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The transmissibility of the strain of influenza virus which caused the 1968 influenza pandemic is poorly un-
derstood. Increases in outbreak size between the first and second waves suggest that it may even have increased
between successive waves. The authors estimated basic and effective reproduction numbers for both waves of the
1968 influenza pandemic. Epidemic curves and overall attack rates for the 1968 pandemic, based on clinical and
serologic data, were retrieved from published literature. The basic and effective reproduction numbers were
estimated from 46 and 17 data sets for the first and second waves, respectively, based on the growth rate and/
or final size of the epidemic. Estimates of the basic reproduction number (R0) were in the range of 1.06–2.06 for the
first wave and, assuming cross-protection, 1.21–3.58 in the second. Within each wave, there was little geographic
variation in transmissibility. In the 10 settings for which data were available for both waves, R0 was estimated to be
higher during the second wave than during the first. This might partly explain the larger outbreaks in the second
wave as compared with the first. This potential for change in viral behavior may have consequences for future
pandemic mitigation strategies.

basic reproduction number; disease outbreaks; influenza, human; models, theoretical; Orthomyxoviridae

The current pandemic of novel H1N1 influenza illustrates
the ability of novel influenza viruses to spread rapidly
through populations. H1N1 first emerged in spring 2009,
and a second wave is expected in the Northern Hemisphere
in the autumn. The 1968 (Hong Kong) H3N2 influenza pan-
demic also occurred in 2 waves, the second being more
severe than the first in many settings (1–9). Like H1N1
(and H5N1, another influenza virus with pandemic poten-
tial), the H3N2 virus was not completely antigenically novel
but shared its neuraminidase with the H2N2 virus, which
had circulated for the preceding 10 years.

The impact of any pandemic depends to a great extent on
the transmissibility of the causal pathogen, which is usu-
ally described using the basic reproduction number, R0 (the
average number of secondary infectious cases resulting
from an infectious person’s introduction into a totally sus-
ceptible population). The equivalent statistic in a partially
susceptible population is the effective (net) reproduction
number, Rn. According to several studies, the R0 of the

1918 H1N1 (10–16) and 1957 H2N2 (12, 13, 17) pandemic
influenza viruses was between 1.2 and 3. The characteris-
tics of the H3N2 pandemic influenza virus are poorly un-
derstood. Estimates of its reproduction numbers have
primarily been based upon data from the second wave
(11–13, 18); in a study based on national general practice
consultation data from England and Wales, Hall et al. (19)
estimated that Rn increased slightly between successive
waves, from 1.28 to 1.56. Several estimates have been
based upon mortality data (11, 13, 18), and all but 2
(20, 21) were based on national (11, 13, 18, 19) or city-
level (12, 18) data from England and Wales. Few studies
have explored temporal or geographic variation in the R0 of
the 1968 pandemic virus.

In this study, we reviewed morbidity and serologic data
from diverse settings for the first and second waves of the
1968 influenza pandemic to determine the extent to which
R0 and Rn differed temporally, geographically, and between
successive waves.
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Table 1. Data Sets From Open Settings Used in Analyses of the H3N2 Influenza Pandemic of 1968

Setting Wave
Observation

Perioda
Case Definition/
Source of Data

% of Population
Meeting Case
Definitionb

No. of
Persons
Meeting
Case

Definition

Size of Eligible
Population

% of
Population

Susceptible to
Infection at
Beginning of

Wave

Method
Used to

Estimate R0

Length of
Period Used
to Estimate
Growth Rate,

weeks

Hong Kong (36) 1 May 27, 1968–
September 28,
1968

Cases of ILI reported
weekly to the
Epidemiological Office
from 6 outpatient
departments and
hospitals

N/A 100c Growth rate 4

Bangkok/
Dhonburi,
Thailand (37)

1 July 29, 1968–
December 1,
1968

Attendance at an
outpatient clinic of
Siriraj Hospital with
clinical diagnosis of
influenza

N/A 100c Growth rate 6

July 29, 1968–
November 17,
1968

Physician’s diagnosis of
influenza reported in
a questionnaire survey
of school students and
their families and
medical students

N/A 100c Growth rate 9

Panama Canal
Zone (22)

1 August 5, 1968–
November 10,
1968

Clinic visits for acute
respiratory infection in
Paraı́so and Pedro
Miguel, Panama, for
patients aged �3 years

N/A 94d Growth rate 4

November 1968 �4-fold increase in HI
antibody titer since
June/July 1968 in
serologic survey of
laboratory workers

26 15 57 93e Final size

September 1,
1968–October
31, 1968

Clinical ILI reported in
a retrospective survey
of families in Paraiso
and Pedro Miguel

46 235 516 94d Final size

Kansas City,
Missouri, United
States (23)

