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ABSTRACT

Music constraint systems provide a rule-based approach
to composition. Existing systems allow users to constrain
the harmony, but the constrainable harmonic information
is restricted to pitches and intervals between pitches. More
abstract analytical information such as chord or scale types,
their root, scale degrees, enharmonic note representations,
whether a note is the third or fifth of a chord and so forth
are not supported. However, such information is important
for modelling various music theories.

This research proposes a framework for modelling har-
mony at a high level of abstraction. It explicitly represents
various analytical information to allow for complex the-
ories of harmony. It is designed for efficient propagation-
based constraint solvers. The framework supports the com-
mon 12-tone equal temperament, and arbitrary other equal
temperaments. Users develop harmony models by apply-
ing user-defined constraints to its music representation.

Three examples demonstrate the expressive power of the
framework: (1) an automatic melody harmonisation with
a simple harmony model; (2) a more complex model im-
plementing large parts of Schoenberg’s tonal theory of har-
mony; and (3) a composition in extended tonality. Schoen-
berg’s comprehensive theory of harmony has not been com-
putationally modelled before, neither with constraints pro-
gramming nor in any other way.

1. INTRODUCTION

In the field of algorithmic composition, harmony is a chal-
lenging area to address. Theories of harmony can be rather
complex, as the mere size of standard harmony textbooks
indicates. Also, different theories vary considerably de-
pending on the musical style they address such as classical
music [1], Jazz [2], contemporary classical music in exten-
ded tonality [3], or microtonal music [4].

As there is no agreement on a single theory of harmony,
a flexible algorithmic composition environment should al-
low users to define their own theory. The present research
provides a framework by which users can model their own
theory of harmony, and then let the system generate music
that follows it.
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The framework provides building blocks common to many
theories and that way simplifies the definition of custom
theories from scratch. The proposed framework provides
flexible representations of harmonic concepts (e.g., chords,
scales, notes, as well as their parameters like a note’s pitch
or a chord root), which allow users to define their own har-
mony models declaratively at a high-level of abstraction
with modular rules implemented by constraints that restrict
the relations between these parameters.

Users can freely declare chord and scale types (e.g., ma-
jor and minor triads and scales) by specifying pitch class
intervals among chord or scale tones and their root. A
number of different pitch representations are supported in-
cluding pitch numbers, pitch classes, enharmonic note rep-
resentations, scale degrees of notes and chords, and spe-
cific chord tones such as the fifth or the third of a triad. All
these representations are freely constrainable. The frame-
work supports the common 12-tone equal division of the
octave (12-EDO) and arbitrary other equal divisions.

These models can generate harmonic progressions. If the
harmonic rules are complemented by rules controlling the
melody, counterpoint and so forth, then they can also be
used more generally to generate music that follows given
or generated progressions.

The presented framework is implemented in the music
constraint system Strasheela 1 on top of the Oz program-
ming language [5].

1.1 Plan of Paper

The rest of this paper is organised as follows. Section 2
puts this research into the context of previous work. Ap-
plication examples of the proposed framework are shown
in Sec. 3, while Sec. 4 presents formal details of the frame-
work. Section 5 shows how to develop harmony models
with this framework. The paper closes with a discussion
that points out limitations of the proposal (Sec. 6).

2. BACKGROUND

Several algorithmic composition systems offer a rich rep-
resentation of pitch-related and harmonic information, e.g.,
Impromtu, Opusmodus, the pattern language of SuperCol-
lider, or music analysis systems like Humdrum and mu-
sic21. However, such systems process this information
procedurally, which makes it difficult to model the com-
plex interdependencies found in harmony.

1 http://strasheela.sourceforge.net/
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The declarative approach of constraint programming [6]
is more suitable for that. In this programming paradigm,
users define constraint satisfaction problems (CSP) in which
constraints restrict relations between decision variables. 2

Variables are unknowns, and initially have a domain of
multiple possible values. A solver then searches for one
or more solutions that reduces the domain of each variable
to one value that is consistent with all its constraints.

Several surveys, partly by this author, give an overview of
how constraint programming has been used for modelling
music theory and composition. Pachet and Roy [7] focus
on constraint-based harmonisation, specifically four-part
harmonisation of a given melody. An introduction to the
field of modelling composition and music theory with con-
straint programming in general is the detailed review [8].
A further review [9] presents how six composers used con-
straint programming to realise specific compositions.

