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ABSTRACT 

It has previously been shown that pre-conditioning interventions can augment change 

of direction speed (CODS). However, the mechanistic nature of these augmentations 

has not been well considered. The current study sought to determine the effects of 

pre-conditioning interventions designed to augment vertical stiffness on CODS. 

Following familiarization, ten healthy males (age: 22 ± 2 years; height: 1.78 ± 0.05 m; 

body mass: 75.1 ± 8.7 kg) performed three different stiffness interventions in a 

randomized and counterbalanced order. The interventions were: a) bilateral-focused, 

b) unilateral-focused, and c) a control of CODS test practice. Vertical stiffness and 

joint stiffness was determined pre- and post-intervention using a single leg drop jump 

task. CODS test performance was assessed post-intervention using a double 90o 

cutting task. Performances following the unilateral intervention were significantly faster 

than control (1.7%; P = 0.011; d = -1.08), but not significantly faster than the bilateral 

intervention (1.0% faster; P = 0.14; d = -0.59). Versus control, vertical stiffness was 

14% greater (P = 0.049; d = 0.39) following the unilateral intervention and 11% greater 

(P = 0.019; d = 0.31) following the bilateral intervention; there was no difference 

between unilateral and bilateral interventions (P = 0.94; d = -0.08). The findings of the 

current study suggest that unilateral pre-conditioning interventions designed to 

augment vertical stiffness improve CODS within this experimental cohort.  



INTRODUCTION 

The ability to quickly and effectively change direction underpins performance in a wide 

range of sports. For example, change of direction speed (CODS) has been linked to 

performance in soccer (30), rugby league (25) and field hockey (14). Interventions 

designed to improve CODS are therefore likely to carry a beneficial effect to 

performance. Acute pre-conditioning interventions employing heavy resistance 

exercise (41) and loaded ballistic exercise (i.e. weight vest loaded warm-up) (22, 27) 

have been demonstrated to favourably affect CODS although the reasons behind 

these performance enhancements are yet to be elucidated.  

Young, et al. (39) outlined three physical factors which may underpin CODS: strength 

(allied to maximal force production), power (allied to rate of force development) and 

reactive strength (allied to parameters of stiffness). This current study acknowledges 

the contribution of these qualities in the proposition of a slightly modified deterministic 

model of CODS as shown in Figure 1.  

*** Figure 1 Near Here *** 

Explanations of the performance benefits associated with pre-conditioning 

interventions have previously focused on how physiological and neural mechanisms 

contribute to enhancements in maximal force and rate of force development by way of 

post-activation potentiation (see Maloney, et al. (21) for a review). A growing body of 

evidence is now showing that pre-conditioning interventions may also augment 

stiffness (2, 9, 26), highlighted by the inclusion of stiffness in a deterministic model of 

jump potentiation (34).  



Vertical stiffness describes the vertical displacement of the centre of mass in response 

to vertical ground reaction force during sagittal plane movement (17) and seeks to 

approximate the deformation of the leg-spring at instants of ground contact (5). Heavy 

resistance exercise has been shown to augment vertical stiffness in studies by 

Comyns, et al. (9) and Moir, et al. (26), the investigators noting increases of 10.9% (P 

< 0.05) and 16% (d: 0.52; P = 0.013) respectively. A weight vest loaded warm-up has 

also been demonstrated to augment vertical stiffness by 20% (d: 0.76; 90% confidence 

intervals: 4%) during a plyometric jumping task (2).  

Acute augmentations in stiffness may be hypothesized to improve CODS 

performance. It has previously been demonstrated that vertical stiffness derived from 

a single leg drop jump explained 50% of the variance in CODS performance (R2 = 

0.50, P = 0.001) in a recreationally trained cohort (20). In addition, faster performers 

during the CODS task exhibited greater vertical stiffness (d: 1.76; P = 0.003)  (20). 

Greater stiffness would be expected to facilitate efficient transmission of the generated 

impulse and minimize the required ground contact time for the direction change to be 

executed (4). Previous research has reported that faster performers exhibit shorter 

ground contact times than slower performers in CODS tasks (20, 23, 31, 33). This is 

perhaps indicative of greater vertical stiffness given the relationship between vertical 

stiffness and ground contact time observed by Arampatzis, et al. (1), increases in 

stiffness were associated with reduced contact times. 