1 November 4,
1968–January
18, 1969

Self-reported ILI (defined
as ‘‘an illness with the
symptoms of fever,
cough, muscle aches
and pains, headache,
and sore throat’’) in
a retrospective
questionnaire survey of
high school students
and their families

39 2,711 6,994 100c Growth rate, final
size

7

November 4,
1968–January
18, 1969

HI antibody titer �1:10 in
a serologic survey of
a subgroup of students

49 139 285 100c Final size

November 4,
1968–January
18, 1969

HI antibody titer �1:10
and self-reported ILI
(defined as above) in
the same subgroup of
students

28 81 285 100c Growth rate 5
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Philadelphia,
Pennsylvania,
United States
(35)

1 October 29,
1968–
December 22,
1968

Weekly laboratory-
confirmed Hong Kong
influenza isolates

N/A 100c Growth rate 4

United Kingdom (2) 1 December 23,
1968–June 22,
1969

Influenza and ILI reported
to the General Practice
Research Unit of the
RCGP, for patients
consulting 40 general
practices

N/A 90 (based on
ref. 24)

Growth rate 8

Summer 1969 HI antibody titer �1:10 in
serologic survey of
serum samples from
adults sent to the PHLS
for other tests

57 631 1,104 58d Final size

November 4,
1968–April 6,
1969

Weekly laboratory-
confirmed influenza
cases (influenza A virus
isolations and cases
with �4-fold increase in
antibody titer) reported
to the PHLS by hospital
and public health
laboratories

N/A 90 (based on
ref. 24)

Growth rate 6

United Kingdom (7) 1 December 9,
1968–April 20,
1969

Clinical influenza cases
reported by the RCGP

N/A 90 (based on
ref. 24)

Growth rate 9

United Kingdom (2) 2 November 3,
1969–April 5,
1970

Influenza and ILI reported
to the General Practice
Research Unit of the
RCGP, for patients
consulting 40 general
practices

N/A 65 (based on
ref. 24)

Growth rate 8

Summer 1970 HI antibody titer �1:10 in
serologic survey of
serum samples from
adults sent to the PHLS
for other tests

70 1,502 2,139 43d Final size

November 10,
1969–February
22, 1970

Weekly laboratory-
confirmed influenza
cases (influenza A virus
isolations and cases
with �4-fold increase in
antibody titer) reported
to the PHLS by hospital
and public health
laboratories

N/A 65 (based on
ref. 24)

Growth rate 5

United Kingdom (7) 2 December 8,
1969–April 5,
1970

Reports to the PHLS of
influenza A virus
isolations and cases
with a �4-fold increase
in antibody titer from
public health and
hospital laboratories

N/A 65 (based on
ref. 24)

Growth rate 6
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Table 1. Continued

Setting Wave
Observation

Perioda
Case Definition/
Source of Data

% of Population
Meeting Case
Definitionb

No. of
Persons
Meeting
Case

Definition

Size of Eligible
Population

% of
Population

Susceptible to
Infection at
Beginning of

Wave

Method
Used to

Estimate R0

Length of
Period Used
to Estimate
Growth Rate,

weeks

Scotland (8) 1 December 30,
1968–June 15,
1969

Returns from laboratories
of viral isolations, �4-
fold increase in
antibody titer, or high
single antibody titer

N/A 90 (based on
ref. 24)

Growth rate 7

2 December 1,
1969–April 26,
1970

Returns from laboratories
of viral isolations, �4-
fold increase in
antibody titer, or high
single antibody titer

65 (based on
ref. 24)

Growth rate 8

Cirencester, United
Kingdom (38)

1 November 27,
1968–April 15,
1969

Weekly GP consultations
for febrile respiratory
disease

N/A 90 (based on
ref. 24)

Growth rate 10

Sheffield, United
Kingdom (24)

1 May–July 1969 HI antibody titer �1:6 in
serologic survey of
blood donors, antenatal
clinic attendees, and
samples submitted for
other tests

35 160 454 90d Final size

Lambeth, London,
United Kingdom
(2)

1 Summer 1969 �4-fold increase in HI
antibody titer in
serologic survey of men
living in the London
borough of Lambeth

31 112 367 81d Final size

2 Summer 1970 �4-fold increase in HI
antibody titer in
serologic survey of men
living in the London
borough of Lambeth

28 85 302 52d Final size

West Nile District,
Uganda (25)

1 November 1969 HI antibody titer �1:20 in
serologic survey of
samples collected
during an unrelated
survey

17 19 115 100c Final size

Kabale,
Uganda (25)

1 January 1970 HI antibody titer �1:20 in
serologic survey of
randomly selected
outpatients and staff at
Kabale Hospital

22 16 73 100c Final size

Czechoslovakia
(39)

1 January 6, 1969–
June 1, 1969

Weekly reported clinical
influenza cases in
Czechoslovakia, Czech
Socialist Republic, and
5 districts individually