A particular extensive constraint-based harmony system
is CHORAL by Kemal Ebcioğlu [10], which generates four-
part harmonisations for given choral melodies that resem-
ble the style of Johann Sebastian Bach.

Several existing systems allow users to define their own
harmonic CSPs, and each of these systems has its spe-
cific advantages. Situation [11] provides a family of mini-
languages for specifying how the arguments to certain pre-
defined harmonic constraints change across chords. Score-
PMC, as subsystem of PWConstraints [12, Chap. 5] is well
suited for complex polyphonic CSPs where the rhythm is
fixed. PWMC [13] and its successor Cluster Engine allow
for complex polyphonic CSPs where the rhythm is con-
strained as well.

While all these systems allow users to define their own
harmonic CSPs, they restrict the constrainable harmonic
information to pitches and intervals between pitches. For
example, users can constrain harmonic and melodic inter-
vals between note pitches, or represent an underlying har-
mony by chords consisting of concrete notes. However, the
music representations of these systems are not extendable,
and more abstract analytical information such as chord and
scale types or roots, scale degrees, enharmonic note repres-
entations etc. are not supported. Such analytical informa-
tion is important for various music theories. Some inform-
ation could be deduced from a pitch-based representation
(e.g., pitch classes), but other information is difficult to de-
duce (e.g., the chord type or root) and complex harmonic
CSPs are more difficult to define and solve this way.

An expressive harmonic constraint system that supports
such analytical information is the combination of the mu-
sic representation MusES [14] and the constraint solver
BackTalk [15]. This combination was used, e.g., for auto-
matic harmonisation. BackTalk supports variable domains
of arbitrary SmallTalk collections. The search algorithm
first filters all variable domains with a general consistency-
checking algorithm, and then searches for a solution of this
reduced problem with a backjumping algorithm.

Many modern constraint solvers use constraint propaga-
tion for efficiency [16, Chap. 4]. Their variable domains
are restricted to specific types (e.g., Boolean, integer and

2 In the rest of the paper we just use the term variable for brevity.

sets of integers), and highly optimised domain-specific prop-
agation algorithms filter variable domains before every step
in the search process, which typically greatly reduces the
search space. The design of MusES cannot be ported to
propagation-based constraint solvers, because it is not lim-
ited to the variable types supported by such solvers. MusES
has originally not been designed with constraint program-
ming in mind, and the variable domains of CSPs defined
with MusES consist of complex SmallTalk objects.

This research proposes the first harmony framework that
supports various analytical information to allow for mod-
elling complex theories of harmony at a high level of ab-
straction, and whose design is at the same time suitable
for propagation-based constraint solvers. Using constraint
propagation allows, e.g., to quickly solve CSPs with large
domain sizes and that way allows for microtonal harmony.
While the framework was implemented in Strasheela on
top of Oz, it could also be implemented with any other con-
straint system that supports the following features found
in various propagation-based constraint systems (e.g., Ge-
code, Choco, JaCoP, MiniZinc): the variable domains Bool-
ean, integer, and set of integers; integer and set constraints
including reified constraints (meta-constraints, which also
constrain whether their stated relationship holds or not);
and the element constraint. 3

This framework is largely comparable in terms of its flex-
ibility with the combination of MusES and BackTalk, al-
though it has a different stylistic focus. MusES was de-
signed for jazz, while this research focuses on classical
tonal music and contemporary music in an extended ton-
ality including microtonal music.

3. APPLICATIONS

Before presenting formal details of the proposed frame-
work, some examples showing the framework in action
will further motivate this research. Please remember that
all rules discussed for these examples are only a demon-
stration of the capabilities of the proposed framework, and
all these rules can of course be changed.

3.1 Automatic Melody Harmonisation

The first example creates a harmonisation for a given mel-
ody. It is comparatively simple, and is therefore discussed
in more detail.

While the proposed framework was originally developed
for music composition, it can also be used for analysis,
because it only controls relations between concepts like
notes and chords. This example demonstrates an interme-
diate case. It performs an automatic harmonic analysis of
a given folk tune, but additional compositional rules are
applied to the resulting harmonies. Voicing is irrelevant in
this example; only the chord symbols are searched for.

