 12  

 The prevalence of homozygous  GSTP1  I105V in the severe 
malaria group (26.0%) was significantly higher than in the 
mild group (10.3%). This indicates for the first time an asso-
ciation of the  GSTP1  I105V genotype with severe malaria. 
There is evidence that the  GSTP1  I105V polymorphism 
may have a substrate-dependent effect on the enzyme activ-
ity. 18,25,26  The general distribution of the homozygous  GSTP1  
I105V genotype in the mild malaria group is comparable to 
previous studies in a Brazilian population of African descent 
(8.3%) and Caucasians (11.3%). 21,24  In our previous study with 
Cameroonian children, 12  we found in uncomplicated malaria 
(21%) and severe malaria (26%) frequencies that are compa-
rable to what we now observe in severe malaria (26.0%). 

 When a combined analysis of  GSTM1  and  GSTP1  was per-
formed, the presence of wild-type condition on one or both of 
the two genes was 64.0% and 83.2% for the severe and mild 
malaria groups, respectively, and for the presence of mutations 
on both enzymes (hetero- or homozygous mutant) was 36.0% 
and 16.8% for the severe and mild malaria groups, respec-
tively ( P  = 0.007). 

 The prevalence of  GSTT1 -null was comparable in both 
groups (48% and 54%). In the Cameroonian study we also 
observed no differences; although the frequencies were lower 
(21% and 29%). 

 This study has shown association of  GSTP1  I105V, and a 
trend but not significant association of  GSTM1 , with severe 
malaria anemia.  GSTP1  and  GSTM1  are expressed in all 
blood cells with higher expression in lymphoid than erythroid 
cell types, whereas  GSTT1  and  GSTA  are expressed in higher 
levels in erythrocytes than in lymphoid cells. 27  In this study, we 
did not investigate on  GSTA  and we did not detect an associa-
tion of  GSTT1  with malaria, which is consistent with our previ-
ous observation. 12  It is not clear how GST polymorphisms can 
affect the malaria infection outcome. The GSH is important for 
parasite growth and  in vitro  studies have documented detoxifi-
cation of heme via a GSH-utilizing pathway, that can be inhib-
ited by chloroquine and amodiaquine. 28,29  Furthermore, drugs 
known to reduce cellular GSH were shown to potentiate the 
action of chloroquine in drug-resistant rodent malaria. 30  

 Glutathione S-transferase (GST) polymorphisms can change 
the enzyme activity, which can lead to reduced detoxification 
of the host cell or increased availability of host GSH that might 
be used by the parasite. In both cases the malaria pathology 
could be accelerated. It is also likely that the impact of GSTs is 
not direct on erythrocytes but on other cells that are involved 
in the immune response mechanisms and that severe malar-
ial anemia as an outcome can partly be attributed to such 
responses. Therefore, further studies including  in vitro  cellular 
studies to assess malarial outcomes for specific GST polymor-
phism genotypes are important. 

 In conclusion,  GSTP1  and possibly  GSTM1  may have pro-
tective effects against severe falciparum malaria in children. 
The contribution of specific GST polymorphisms to severe 
disease may differ between populations or geographic areas. 
These findings do not undermine the importance of oxidative 
stress in malaria clearance, but rather provide a broader per-
spective on the impact of oxidative stress on both the host and 
parasite cells. 

 Received November 27, 2008.   Accepted for publication April 18, 2009. 
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  Table  1 
 Characteristics of mild vs. severe malaria in falciparum malaria in 

Tanzanian children 

 N 

Mild Severe malaria

107 50

Age, median (IQR) 5.0 (3.0–9.0) 8.0 (5.0–11.0)
Gender, % male (n/ N ) 51.4 (55/107) 60.0 (30/50)
Hemoglobin concentration, 

median g/dL (IQR) 10.6 (9.7–11.9) 4.3 (3.8–4.8)
Temperature, 

median (IQR) 37.3 (36.9–38.0) 38.5 (37.8–39.1)
Asexual parasite 

density, GM (IQR) 7,700 105,900
(1,120–23,480) (57,480–121,040)

Signs of severe disease:
Severe anemia, % (n/ N ) – 100.0 (50/50)
Hyperparasitemia, % (n/ N ) – 0.0 (0/50)
Respiratory distress, % (n/ N ) – 6.0 (3/50)
Reduced consciousness, % (n/ N ) – 4.0 (2/50)
Prostration, % (n/ N ) – 8.0 (4/50)

    IQR = interquartile range; GM = group median.  

  Table  2 
 Genotypic and allelic distribution of glutathione S-transferases 

(GSTs) gene polymorphisms among mild vs. severe falciparum 
malaria groups in Tanzanian children 

Mild malaria Severe malaria  P  value

 GSTM1 -null, % (n/ N ) 26.2 (28/107) 40.0 (20/50) 0.08
 GSTT1 -null, % (n/ N ) 47.7 (51/107) 54.0 (27/50) 0.46
 GSTP1 

Wild type, % (n/ N ) 39.3 (42/107) 16.0 (8/50)
Heterozygous mutant, 

% (n/ N ) 50.5 (54/107) 58.0 (29/50)
Homozygous mutant, 

% (n/ N ) 10.3 (11/107) 26.0 (13/50) 0.004*
 GSTM1  and  P1  combined

One or both enzyme 
wild type, % (n/ N ) 83.2 (89/107) 64.0 (32/50)

Both enzymes mutant 
( P1 -hetero/homozygous), 
% (n/ N ) 16.8 (18/107) 36.0 (18/50) 0.007

  *    P  value of mutants (combined homo- and heterozygotes) compared with wild type.  
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