N/A 100c Growth rate 4–8,
depending
on district
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Moscow, Union of
Soviet Socialist
Republics (32)

1 January–
February 1969

‘‘Morbidity’’ in adult
placebo group in trial of
prophylactic interferon

18 551 3,129 100c Final size

‘‘Morbidity’’ in older
children’s (ages 7–12
years) placebo group in
trial of prophylactic
interferon

20 413 2,055 100c Final size

Donetsk, Ukraine
(32)

1 Not stated ‘‘Morbidity’’ in young
children’s (ages 2–6
years) placebo group in
trial of prophylactic
interferon

12 53 454 100c Final size

São Paulo, Brazil
(4)

1 February 1969 HI antibody titer �1:10 in
serologic survey

70 684 980 73d Final size

2 1970 HI antibody titer �1:10 in
serologic survey

74 588 790 30d Final size

Khartoum, Sudan
(9, 27)

2 After May 1970 Complement-fixing
antibody titer �1:10 in
serologic survey of
outpatients and serum
samples submitted for
other tests in Khartoum,
Omdurman, and
Khartoum North

64 123 192 50c Final size

November 3,
1969–May 30,
1970

Cases of ILI reported
weekly to outpatient
departments in
hospitals and health
centers in Khartoum

N/A 50c Growth rate 5

Sydney, New South
Wales, Australia
(5)

1 May 1970 ‘‘Demonstrable
antibodies’’ in serologic
survey of blood donors

40 213 538 94d Final size

2 September 1970 �4-fold increase in HI
antibody titer since May
1970 in serologic
survey of blood donors

21 159 760 60d Final size

Epping, New South
Wales, Australia
(6)

1 Approximately
July–August
1969

Cases of ILI reported
during retrospective
surveys of GP patients
and their families who
consulted a GP for any
reason after the
epidemic (excluding
vaccinees)

16 176 1,099 94 (based on
ref. 5)

Final size

2 Approximately
June–August
1970

Cases of ILI reported
during retrospective
surveys of GP patients
and their families who
consulted a GP for any
reason after the
epidemic (excluding
vaccinees)

24 305 1,275 60 (based on
ref. 5)

Final size
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Table 1. Continued

Setting Wave
Observation

Perioda
Case Definition/
Source of Data

% of Population
Meeting Case
Definitionb

No. of
Persons
Meeting
Case

Definition

Size of Eligible
Population

% of
Population

Susceptible to
Infection at
Beginning of

Wave

Method
Used to

Estimate R0

Length of
Period Used
to Estimate
Growth Rate,

weeks

Epping, New South
Wales, Australia
(33)

1 Approximately
July–August
1969

Cases of ILI reported
during retrospective
surveys of GP patients
and their families who
consulted a GP for any
reason after the
epidemic (excluding
vaccinees)

19 150 808 94 (based on
ref. 5)

Final size

New South Wales,
Australia (6)

1 June 21, 1969–
September 12,
1969

Weekly Hong Kong
influenza virus isolates
at Institute of Clinical
Pathology and Medical
Research

N/A 94 (based on
ref. 5)

Growth rate 4

Guatemala (40) 2 August 10, 1969–
December 27,
1969

Weekly reported cases of
ILI

N/A 50c Growth rate 7

Doncaster, United
Kingdom (1)

2 November 26,
1969–January
20, 1970

Weekly GP consultations
for clinical influenza

N/A 65 (based on
ref. 24)

Growth rate 4

November 26,
1969–January
20, 1970

‘‘Probable influenza’’ as
judged by response to
questionnaire survey of
random sample of
patients registered with
a general practice

20 108 530 65 (based on
ref. 24)

Final size

Mombasa, Kenya
(26)

2 February 1970 HI antibody titer �1:20f in
serologic survey of
randomly selected
patients receiving
treatment at a hospital

37 21 57 100c,g Final size

Arusha, Tanzania
(26)

2 February 1970 HI antibody titer �1:20f in
serologic survey of
randomly selected
patients receiving
treatment at a hospital

72 65 90 100c Final size

Abbreviations: GP, general practitioner; HI, hemagglutination-inhibiting; ILI, influenza-like illness; N/A, not applicable; PHLS, Public Health Laboratory Service; RCGP, Royal College of General Practitioners.
a Period covered by incidence data or time at which serum samples were taken.
b For data sets with good ascertainment only. For serologic data, the proportion of the population meeting the case definition is not necessarily equivalent to the proportion experiencing infection during the given wave

(as seropositivity may reflect infection either during that wave or previously). ‘‘N/A’’ means that ascertainment was incomplete. Numerators may include persons who did not report the date of onset of illness and

therefore were not included in estimation of R0 using the epidemic growth rate.
c Assumed proportion susceptible.
d Proportion susceptible based on the original data set or on data cited in the original paper.
e Data cited in the paper implied that 94% of persons in the wider population were likely to be susceptible; however, because of the small size of this sample, it was necessary to round to 93%.
f Case definition not given, but comparison with reference 25 suggests this definition.
g Although these data refer to the second wave, the data were inconsistent with 50% of individuals being susceptible at the start of the wave. Therefore, it was assumed that all persons were initially susceptible.
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MATERIALS AND METHODS