The potential importance of vertical stiffness to CODS may also be evidenced given 

the relationship between reactive strength and CODS performance. Young, et al. (39) 

reported that reactive strength index was the physical variable which demonstrated 

the strongest relationship with CODS test time (r = -0.54; P < 0.05). Similar 

relationships have since been observed by Young, et al. (40) (r = -0.65; P = 0.001) 



and Delaney, et al. (10) (dominant limb: R = -0.44; P < 0.05,  non-dominant limb: r = -

0.45; P < 0.05). Reactive strength index is a function of the flight time or jump height 

divided by ground contact time recorded during a drop jump (28). The likely reduction 

in ground contact time associated with greater vertical stiffness (1) would therefore 

increase reactive strength index if the same jump height can be maintained. The 

deterministic model of potentiation detailed by Suchomel, et al. (34) emphasized such 

a reliance of reactive strength on stiffness.  

Plyometric activities have been shown to augment performance in ballistic 

performance tasks including jumps (3, 7, 16) and sprints (6, 18). The majority of 

investigations have utilized drop jumps as the potentiating stimulus (6, 7, 18). Other 

investigations have employed conditioning hops (often termed pogo hops) (3, 16), 

alternate-leg bounding (36) and a mixed-activity (pogo hops, hurdle jumps and drop 

jumps) stimulus (35). To date, the effect of a plyometric pre-conditioning intervention 

on CODS has not been investigated. Given the positive results seen in the 

aforementioned investigations, it may appear likely that CODS would be similarly 

augmented.  

Previous investigations have not sought to determine a mechanistic basis for the acute 

enhancement of CODS. Given the potential importance of stiffness in maximising 

CODS it is possible that the performance improvements observed following pre-

conditioning interventions are related to augmentations in stiffness, however, such 

propositions must be examined directly. The aim of the current study was therefore to 

establish if acute exercise interventions designed to augment vertical stiffness 

influenced CODS. It was hypothesized that both bilateral and unilateral stiffness 

interventions would significantly improve CODS test performance versus a control 

strategy of additional CODS practice.  



METHOD 

EXPERIMENTAL APPROACH TO THE PROBLEM 

The current study was a repeated measures experiment designed to compare the 

effects of different pre-conditioning interventions on stiffness, asymmetries and 

CODS. Following a familiarization session, participants performed three different 

‘stiffness’ interventions in a randomized and counterbalanced order. The three 

interventions were a) bilateral-focused (BILATERAL), b) unilateral-focused 

(UNILATERAL), and c) a control of CODS test practice (CONTROL). Vertical stiffness 

was determined pre- and post-intervention whilst CODS test performance was 

assessed post-intervention. 

SUBJECTS 

Fourteen healthy males volunteered to participate in the study. Ten participants 

completed all three experimental trials (age: 22 ± 2 years; height: 1.78 ± 0.05 m; body 

mass: 75.1 ± 8.7 kg). A minimum sample size of nine participants was determined 

from a priori power analysis (G*Power 3.1, Heinrich-Heine-Universität, Düsseldorf, 

Germany) based upon an estimated effect size (d) of 0.6 and a power of 0.8. 

Participants were recreationally active (undertaking ≥ 2.5 hours of physical activity per 

week), reported no previous (within the last 12 months) or present lower limb injury 

and provided informed consent to participate in the study. Full ethical approval was 

granted by the relevant institutional review board. 



PROCEDURES 

A single familiarization session was performed seven days prior to the experimental 

trial. During the session, participants were familiarized with the testing procedures and 

warm-up exercises. 

*** Figure 2 Near Here *** 

An outline of the experimental trials is shown in Figure 2. All trials were conducted at 

the same time of day (09:30 - 12:00) for each participant, to alleviate the effects of 

circadian rhythms. The testing laboratory was controlled at an ambient temperature of 

25°C. Participants were instructed to prepare for testing as they would for training. The 

execution of each experimental trial was monitored by a NSCA Certified Strength and 

Conditioning Specialist to ensure for consistency of technique. 