The harmonic rhythm is slower than the melody, as com-
mon is classical, folk and popular music. By contrast,
most automatic harmonisation examples in the literature
are choral-like with one chord per note.

3 For details on the element constraint see https://sofdem.
github.io/gccat/gccat/Celement.html, and also section
4.3.

https://sofdem.github.io/gccat/gccat/Celement.html
https://sofdem.github.io/gccat/gccat/Celement.html
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Figure 1. For the given melody this simple harmonisation
model has four solutions

For simplicity, this example defines relatively rigid ba-
sic conditions. Only major, minor, and dominant seventh
chords are permitted, and all chords must be diatonic in C
major. The harmonic rhythm is fixed, and all chords share
the same duration (e.g., a whole bar), but chord repetitions
are permitted.

The example distinguishes between harmonic and non-
harmonic tones, but for simplicity only a few cases of non-
harmonic tones are permitted (passing and neighbour tones).
All other melody notes must be chord pitches.

The example further borrows a few harmonic rules from
Schoenberg [1] in order to ensure musically reasonable
solutions. The example assumes that the given melody
starts and ends with the tonic – these chords are constrained
to be equal. A seventh chord must be resolved by a ‘fourth
upwards the fundament’ (e.g., V7 → I), the simplest res-
olution form for seventh chords. All chords share at least
one common pitch class with their predecessor (harmonic
band, a simpler form of Schoenberg’s directions for produ-
cing favourable chord progressions).

Figure 1 shows all solutions for the first phrase of the
German folksong “Horch was kommt von draussen ‘rein”
that fulfil the given rules. An x on top of a note denotes a
nonharmonic pitch.

Because of the relative simplicity of this example, it works
only well for some melodies and less good for others. The
harmonic rhythm of the melody must fit the harmonic rhythm
specified for the example (at least chords can last longer,
as repetitions are permitted). This is easily addressed by
turning the currently fixed chord durations into variables,
but doing so increases the size of the search space. Fur-
ther, the nonharmonic pitches of the melody must fit the
cases defined (passing and neighbour tones). An extension
could define further cases, like suspensions and anticipa-
tions. Also, the melody currently cannot modulate. This
can be solved by additionally modelling scales, and apply-
ing modulation constraints between chords and scales (as
shown in the next example).

3.2 Modelling Schoenberg’s Theory of Harmony

The next example implements large parts of Schoenberg’s
tonal theory of harmony [1] – a particular comprehensive

theory – and that way demonstrates that the framework is
capable of modelling complex conventional theories. To
the knowledge of the author, Schoenberg’s theory of har-
mony has not been computationally modelled before, neither
with constraints programming nor in any other way. Also,
this example implements modulation, which has rarely been
done with constraint programming before. Among the many
proposed systems, Ebcioğlu’s CHORAL [10] is the only
system the author is aware of that supports modulation. As
the current example implements a lot of harmonic know-
ledge, it can only be summarised here.

The example modulates from C major to G major, but
features an extended pitch set that allows for non-diatonic
tones. Figure 2 shows a solution.
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Figure 2. A solution of the Schoenberg harmony model
modulating from C to G major; Roman numerals added
manually for clarity (altered chords are crossed out)

The example applies Schoenberg’s guidelines on chord
root progressions designed to help obtaining better pro-
gressions. Schoenberg distinguishes between three kinds
of root progressions. In strong or ascending progressions
the chord root progresses by a fourth up (harmonically the
same as a fifth down) or a third down. For example, in Fig.
2 chord 1 progresses to chord 2 by a third down (I → vi),
while chord 2 progresses to chord 3 by a fourth up / fifth
down (vi → ii). Descending root progressions form the
second type. They are the inversion of strong progressions:
a fourth down (fifth up) or a third up. These are not allowed
in this example. Finally, in superstrong progressions the
root moves a second up or down, as the chords in the pen-
ultimate bar do (IV → V). These different progressions
are explained in more detail and formalised in [17].

The chords are related to underlying scales, which change
during the modulation. The first five chords relate to the C
major scale, and the rest to G major. However, the example
also allows for non-diatonic tones. Schoenberg introduces
these as accidentals from church modes, namely the raised
1st, 2nd, 4th, 5th and the flattened 7th degree. These are
always resolved stepwise in the direction of their altera-
tion (e.g., raised degrees go up). In order to support the
intended direction of the modulation (C to G), only raised
degrees are allowed in this example. In the solution above,
e.g., chord 4 contains a raised 4th degree of C major (F])
that is chromatically introduced and resolves upwards by a
step. Chord 7 contains a raised 5th degree of G major (D]).