Data sources

We searched PubMed and CAB Direct from 1966 to 2006
for English-language studies that presented data on 1) the
proportions of persons who experienced infection (as im-
plied by serologic analysis) or clinical disease and 2) weekly
numbers of cases during the first and/or second waves of the
1968 influenza pandemic. Reference lists in the articles re-
trieved were also searched, and key journals (including Bul-
letin of the World Health Organization, British Medical
Journal, and Weekly Epidemiological Record) from 1968–
1970 were hand-searched. Age-stratified data were also ob-
tained where possible. The data sets (Tables 1 and 2) were
classified as referring to either confined (e.g., military bases,
ships, homes, schools) or open (cities or national popula-
tions) settings. Data sets which clearly included vaccinated
persons were excluded. The first and second waves were
defined from the identified reports, based on the timing of
the global circulation of the virus: approximately July 1968
to August 1969 for the first wave and September 1969 to
September 1970 for the second.

Serologic data. We identified 25 suitable serologic data sets
(17 for the first wave, 8 for the second (2–5, 22–31)). The def-
inition of infection varied (Tables 1 and 2) but was frequently
either a hemagglutination-inhibiting antibody titer of�1:10 or
a �4-fold increase in hemagglutination-inhibiting antibody
titer. For consistency, when hemagglutination-inhibiting an-
tibody titers were presented without a definition of infection,
a titer of �1:10 was taken as positive.

Clinical attack rates. We identified 11 data sets (9 for the
first wave, 2 for the second (1, 6, 22, 23, 32–35)) with suit-
able data on the proportion of persons who experienced
clinical disease (i.e., clinical attack rates). These were data
sets in which ascertainment appeared to be good—for exam-
ple, from retrospective surveys or intervention studies. Case
definitions were taken from the original data sets. We calcu-
lated 95% exact binomial confidence intervals for both the
clinical attack rates and the proportions seropositive.

Epidemic curves. We identified 27 suitable data sets
(20 for the first wave, 7 for the second (1, 2, 6–9, 22, 23,
35–40)) on the weekly number of clinical cases (see Web
Figure 1, which is posted on the Journal’s Web site (http://
aje.oxfordjournals.org/)). Data sets involving small numbers
of cases (e.g., <25) or irregular increases in case numbers
were excluded.

Analyses of attack rates and reproduction numbers

Calculation of susceptible attack rates. For settings in
which the proportion of persons seropositive before and
after one or both waves was available, the susceptible attack
rate (ARsus) was calculated as

ARsus ¼
Ppost � Ppre

1� Ppre
;

where Ppre and Ppost are the proportions seropositive before
and after the given wave, respectively. We estimated 95%

credible intervals for the susceptible attack rate by Monte
Carlo sampling of posterior distributions of the proportion
seropositive in each wave, using conjugate properties of the
beta distribution with binomial priors (41). Here, Ppre and
Ppost were treated as though they were independent.

Estimation of R0. R0 was estimated for each data set
using either the final size of the epidemic (for serologic data
and clinical data with good ascertainment) or its growth rate
(for epidemic curves) (42, 43) (Tables 1 and 2). These
methods do not account for contact patterns in the popula-
tion. Although recent studies have suggested that contact
patterns are age-dependent (44), the attack rates in the
age-stratified data we retrieved did not vary with age
(Web Figures 2 and 3 (http://aje.oxfordjournals.org/)). This
is paradoxical and may reflect age-related differences in
susceptibility or case ascertainment. Such effects are diffi-
cult to study using the limited age-stratified data available;
therefore, we restricted our analyses to data which were not
age-stratified.

Estimates of R0 using the final size of the epidemic. R0

was estimated for the corresponding data sets (1–6, 22–35)
using the equation (42)

R0 ¼
N � 1

C

XS0
i¼Sfþ1

1

i
; ð1Þ

where N is the population size, C is the number of infected
persons or clinical cases (depending on the data set) re-
corded during the wave, and S0 and Sf are the numbers of
persons considered to be susceptible in the population at the
beginning and end of the wave, respectively.

The standard error (SE) of R0 was calculated as (42)

SEðR0Þ ¼
N � 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS0

i¼Sfþ1

1/i2 þ CR0
2

ðN � 1Þ2

vuut : ð2Þ

Rn was estimated as Rn ¼ R0s, where s is the proportion of
the population that is susceptible to infection at the begin-
ning of the wave. We calculated 95% confidence intervals
for Rn by multiplying the respective limits on R0 by the
proportion susceptible.