WARM-UP 

Participants completed 5 minutes of cycle ergometry at a self-determined power output 

(135 ± 22 W). During the familiarization session, participants were instructed to find a 

cadence and loading which allowed them to achieve a rating of perceived exertion of 

5-7 (0-10 scale), this cadence and loading combination was then employed during the 

experimental trials. Following the cycle ergometry warm-up, participants performed a 

series of mobility exercises (Figure 2). These comprised of the following exercises: 

inchworm, quadruped thoracic rotation, push up to ‘T’, supine glute bridge with 

abduction, mountain climber, squat to stand, single-leg stiff-legged deadlift to reverse 

lunge. 

STIFFNESS INTERVENTIONS 

*** Table 1 Near Here *** 



Participants completed three experimental trials associated with the three different 

stiffness interventions outlined in Table 1; trials were separated by no less than six 

and no more than fourteen days. For the unilateral exercises, the number of prescribed 

repetitions was performed on both legs. For the bilateral and unilateral exercises, sets 

and exercises were separated by 60 seconds (29), in the unilateral intervention there 

was no recovery between limbs for any of the exercises. Bilateral drop jumps were 

performed from a greater height than unilateral drop jumps to partially offset 

discrepancies in the vertical ground reaction forces experienced at ground contact. 

For the control intervention, participants performed circuits of the CODS test. CODS 

practice was chosen as the control intervention as this would be more representative 

of a ‘typical’ warm-up strategy which would attempt to replicate the types of 

subsequent activity to be undertaken (24). Circuits of the CODS test were performed 

alternating between clockwise and counter-clockwise directions, each separated by 

60 seconds. Participants were instructed to perform the first circuit at 50% intensity 

and the subsequent four with maximal effort. 

STIFFNESS ASSESSMENT 

Vertical and joint stiffness of the left and right limbs were assessed before and after 

the stiffness intervention (Figure 2) using a single leg drop jump protocol. This protocol 

has been described in detail in a previous manuscript (19). Participants performed two 

drop jumps, without footwear, for each limb at each time point. Drop jumps were 

performed from a height of 0.18 m onto a force plate system (Kistler 9281, Kistler 

Instruments, Winterthur, Switzerland) and were recorded in the sagittal plane using a 

high-speed video camera (Quintic High-Speed LIVE USB 2, Quintic Consultancy Ltd., 

Coventry, United Kingdom) at a frame-rate of 100 Hz. Recordings were automatically 

digitized using manufacturer provided software (Quintic Biomechanics v21, Quintic 



Consultancy Ltd., Coventry, United Kingdom). Data were filtered using a Butterworth 

fourth-order zero-lag filter (cut-off frequency 20 Hz). 

Inverse dynamics was used to express acceleration, velocity and centre of mass 

displacement; this was determined from the vertical force trace. Net muscle moments 

were determined using a rigid linked segment model, anthropomorphic data and an 

inverse dynamics analysis using the procedures outlined by Winter (38); the linked 

segment model was created using Dempster’s body segment parameter data (11).  

Vertical stiffness  was calculated as the ratio of peak vertical ground reaction force 

(kN) relative to peak centre of mass displacement (m) during the initial ground contact 

phase (12); this was reported relative to body mass  and was averaged over the two 

drop jumps. Torsional stiffness of the ankle and knee joints were calculated as the 

ratio of the change in net muscle moment (N) to joint angular displacement (rad) 

between the initial ground contact phase and instant of peak angular displacement 

(12); these were also averaged over the two jumps. Data for hip stiffness were 

excluded as the phase shift for the moment displacement curve of the hip was > 10%, 

previously specified as exclusion criteria (12, 15, 19). 

CHANGE OF DIRECTION SPEED TESTING 

*** Figure 3 Near Here *** 

CODS performance was assessed following each of the stiffness interventions (Figure 

2) using the double-cut test shown in Figure 3. Participants were required to perform 

two 90o cuts in the same direction (clockwise for the left leg trials or counter-clockwise 

for the right leg trials) during each trial and were instructed to complete the task as 

quickly as possible. Performance time was recorded using two sets of timing gates 



(TC-Timing System, Brower Timings, Utah, USA). Participants performed four 

consecutive trials in one direction before performing four trials in the other direction; 

the order in which directions were tested was randomized and counterbalanced. 