A modulation constraint requires that chord 5 is a neutral
chord, i.e., a chord shared by both keys. In the solution
above this chord is iii in C and vi in G major. The mod-
ulation constraint further requires that the neutral chord is
followed by the modulatory chord, which is only part of



the target key (vii∅7 in the solution). For clarity, the mod-
ulatory chord must progress by a strong root progression a
fourth upwards (into iii above).

The example also applies voice leading rules. Open and
hidden parallel fifths and octaves are not permitted. Also,
the upper three voices are restricted to small melodic inter-
vals and small harmonic intervals between voices (larger
harmonic intervals are allowed between tenor and bass).

Root positions and first inversions can occur freely. For
example, chord 4 is a first inversion in Fig. 2. The number
of first inversions has not been constrained and it is rather
high in the shown solution (6 chords out of 11). More gen-
erally, statistical properties such as the likelihood of these
chords are difficult to control by constraint programming
(e.g., their overall number can be restricted, but they then
may be bunched early or late in the search process).

It should be noted that the pitch resolution of this example
is actually 31-tones per octave (31-EDO). This tempera-
ment is virtually the same as quarter-comma meantone, a
common tuning in the 16th and 17th century. It can be not-
ated with standard accidentals (], [, [[ . . . ). This tempera-
ment has been used here, because it simplifies the nota-
tion by distinguishing between enharmonically equivalent
pitches (e.g., E[ and D] are different pitch classes in this
temperament). More generally, the use of this tempera-
ment demonstrates that the proposed framework supports
microtonal music [18].

3.3 A Compositional Application in Extended Tonality

The last example discusses the 7 minute composition Pfei-
fenspiel by the author, which was composed for the two
organs of the Kunst-Station St. Peter in Köln (premiered
at the Computing Music VIII series in 2012). An excerpt
from the piece is shown in Fig. 3 on the following page.

The music is tonal in the extended sense of Tymoczko
[19]: melodic intervals tend to be small; the dissonance
degree of the harmony is rather consistent; relatively con-
sonant chords are used in moments of musical stability;
sections of the piece are limited to certain scales; and for
specific sections one tone is particularly important (root).

However, the piece is clearly non-diatonic. Suitable scales
where found by first searching with an ad-hoc constraint
program through about 200 scale and 50 chord types for
scales that contain many chords with a similar dissonance
degree (measured with an experimental algorithm). Solu-
tion scales were further evaluated manually by considering
all chords that can be built on each scale degree, and by
judging the melodic quality of scales. In the end, three
scales that are all somewhat similar to the whole tone scale
where selected: Takemitsu’s Tree Line mode 2, Messiaen’s
mode 3, and Messiaen’s mode 6. Two of these scales are
shown in Fig. 3 in the analysis in the lowest stave (e.g.,
Takemitsu’s Tree Line mode 2 on D in measures 6–7).

Based on these scales, a global harmonic and formal plan
was composed by hand, but concrete harmonic progres-
sions were generated algorithmically with custom harmony
models for different sections. Also, contrapuntal sections
rendering the harmony were algorithmically generated (and
slightly manually revised), while some other sections were

composed manually (e.g., in Fig. 3 the septuplets in the
Great division, and the triplets in the pedal were composed
manually).

Some example constraints are outlined. Chords have at
least four tones, which all belong to the simultaneous scale.
The first and last chord root of a section is often the root of
its scale. To ensure smooth transitions between chords, the
voice-leading distance between consecutive chords is low
(at most 3 semitones in the excerpt). The voice-leading
distance is the minimal sum of absolute intervals between
the tones of two chords. For example, the voice-leading
distance between the C and A[ major triads is 2 (C→ C =
0, E→ E[ = 1, G→ A[ = 1). Also, any three consecutive
chords must be distinct.