Estimates of R0 using the growth rate of the
epidemic. For each epidemic curve (1, 2, 6–9, 22, 23,
35–40; Web Figure 1), Rn was estimated using the equation
(43)

Rn ¼ K2LDþ K
�
L þ D

�
þ 1; ð3Þ

where L and D are the durations of the latent and infectious
periods, respectively, and K is the growth rate in the cumu-
lative number of cases reported during the exponential
growth phase of the epidemic (calculated as the gradient
of the straight line fitted to the natural logarithm of the
cumulative number of cases during this phase). We esti-
mated the length of this phase for each data set (Tables 1
and 2) by visually inspecting the plot of the natural loga-
rithm of the cumulative number of cases against time. The
latent and infectious periods were each assumed to last 2 days,
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Table 2. Data Sets From Confined Settings Used in Analyses of the H3N2 Influenza Pandemic of 1968

Setting Wave
Observation

Perioda
Case Definition/
Source of Data

% of Population
Meeting Case
Definitionb

No. of
Persons
Meeting
Case

Definition

Size of Eligible
Population

% of
Population

Susceptible to
Infection at
Beginning of

Wave

Method
Used to

Estimate R0

USS Finch, Hong
Kong (28)

1 August 2, 1968–
August 26, 1968

�4-fold increase in HI and/or
complement-fixing antibody
titer among men providing
3 serum samples during an
outbreak aboard a US naval
vessel after arrival in Hong Kong

48 47 97 100c Final size

Medical conference,
Teheran, Iran (34)

1 September 7, 1968–
September 15, 1968

Reported general and local
symptoms with or without
fever reported through a
questionnaire survey of
attendees following an
outbreak at a medical
conference

35 296 844 99d Final size

Japanese Self-Defense
Forces camps (29)

1 April 1969 �4-fold increase in HI antibody
titer since October 1968 in a
serologic survey of randomly
selected persons in Japanese
Self-Defense Forces camps

37 495 1,325 100c Final size

Japanese primary
school (29)

1 November 1968 Hong Kong antibody titer �1:128
in a serologic survey of children
in an ‘‘epidemic’’ primary school
class

69 33 48 100c Final size

Fuchu sanatorium,
Japan (29)

1 April 1969 �4-fold increase in antibody titer
since February 1969 or single
titer �1:128 in a serologic survey
of patients

19 22 114 100c Final size

Nakano sanatorium,
Japan (29)

1 May 1969 �4-fold increase in antibody titer
since February 1969 or single
titer �1:128 in a serologic survey
of patients and staff

34 202 593 100c Final size

Japanese Ground Self-
Defense Forces (30)

1 May 1969 �4-fold increase in HI antibody titer
since October 1968 in a control
group living in different barracks
than the vaccinated group in a
clinical trial of Hong Kong influenza
vaccine among soldiers

63 57 90 100c Final size

Elderly care home,
Philadelphia,
Pennsylvania,
United States (35)

1 November 1968 ILI in residents during an outbreak
of Hong Kong influenza

31 255 824 100c Final size

Children’s home,
North Carolina,
United States (31)

1 December 1968 Admission to infirmary with �4-fold
increase in complement-fixing or
HI antibody titer, or other serologic
evidence of infection

15d 41 277 100c,d Final size
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consistent with experimental data (see references in the article
by Vynnycky et al. (15)). R0 was estimated using the equa-
tion R0 ¼ Rn/s. We calculated 95% confidence intervals for
Rn (and hence R0) from the 95% confidence limits on K.

Equation 3 assumes that the latent and infectious periods
follow the exponential distribution; however, in previous
analyses of several H1N1 pandemic influenza data sets, in-
vestigators found that R0’s in most cases were very similar,
irrespective of whether an exponential or tight distribution
of the latent and infectious periods was assumed (15). We
also used the expression eKTg (where Tg is the generation
time), which provides an upper bound for Rn (45), to assess
whether we had underestimated Rn.

All persons in a given setting were assumed to be suscep-
tible to infection before the first pandemic wave, unless there
was evidence to the contrary (e.g., data on pre-epidemic
seropositivity) from the same setting or a similar setting
(Tables 1 and 2). The proportion susceptible at the start
of the second wave was also based on serologic data (see
Tables 1 and 2). For Guatemala and Khartoum, Sudan, se-
rologic data were unavailable, and 50% of persons were
assumed to be susceptible at the start of the second wave,
which is plausible given the proportion of persons who were
seropositive after the first wave elsewhere (Web Figure 4
(http://aje.oxfordjournals.org/)).

To explore the sensitivity of our estimates of R0 and Rn to
assumptions about the proportion initially susceptible, all
analyses were repeated assuming that 100% and 50% of
each population was susceptible at the start of the first and
second waves, respectively.