Participants’ fastest trial in each direction was subsequently analysed. Overall CODS 

performance was the sum of participants’ fastest trials in the clockwise and counter-

clockwise directions. Trials were separated by a recovery duration of 60 seconds. 

To obtain ground reaction force data during the CODS test, the first cut was performed 

with the push-off (outside) foot contacting entirely within the force plate. Trials were 

excluded if the participant landed outside the confines of the force plate, this was 

retrospectively checked using video analysis. All of the participants’ fastest trials met 

these criteria. 

RELIABILITY 

Reliability values for the CODS test utilized in the current study have been reported in 

a previous investigation within the same participant population (20); the inter-session 

coefficient of variation (three sessions) for fastest overall CODS test time was 1.1% 

(SEM: 0.04 s; ICC: 0.97). The inter-session reliability for vertical stiffness obtained 

from unilateral drop jumping has also been established in the same population. The 

coefficient of variation (three sessions) for vertical stiffness in the stiff limb was 6.7% 

(SEM: 10.6 N.m-1.kg-1; ICC: 0.98) and in the compliant limb was 7.6% (SEM: N.m-1.kg-

1; ICC: 0.96). 

STATISTICAL ANALYSIS 

Shapiro-Wilks tests were performed to assess for normality; all variables were 

considered to be normally distributed given an alpha level of P > 0.05. A 3 (condition) 



x 2 (pre- to post-intervention) repeated measures analysis of variance (ANOVA) was 

performed to analyse for the effect of the interventions and subsequent interactions. 

An additional repeated measures ANOVA was performed for post-intervention values 

alone, to analyse for differences between the interventions. The correlation between 

post-intervention vertical stiffness and overall CODS time was examined using 

Pearson’s r. Pair-wise effect sizes (d) (8) were calculated and interpreted using the 

thresholds defined by Hopkins (13) where: <0.20 = trivial, 0.20-0.59 = small, 0.60-1.19 

= moderate, 1.20-1.99 = large, and ≥2 = very large. Statistical significance for all 

analyses was set at an alpha level of P ≤ 0.05 and all statistical procedures were 

conducted using the Statistical Package for the Social Sciences for Windows (v21.0; 

SPSS Inc., Chicago, USA). 

  



RESULTS 

CHANGE OF DIRECTION SPEED 

*** Figure 4 Near Here *** 

CODS performances were significantly different between conditions (F(2,18)  = 7.14; P 

= 0.005) (Figure 4). Pair-wise comparisons showed that performances in 

UNILATERAL were 1.7% faster than CONTROL (P = 0.011; d = -1.08), but not 

BILATERAL (1.0% faster; P = 0.14; d = -0.59); these effect sizes were both ‘moderate’. 

BILATERAL performances were not different from CONTROL (0.8% faster; P = 0.41; 

d = -0.48) although the effect size was also moderate. CODS performance time was 

significantly correlated to post-intervention vertical stiffness (R = -0.31; P = 0.046). 

*** Figure 5 Near Here *** 

There was evidence of some inter-individual variability in response to the interventions 

(Figure 5). Seven participants recorded their quickest CODS test performance 

following UNILATERAL, two following BILATERAL and one following CONTROL. 

*** Table 2 Near Here *** 

There was a main effect of intervention on CODS performance time for participants’ 

faster (F(2,18) = 3.56; P = 0.050) and slower (F(2,18) = 6.70; P = 0.007) limbs. Pair-wise 

comparisons were not significant for the faster limb, although the faster performances 

following UNILATERAL were associated with moderate effect sizes versus CONTROL 

(P = 0.079; d = -1.12) and BILATERAL (P = 0.37; d = -0.69) (Table 2). Performances 

for the slower limb were significantly faster following UNILATERAL than following 

CONTROL (P = 0.017; d = -0.86). Differences in ground contact times were not 



observed for the fast (F(2,18) = 0.75; P = 0.49) or slow (F(2,18) = 1.46; P = 0.26) limbs 

(Table 2). 