The actual notes (in staves 1-3) must express the underly-
ing harmony (stave 4). Nonharmonic tones (marked with
an x in Fig. 3) are prepared and resolved by small inter-
vals. Across the section starting in measure 8, the con-
trapuntal lines in the swell division rise gradually (pitch
domain boundaries are rising), and melodic intervals are
getting smaller (this section lasts over 10 bars, so this is
not obvious from the few bars shown). The contrapuntal
voices are never more than an octave apart; they don’t
cross; they avoid open and hidden parallels; they avoid
perfect consonances between simultaneous notes (one is
there in Fig. 3 after manual revisions); and voice notes
sound all tones of the underlying harmony. Also, the lines
are composed from motifs; and durational accents are con-
strained [20].

4. THE FRAMEWORK

This section describes formal details of the proposed frame-
work. It explains how musical objects (notes, chords, and
scales) are represented. Notes are concrete musical objects
that produce sound when the score is played, but chord and
scale objects represent analytical information – the under-
lying harmony.

Notes, chords and scales are represented by tuples of de-
cision variables. When users define harmony models with
this framework, they employ these objects and apply con-
straints between their variables. However, some wellformed-
ness constraints must always hold between these variables,
and these constraints are discussed here as well.

For clarity and portability, this section shows core defini-
tions of the framework in mathematical notation instead of
using any programming language (e.g., Oz). For simpli-
city, we leave out some auxiliary variables (intermediate
results represented by extra variables).

4.1 Declaration of Chord and Scale Types

In the proposed framework, the chord and scale types sup-
ported globally by a constraint model (e.g., major and minor
triads and scales) can be declared independently of the rest
of the model. The ordered sequence CT consists of tuples,
where each tuple specifies one chord type with a set of fea-
tures as shown in the example below (1). The first tuple
declares the major triad type: it specifies the pitch class in-
teger representing the untransposed chord root (C), and the
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Figure 3. Excerpt from the composition Pfeifenspiel composed by the author. The upper three staves show the actual com-
position, and the lower two an analysis of the underlying harmony. Chord and scale tones are shown like an appoggiatura
and roots as normal notes. Nonharmonic tones are marked by an x.

pitch classes of the untransposed chord – in this case the C-
major triad, {C,E,G} – as a set of pitch class integers. The
given name is a useful annotation, but not directly used by
the framework.

CT =

[〈name: major, root: 0, PCs: {0, 4, 7}〉,
〈name: minor, root: 0, PCs: {0, 3, 7}〉,
. . . ]

(1)

Scale types are declared in the same way in an extra se-
quence of tuples ST. For example, the pitch class set of the
major scale type is {0, 2, 4, 5, 7, 9, 11}, while its root is 0.

Users can also declare the global number of pitches per
octave (psPerOct), and that way specify the meaning of
all integers representing pitches and pitch classes in the
constraint model. 4 A useful default value for psPerOct is
12, which results in the common 12-EDO, and which was
used for the chord and scale type examples above.

4 Only equal temperaments that evenly subdivide the octave are sup-
ported. However, just intonation or irregular temperaments can be closely
approximated by setting psPerOct to a high value (e.g., psPerOct =
1200 results in cent resolution).

Instead of specifying pitch classes by integers as shown,
it can be more convenient to specify note names, which are
then automatically mapped to the corresponding pitch class
integers, depending on psPerOct . In 12-EDO, C 7→ 0,
C] 7→ 1 and so on. Alternatively, pitch classes can be
specified by frequency ratios as a useful approximation of
just intonation intervals for different temperaments. Again
in 12-EDO, the prime 1

1 7→ 0, the fifth 3
2 7→ 7 etc. 5

The format of chord and scale declarations is extendable.
Users can add further chord or scale type features (e.g.,
a measure of the dissonance degree of each chord type),
which would then result in further variables in the chord
and scale representation discussed in the Sec. 4.3 below.

Note that chord and scale declarations are internally re-
arranged for the constraints discussed in Sec. 4.3. For ex-
ample, rootCT is the sequence of all chord roots (in the
order of the chord declarations), PCsST is the sequence of
the pitch class sets of all scale declarations, and so on.

5 Remember that for the frequency ratio r, the corresponding pitch
class is round((log2 r) · psPerOct).



4.2 Temporal Music Representation

The underlying harmony can change over time. Temporal
relations are a suitable way to express dependencies: all
notes simultaneous to a certain chord or scale depend on
that object (i.e., those notes fall into their harmony).