RESULTS

Proportions infected and clinical attack rates

The proportion of persons with serologic evidence of in-
fection after the first wave of the 1968 pandemic varied from
15% in a North Carolina children’s home to 76% in Japanese
Self-Defense Forces camps (Web Figure 4). After the second
wave, this proportion ranged from 37% in Mombasa, Kenya,
to 74% in São Paulo, Brazil. The corresponding susceptible
attack rates varied from 19% to 58% during the first wave and
from 15% to 50% during the second. Neither the clinical
attack rates nor the susceptible attack rate varied markedly
with age in the settings for which age-stratified data were
available (Web Figures 2 and 3).

Clinical attack rates were generally low (typically 10%–
20%) in open settings, except for Kansas City, Missouri, and
the Panama Canal Zone, where the attack rates were 39%
and 46%, respectively (Web Figure 4). Clinical attack rates
were available for only 2 confined settings; these were
higher (31% and 36%) than the clinical attack rates in most
open settings. Clinical attack rates varied little with age,
except in Doncaster, United Kingdom, where they were
highest in young to middle-aged adults (Web Figure 3).

Basic and effective reproduction numbers

R0 and Rn could be estimated from both the final size and
the growth rate of the respective epidemics in Kansas City
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during the first wave and in Khartoum and Doncaster during
the second (Tables 1 and 2). In all cases, the 2 methods
produced similar estimates. The rest of the estimates of R0

and Rn are considered irrespective of the method used.
For the first wave, Rn was estimated as 1.06–2.01 and

1.08–1.62 in open and confined settings, respectively
(Web Figure 5 (http://aje.oxfordjournals.org/)). The corre-
sponding R0 estimates, allowing for pre-epidemic immunity
as indicated by seropositivity, were 1.06–2.06 and 1.08–1.62
(Figures 1 and 2). The estimates generally appeared similar
irrespective of the time of year or location. There were no
consistent differences between the estimates of R0 in open
and confined settings.

For the second wave, Rn was estimated as 1.08–2.02 in
open settings and as 1.43 (95% confidence interval: 1.23,
1.63) in a single confined setting. The corresponding R0

estimates for the second wave were 1.21–3.58 (open set-
tings) and 1.86 (95% confidence interval: 1.60, 2.12) (con-
fined setting). In all 10 settings for which R0 was estimated
for both waves, the point estimate for the second wave was
higher than that for the first (Table 3). Differences in Rn

between waves were variable (e.g., the point estimate for
the second wave was higher than that for the first in 7 of 10

data sets), since Rn also depends on the proportion of per-
sons who were susceptible at the beginning of the wave.

Our estimates of Rn based on the growth rate were
generally only slightly smaller than the upper bound ob-
tained using the expression eKTg (see Web Table (http://
aje.oxfordjournals.org/)).

Repetition of the analyses using the alternative assump-
tions that 100% and 50% of each population were sus-
ceptible at the beginning of the first and second waves,
respectively, produced R0 estimates of 1.06–2.01 during
the first wave and 1.21–4.22 during the second. The corre-
sponding Rn estimates were 1.06–2.01 and 1.05–2.11 (data
not shown). Again, each second-wave R0 estimate was
higher than the corresponding first-wave estimate, while
changes in Rn between waves were less consistent.

DISCUSSION

Our results extend knowledge of the H3N2 influenza
pandemic, firstly by including data from a much wider geo-
graphic range of settings than has been previously analyzed
and secondly by estimating transmissibility during both
pandemic waves for multiple settings. We found that R0

Figure 1. Estimated basic reproduction numbers (R0) for the 1968 H3N2 influenza pandemic based on the final size or growth rate of the epidemic
in open settings. Estimates are arranged in order of occurrence of the first pandemic wave (indicated by the dates at the bottom of the figure), unless
only second-wave data are shown. The 2 data sets for Epping, New South Wales, Australia, refer to 2 different retrospective surveys. Data from 5
other districts in Czechoslovakia (Tachov, Most, Pilsen, Ústı́ nad Labem, and Sokolov), described in the article by Fedová et al. (39), produced
results similar to the Czech data shown here (range, 1.10–1.19). ILI, influenza-like illness; PHLS, Public Health Laboratory Service; RCGP, Royal
College of General Practitioners; USSR, Union of Soviet Socialist Republics. Bars, 95% confidence interval.
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increased between the 2 waves of the pandemic, being in the
ranges 1.06–2.06 and 1.21–3.58 during the first and second
waves, respectively. We found little geographic or temporal
variation in R0 or Rn within each wave. In contrast with
those found for the 1918 pandemic, our estimates for open
and confined settings differed little, perhaps because we de-
fined ‘‘confined’’ rather broadly; for example, primary
schools and care homes in 1968/1969 would have been less
crowded than the prisons and ships considered for the 1918
pandemic (15).