STIFFNESS 

*** Table 3 Near Here *** 

There was a main effect of the intervention, such that there was a significant increase 

in vertical (F(1,9)  = 6.53; P = 0.031) and ankle (F(1,9)  = 6.38; P = 0.032) stiffness, but 

not knee (F(1,9) = 2.80; P = 0.13) stiffness, from pre- to post-intervention (Table 3). 

There was no significant interaction effect between time (pre- to post-intervention) and 

intervention for vertical (F(2,18) = 2.58; P = 0.10) and ankle (F(2,18)  = 0.39; P = 0.68) 

stiffness, but there was a significant time by intervention interaction effect for knee 

stiffness (F(2,18) = 5.38; P = 0.015) indicating that the change in knee stiffness was not 

uniform across all three conditions (Table 3). 

Post-intervention vertical stiffness was significantly different between conditions (F(2,18) 

= 5.16; P = 0.017) (Table 3). Vertical stiffness was greater following BILATERAL (11%; 

P = 0.019; d = 0.31) and UNILATERAL (14%; P = 0.049; d = 0.39) versus CONTROL; 

there was no difference between BILATERAL and UNILATERAL (-2.6%; P = 0.94; d 

= -0.08). Post-intervention ankle (F(2,18) = 0.41; P = 0.67) and knee (F(2,18) = 3.04; P = 

0.073) stiffness were not significantly different between conditions. A small effect size 

suggested greater ankle stiffness (6.1%; d = 0.26) and knee stiffness (15.7%; d = 0.58) 

following UNILATERAL versus CONTROL. A moderate effect size suggested greater 

knee stiffness (16.6%; d = 0.61) following BILATERAL versus CONTROL. 

  



DISCUSSION 

The aim of the current study was to establish if acute exercise interventions designed 

to augment vertical stiffness influenced CODS in a population of healthy males. It was 

hypothesized that both the bilateral and unilateral preparation strategies would 

significantly improve CODS test performance versus a control strategy. Effect size 

analysis reported that both BILATERAL and UNILATERAL improved CODS 

performance versus CONTROL. However, a significant improvement was only 

observed following UNILATERAL. As such, the experimental hypothesis cannot be 

fully accepted. In comparison to CONTROL, vertical stiffness was greater following 

both BILATERAL and UNILATERAL.  

Following UNILATERAL, CODS test performance was 1.7% (d = 1.08) quicker versus 

CONTROL and 1.0% (d = 0.59) quicker versus BILATERAL. The effect of pre-

conditioning interventions versus traditional dynamic warm-up practices on CODS has 

been evaluated previously in a selection of investigations. Reactive agility has been 

improved by 4.7% (d = 1.2) following heavy leg press exercise (41) in amateur soccer 

players. Badminton specific CODS has been improved by 5.0% (d = 0.83) following a 

weight vest loaded warm-up by Maloney, et al. (22) in professional badminton players. 

Nava (27) also noted significant improvements in T-test performance following weight 

vest loaded warm-up in collegiate athletes, although the presentation of their results 

did not permit the calculation of percentages and effect size. Whilst Sole, et al. (32) 

did not report significant improvements (2.3%; d = 0.18; P = 0.07) in 10 m shuttle test 

performance following heavy back squats in collegiate tennis and basketball players, 

70% of participants recorded faster times than following a dynamic warm-up. The 

magnitude of CODS improvement observed in the current study was therefore less 

than has previously been reported in the literature, although differences in the CODS 



tests employed make it difficult to draw direct comparisons. Nonetheless, the low 

training status of participants in the current study in comparison to other investigation 

could explain why the magnitude of the performance enhancement was lower. 

Potentiation-based protocols have been established to carry a greater effect in well-

trained cohorts (21, 34, 37) and such improvements have also been observed with a 

shorter recovery duration (21, 34). The likely increase in type II fibre percentage (21) 

and ability to more quickly dissipate fatigue (34) associated with training status has 

been proposed to underpin this effect. The augmentation of pre-conditioning 

interventions that has been reported in trained individuals may also explain the 

variance in responses to the pre-conditioning intervention in the current study 

(demonstrated in Figure 5). However, as no training data was available for the 

participants sampled, a direct relationship cannot be determined. To establish whether 

the effect of this type of stiffness pre-conditioning intervention is greater in a trained 

population, this would need to be examined directly in future investigations. 