The framework shows its full potential when combined
with a music representation where multiple events can hap-
pen simultaneously. A chord sequence (or scale sequence
or both) can run in parallel to the actual score, as shown in
the score example discussed above (Fig. 3).

Score objects are organised in time by hierarchic nesting.
A sequential container implicitly constrains its contained
objects (e.g., notes, chords, or other containers) to follow
each other in time. The objects in a simultaneous container
start at the same time (by default). All temporal score ob-
jects represent temporal parameters like their start time,
end time and duration by integer variables. A rest be-
fore a score object is represented by its temporal parameter
offset time (another integer variable), which allows for ar-
bitrary rests between objects in a sequencial container, and
before objects in a simultaneous container.

Equation (2) shows the constraints between temporal vari-
ables of a simultaneous container sim and its contained ob-
jects object1 . . . objectn. Any contained object – objecti
– starts at the start time of the container sim plus the off-
set time of the contained object. The end time of sim is
the maximum end time of any container. The relations
between temporal variables of a sequential container and
its contained objects are constrained correspondingly, and
every temporal object is constrained by the obvious rela-
tion that the sum of its start time and duration is its end
time. The interested reader is referred to [21, Chap. 5] for
further details.

startobjecti = start sim + offsetobjecti
end sim = max(endobject1 , . . . , endobjectn)

(2)

Temporal relations can be defined with these temporal
parameters. For example, we can constrain that (or whether,
by using a resulting truth value) two objects o1 and o2 are
simultaneous by constraining their start and end times (3).
Note that for clarity this constraint is simplified here by
leaving out the offset times of these objects, and remember
that ∧ denotes a conjunction (logical and).

starto1 < endo2 ∧ starto2 < endo1 (3)

Remember that all these relations are constraints – rela-
tions that work either way. The temporal structure of a
score can be unknown in the definition of a harmonic CSP.
Users can apply constraints, e.g., to control the harmonic
rhythm in their model, or the rhythm of the notes in a har-
monic counterpoint.

If other constraints depend on which objects are simultan-
eous to each other (e.g., harmonic relations between notes
and chords), then the search should find temporal paramet-
ers relatively early during the search process.

4.3 Chords and Scales

The proposed model represents the underlying harmony of
music with chord and scale objects. This section intro-

duces the representation of these objects, their variables,
and the implicit constraints between these variables. The
representation of chords and scales is identical, except that
chords depend on the declaration of chord types CT, and
scales on scale types ST (see Sec. 4.1). Therefore, the rest
of this subsection only discusses the definition of chords.

A chord c is represented by a tuple of four variables (4)
– in addition to the temporal variables mentioned above
(Sec. 4.2) that are indicated with “. . . ”. 6

c = 〈type, transp, PCs, root , . . . 〉 (4)

The type (integer variable) denotes the chord type. Form-
ally, it is the position of the respective chord in the col-
lection of chord type declarations CT, see Eq. (1) above.
The transp (integer variable) specifies how much the chord
is transposed with respect to its declaration. PCs (set of
integers variable) is the set of (transposed) pitch classes
of the chord, and the root (integer variable) is the (trans-
posed) root pitch class.

For chords where the root is 0 (C) in the declaration,
transp and root are equal. In a simplified framework,
the variable transp could therefore be left out. However,
sometimes it is more convenient to declare a chord where
the root is not C (e.g., leaving a complex chord from the lit-
erature untransposed, or stating the pitch classes of a chord
by fractions where the root is not 1

1 ). Therefore this flexib-
ility is retained here with the separate variables transp and
root .

The constrains (5) and (6) restrict the relation between
the variables of any chord object c, and the collection of
chord type declarations CT. The element constraint is a
key here. It accesses in an ordered sequence of variables
a variable at a specific index, but the index is also a vari-
able. 7 In (5), rootCT[type] is the untransposed root of
the chord type. The (transposed) chord root is that un-
transposed root – pitch-class transposed by the constraint
transp-pc. Pitch class transposition in 12-EDO with mod-
ulus 12 is well known in the literature. The definition here
uses psPerOct as divisor to support arbitrary equal tem-
peraments. A corresponding constraint for pitch class sets
is expressed in (6).

rootc = transp-pc(rootCT[typec], transpc) (5)
PCsc = transp-PCs(PCsCT[typec], transpc) (6)

When chords are extended by further variables (e.g., a
chord type specific dissonance degree) the chord declara-
tions and chord object variables are simply linked by fur-
ther element constraints (e.g., featc = featCT[typec]).