One of our assumptions was that infection during the first
wave conferred immunity during the second. This was based
on the facts that 1) the proportion of persons who were
seropositive to the prototype Hong Kong virus isolated dur-
ing the first wave increased between the 2 waves (2–5, 46);
2) hemagglutinin did not evolve significantly between the 2
waves (47, 48); and 3) in 1 study, no person with a �4-fold
rise in hemagglutination-inhibiting antibody titer during the
first wave showed evidence of infection during the second
(3).

Our conclusions also depended in part upon the quality of
the data assembled. Data quality was difficult to assess for
some of the data sets. Many of them appeared to be of high
quality, but a few had limitations, such as small sample
sizes, unclear clinical case definitions, or low antibody titers
in serologic case definitions (Tables 1 and 2). We restricted
our estimates of R0 based on the final epidemic size to data
sets with good ascertainment, since these estimates depend
on the completeness of case reporting (estimates based on

the growth rate are sensitive to the completeness of report-
ing only if this changes over time). Clinical data, however,
are subject to misclassification and also will exclude asymp-
tomatic infections. This could have caused us to underesti-
mate R0 based on the final epidemic size from clinical data,
if asymptomatically infected persons were infectious.

For a few of the studies, data on the epidemic curve
during the early stages of the wave were absent (Web Figure
1). These missing notifications were attributed to back-
ground influenza infections or influenza-like illness. The
extent to which this assumption was appropriate was dif-
ficult to determine for Guatemala, since the outbreak of
influenza-like illness was preceded by an epidemic of
Venezuelan equine encephalomyelitis (40). Missing data
late in the epidemic would not affect estimates based on
the growth rate, which use only data from the early stages.

Serologic data, while more specific than clinical data, also
have caveats. Firstly, for 6 of the serologic data sets, infec-
tion was defined using a relatively low hemagglutination-
inhibiting antibody titer (�1:10 or lower). Secondly, pre-
epidemic seropositivity may indicate preexisting cross-
reacting antibody rather than infection with H3N2 influenza
(3, 24). Either of these factors could have caused us to over-
estimate the proportion of persons who were immune at
either the start or the end of the epidemic wave; the net
effect on our estimates of R0 is difficult to predict.

For example, overestimating the proportion immune at
the end of the wave would have caused us to overestimate
the final epidemic size and R0. Overestimating the

Figure 2. Estimated basic reproduction numbers (R0) for the 1968 H3N2 influenza pandemic based on the final size or growth rate of the epidemic
in confined settings. Estimates are arranged in order of occurrence of the first pandemic wave (indicated by the dates at the bottom of the figure).
The 2 data sets for Japanese Self-Defense Forces camps refer to 2 different serologic surveys. Bars, 95% confidence interval.
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proportion immune at the start could have led to underesti-
mation of the epidemic size and R0. It could also have
caused us to underestimate the proportion of persons in
the population who were responsible for generating the
cases during the epidemic, leading to an overestimate in R0.

We excluded data sets involving vaccinated persons
wherever possible. However, the limited quantities of vac-
cine available during the first wave are not believed to have
significantly affected the outbreaks in the United Kingdom
or the United States (2, 49). No other large-scale interven-
tions or behavior changes were mentioned in the source
papers (where data referred to intervention trials, we in-
cluded only the control groups), but people may have reac-
tively reduced their social mixing, as apparently happened
during the 1918 pandemic (50). Successful interventions, if
implemented, would have reduced the epidemic size, lead-
ing us to underestimate R0 on this basis. However, they
probably would have been introduced too late to affect our
estimates based on the growth rate, which used only data
from the epidemic’s early stages.

To our knowledge, only 1 previous study has assessed the
transmissibility of H3N2 influenza during both pandemic
waves (19). Using general practice consultation data from
England and Wales, Hall et al. (19) found that Rn increased
slightly from 1.28 during the first wave to 1.56 during the
second. This is broadly consistent with our estimates of Rn

for this setting (nationally and subnationally), which ranged
from 1.10 to 1.30 during the first wave and from 1.19 to 2.02
during the second. While we estimated that R0 increased
between waves in all settings for which data on both waves

were available, it is unclear whether this conclusion is gen-
eralizable to other settings: It is possible that in some set-
tings, only 1 wave occurred or a second wave occurred but
was not reported.

Changes in transmissibility have been examined for suc-
cessive waves of the 1918 H1N1 pandemic. In Geneva,
Switzerland, R0 was estimated to increase from 1.49 during
the first wave to an Rn of 3.75 during the second wave (14).
In Scandinavia, transmissibility decreased between waves
(e.g., from 2.2–3.0 for R0 during the first wave to 1.2–1.3
for Rn during the second in Copenhagen, Denmark (16)),
which could be attributable to reductions in both the suscep-
tible population and R0. Other studies of this pandemic found
that R0 decreased (e.g., from 2.1 to 1.8 to 1.5 in successive
waves in England and Wales (13)), showed no clear pattern
(12, 13), or remained relatively unchanged (15).