The aforementioned studies which have reported CODS enhancements following pre-

conditioning interventions have not attempted to examine the mechanisms by which 

these enhancements occur. It has previously been reported that vertical stiffness was 

the strongest predictor of CODS following regression analyses and that faster 

performers in the CODS test exhibited greater vertical stiffness (20). This supports the 

deterministic model of CODS proposed in Figure 1 and the hypothesis that increasing 

vertical stiffness will improve CODS. In comparison to CONTROL, post-intervention 

vertical stiffness was 11% (d = 0.31) greater following BILATERAL and 14% (d = 0.39) 

greater following UNILATERAL. The increases in stiffness observed in the current 

study are comparable to the respective increases of 11% (P < 0.05) and 16% (d: 0.52; 

P = 0.013) observed by Comyns, et al. (9) and Moir, et al. (26) following heavy back 



squat interventions versus a post-warm-up baseline. However, Barnes, et al. (2) 

reported a greater increase of 20% (d: 0.76; 90%CI: 4%) following a weight vest loaded 

warm up versus a control warm-up, an intervention with greater similarity to the 

interventions performed in the current study. Comparisons with the Barnes et al. 

(2015) investigation are also more appropriate given that they are the only 

investigators, to the author’s knowledge, to attempt to link performance enhancements 

to specific biomechanical variables. Barnes et al. (2015) reported an enhancement in 

performance (peak running speed) of 2.9% (90%CI: 0.8%), noting a ‘very-high’ 

correlation between the change in performance and the change in vertical stiffness (R 

= 0.88; 90%CI: 0.66-0.96). The current study reports a statistically significant 

relationship between increased stiffness and CODS, although this correlation (R = 

0.31) is weaker than that reported by Barnes et al. (2015). 

Maloney, et al. (20) demonstrated that shorter ground contact times were associated 

with faster CODS performances, in agreement with previous investigations (23, 31). 

Increased stiffness would be expected to facilitate shorter ground contact times, as 

has been discussed previously, and could explain how greater stiffness may contribute 

to the enhancement of CODS. Whilst the shortest ground contact times were observed 

following UNILATERAL and the longest following CONTROL (Table 2), mirroring what 

was observed for CODS performance time, this relationship was not statistically 

significant and the effect sizes were small (d < 0.2). The likely reason for the lack of a 

relationship within the current study is that augmentations in ground contact time were 

small and inter-participant variation was large. For example, the difference in average 

ground contact time between UNILATERAL and CONTROL was -1.6%, and the 

standard deviation was ~18% of the mean.  



PRACTICAL APPLICATION 

The current study reports that a unilateral pre-conditioning intervention designed to 

augment vertical stiffness improved CODS performance in comparison to bilateral and 

control interventions. Also, improvements in CODS performance were related to 

greater post-intervention vertical stiffness. For healthy males preparing to engage in 

sports where CODS is an important factor, it is therefore recommended that 

preparation strategies include unilateral exercises designed to augment vertical 

stiffness. Examples utilized in this study included pogo hops and drop jumps. Whether 

this relationship is observed in well-trained athletic populations requires further 

investigation.  
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FIGURE CAPTIONS: 

Figure 1 - The modified deterministic model of change of direction speed. Key: LPHC 

= lumbo-pelvic hip complex.  

Figure 2 - The design of each experimental trial. Key: CODS = change of direction 

speed.  

Figure 3 – An example of the experimental set-up for the change of direction speed 

test set up to examine right leg cutting performance; the set-up would be mirrored to 

examine left leg performance.  

Figure 4 - Mean (± standard deviation) change of direction speed test performances 

following each of the three interventions. * indicates significantly faster than control 

(P < 0.05). 

Figure 5 - Participants’ change of direction speed test performances following each 

of the three interventions. 