4.4 Notes with Analytical Information

Note objects represent the actual notes in the score. A note
n is represented by a tuple of variables as shown in (7). As
with chords, temporal variables are left out for simplicity,
and are only indicated with “. . . ”.

6 Internally, some additional auxiliary variables are used in the imple-
mentation, untransposedRoot and untransposedPitchClasses .

7 The element constraint is notated here like accessing an element in
an array. x = xs[i] constrains x to the element at position i in xs , where
both x and i are integer or set variables, and xs is a sequence of such
variables.



n = 〈pitch, pc, oct , inChord?, inScale?, . . . 〉 (7)

The note’s pitch (integer variable) is essential for melodic
constraints. It is a MIDI note number in case of 12-EDO.
The pc (integer variable) represents the pitch class (chroma)
independent of the oct (octave, integer variable) compon-
ent, which is useful for harmonic constraints. The relation
between a note’s pitch , pc and oct is described by (8); the
octave above middle C is 4.

pitch = pc + (oct + 1) · psPerOct (8)

The Boolean variable inChord? indicates a harmonic or
nonharmonic note, i.e., whether the pc of a note n is an ele-
ment of the PCs of its simultaneous chord c, implemented
with a reified set membership constraint (9). The Boolean
variable inScale? denotes equivalently whether notes are
inside or outside their simultaneous scale.

inChord?n = pcn ∈ PCsc (9)

4.5 Degrees, Accidentals, and Enharmonic Spelling

So far, the formal presentation used two common pitch rep-
resentations: the single variable pitch and the pair 〈pc,
oct〉; further pitch-related representations can be useful to
denote scale degrees (including deviations from the scale),
tones in a chord (and deviations), and to express enhar-
monic notation. These representations are closely related.
They “split” the pc component into further representations,
depending on a given scale or chord. These representations
are only briefly summarised here; formal details are left out
due to space limitations.

Enharmonic spelling is represented with the pair of in-
teger variables 〈nominal , accidental〉, where nominal rep-
resents one of the seven pitch nominals (C, D, E, . . . ) as
integers: 1 means C, 2 means D, . . . , and 7 means B. 8 The
variable accidental is an integer where 0 means \, and 1
means raising by the smallest step of the current equal tem-
perament. In 12-EDO, 1 means ], -1 means [, and -2 is [[
and so on. 9

The representation of enharmonic spelling depends on
the pitch classes of the C major scale: the nominal 1 is
a reference to the pitch class at the first scale degree of C-
major, 2 refers to the second degree and so on. The same
scheme can be used with any other scale to express scale
degrees with the pair of integer variables 〈scaleDegree,
scaleAccidental〉. The variable scaleDegree denotes ba-
sically the position in the pitch classes of a given scale.
If the variable scaleAccidental is 0 (\), then the expressed
pitch class is part of that scale. Otherwise, scaleAccidental
denotes how far the expressed pitch class deviates from the
pitch class at scaleDegree . This representation has been
used in the Schoenberg example described in Sec. 3.2 to
constrain the raised scale degrees I, II, IV, and V.

8 The choice to start with C and not A as 1 is arbitrary, and it is very
easy to change that when desired. C is represented by 1 and not 0 for
consistency with scale degrees, where the lowest degree is commonly
notated as I.

9 This representation can also be implemented in a constraint system
that only supports positive integer variables by adding a constant offset to
all accidental variables.

This scheme can further be used for chords with the pair
of integer variables 〈chordDegree, chordAccidental〉. The
integer variable chordDegree denotes a specific tone of a
chord, e.g., its root, third, fifth etc.; it is the position of
a chord tone in its chord type declaration in CT, while
chordAccidental (integer variable) indicates whether and
how much the note deviates from a chord tone (for non-
harmonic tones). This representation was also used in the
model of Schoenbergs theory of harmony discussed above
to recognise dissonances that should be resolved (e.g., any
seventh in a seventh chord).

5. MODELLING WITH THE FRAMEWORK

The proposed framework consists primarily of the con-
strainable harmony representation presented in the previ-
ous section. Developing concrete harmony models with
this foundation is relatively straightforward: the variables
in the representation are constrained. This section shows
formal details of the first application shown in section 3.1.