The increases in R0 between successive waves of the
H3N2 pandemic suggested here might be attributable to at
least 2 factors. First, they could be related to molecular
changes in the virus; for example, drift in the neuraminidase
between the 2 waves has been reported (47, 48) and could
perhaps be associated with increased transmissibility. Sec-
ond, they could be related to the timing of the respec-
tive outbreaks. For example, the first wave in the United
Kingdom began just before Christmas, whereas the larger
outbreaks of the second wave in the United Kingdom and
the first wave in the United States began earlier in the year,
before holidays would have interrupted contact between
people at schools and workplaces. Immunity generated dur-
ing the unusually large first wave in the United States prob-
ably helped to limit the attack rates there during the second
wave. It is interesting that, in Europe and Asia, the majority
of influenza-related deaths occurred during the second
wave, while in North America the first wave had the greater
mortality impact (48). We could not assess whether these
differences were reflected in changes in R0 between the 2
waves, since no suitable second-wave data were identified
for any American setting.

It is unlikely that the apparent increase in R0 between
waves was due to increased ascertainment during the second
wave (e.g., due to greater awareness of the virus), since
increases were observed even using serologic data from
samples submitted for other tests (2–4), for which ascertain-
ment is unlikely to vary between waves.

Our estimates of R0 are lower than many previous esti-
mates for the 1918 (10–16) and 1957 (12, 13, 17) pan-
demics, which is consistent with the correspondingly
smaller size of the 1968 pandemic. Our estimates of R0

for the first wave of the H3N2 pandemic are also lower than
the 2 previous estimates for this wave (20, 21), which were
derived from models describing the global spread of influ-
enza; Rvachev and Longini (20) and Longini et al. (51)
estimated R0 as 3.10, and Cooper et al. (21) estimated it
as between 0.5–1.5 and 2.5–3.5. Both sets of investigators
assumed that approximately 60% of the global population
was initially susceptible. We generally assumed that the
proportion susceptible was higher than this, based on the
available serologic data for each setting. Using the figure
of 60% for the data sets for which this was possible would
produce estimates of R0 for the first wave of 1.76–3.35,

Table 3. Changes in the Basic Reproduction Number (R0) Between

Waves of the H3N2 Influenza Pandemic of 1968

Setting
First Wave Second Wave

R0 95% CI R0 95% CI

United Kingdom
(RCGP data)

1.26 1.24, 1.28 2.08 2.04, 2.12

United Kingdom
(survey of PHLS
samples)

2.00 1.57, 2.43 2.78 2.33, 3.23

United Kingdom
(laboratory reports
to PHLS)

1.44 1.42, 1.46 2.66 2.43, 2.90

England and Walesa 1.26 1.24, 1.28 2.42 2.05, 2.82

Scotland 1.37 1.32, 1.42 2.16 2.04, 2.28

Lambeth, London,
United Kingdom

1.54 1.13, 1.95 2.77 1.93, 3.61

São Paulo, Brazil 2.06 1.77, 2.35 3.58 1.95, 5.21

Sydney, New South
Wales, Australia

1.31 1.04, 1.58 2.04 1.59, 2.49

Epping, New South
Wales, Australia

1.16 0.92, 1.41 2.12 1.78, 2.46

Royal Air Force
bases, England

1.13 0.89, 1.37 1.86 1.60, 2.12

Abbreviations: CI, confidence interval; PHLS, Public Health Labo-

ratory Service; RCGP, Royal College of General Practitioners.
a First-wave estimate was based on clinical data; second-wave

estimate was based on laboratory reports.
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consistent with these previous estimates. Our estimates of
Rn were close to the upper bounds (45); consequently, if our
assumptions about the proportion susceptible are correct,
our estimates of R0 are probably not underestimates. In fact,
if the generation time of H3N2 pandemic influenza was
shorter than the 4 days we assumed (shorter generation
times have been assumed for other influenza viruses (52)
and estimated for H1N1 influenza (53)), the R0 would be
even lower than estimated here.

R0 for the second pandemic wave has been estimated as 2.2
(12) and Rn as 1.85 (12), 1.8 (13), or 1.56 (19). Other analyses
of the second wave implied an R0 of 3.5 in England andWales
and an R0 of 3.5 or 4.9 in Greater London (11, 18; Ben
Cooper, Health Protection Agency, United Kingdom, unpub-
lished observations). Most of our R0 estimates for the second
wave lie within the range of these previous estimates.

It is possible that H1N1 influenza will cause a second
wave of infection, and it is difficult to predict whether the
virus will continue to behave as it has done thus far. Our
results indicate that pandemic influenza viruses may be-
come more transmissible between successive waves, and
this possibility should be considered in mitigation strategies.

Editor’s note: Reference 54 is cited in the legend of Web
Figure 3 (http://aje.oxfordjournals.org/).
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