For simplicity, this example only uses three chord types:
major, minor, and the dominant seventh chord. These are
declared exactly as shown previously in equation (1), where
only the dominant seventh chord is added with the pitch
classes {0, 4, 7, 10} and root 0. The example declares scale
types in the same way; only the major scale is needed.

The music representation of this example consists of a
nested data structure. The top level is a simultaneous con-
tainer, which contains three objects: a sequential container
of notes; a sequential container of chords; and a scale. In
the definition, the note pitches and temporal values are
set to the melody (the folksong “Horch was kommt von
draussen ‘rein”), the scale is set to C major, and all chord
durations are set to whole note values. In other words, only
the chord types and transpositions, and hence also their
pitch classes and roots are unknown in the definition.

Space does not permit to discuss all constraints of this ex-
ample, but the formalisation of some of them gives an idea
of the overall approach. As discussed before, the harmony
of notes are their simultaneous chords and scale; chords
also depend on their simultaneous scale. Only diatonic
chords are allowed: every chord pitch class set is a sub-
set of the scale pitch class set.

However, the example allows for nonharmonic notes. Con-
straining the notes’ parameter inChord? allows to model
these. Nonharmonic notes are surrounded by harmonic
notes, i.e., the parameter inChord? of their predecessor
and successor notes must be true. Only passing tones and
neighbour tones are permitted: the melodic intervals be-
tween a nonharmonic note and its predecessor and suc-
cessor notes must not exceed a step (two semitones). Equa-
tion (10) shows these constraints; remember that the oper-
ator ⇒ indicates the implication constraint (logical con-
sequence).

inChord?ni = false⇒
inChord?ni−1

= inChord?ni+1
= true

∧ |pitchni − pitchni−1
| ≤ 2

∧ |pitchni+1
− pitchni | ≤ 2

(10)



The complete constraint problem definition is then given
to the solver, which returns one or more solutions.

6. DISCUSSION

The applications shown in this paper demonstrate that the
proposed framework is rather flexible. Complex theories
of harmony in different styles can be modelled; in com-
position applications, generated notes can depend on an
underlying harmony by ensuring a suitable treatment of
nonharmonic tones; and in an analysis, generated chords
can depend on given notes.

However, the proposed design is best suited for tonal mu-
sic. For example, any atonal pitch class set can be declared
as well, but then information like the chord root is redund-
ant (it can simply be ignored in a model, though).

While the framework also supports tonal music in an ex-
tended sense (see Sec. 3.3) and microtonal music, it is less
suitable for spectral music composition. Spectral music is
based on absolute frequencies (and their intervals) trans-
lated into pitches. This approach preserves the octave of
each pitch and that way the order of pitches in a chord.
By contrast, in the proposed model chord and scale types
are expressed by pitch classes. Individual chord or scale
pitches can thus be freely octave transposed while retain-
ing the chord or scale identity. Such an approach allows to
control melodic and harmonic aspects independently with
constraints.

The proposed model could be changed to better support
spectral music by expressing chords with absolute pitches
instead of pitch classes, and by disregarding all informa-
tion based on pitch classes (chord roots, scale degrees etc.),
but then tonal music theories depending on such analytical
information that is independent of an octave component
cannot be modelled anymore. The music constraint system
PWMC [13] and its successor Cluster Engine implement
such an approach.

A compromise could be special rules that constrain spe-
cific chord tones – e.g., tones at or above a certain chord -
Degree – into or above certain octaves, or above other
chord tones, like some popular music voicing recommend-
ations do (e.g., in a V7]9 chord, the augmented ninth is
preferred above the major third).

The framework supports microtonal music, but only equal
divisions of the octave. Specifically, just intonation inter-
vals are best represented by ratios, and unequal tempera-
ments with floats, but the proposed framework only uses
integers, because constraint propagation works very effi-
ciently for those. Nevertheless, just intonation intervals
can be closely approximated (see footnote 4 ).

In summary, this paper presents a framework for model-
ling harmony with constraint programming that is suitable
for modern propagation-based constraint solvers. Its rep-
resentation of harmonic concepts such as chords, scales,
and a variety of pitch representations lead to harmony CSPs
with a high level of abstraction. Three applications demon-
strated the range and complexity of harmonic CSPs that are
made possible.
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