

Shi, J; Levinson, DF; Duan, J; Sanders, AR; Zheng, Y; Pe'er, I; Dudbridge, F; Holmans, PA; Whittemore, AS; Mowry, BJ; Olincy, A; Amin, F; Cloninger, CR; Silverman, JM; Buccola, NG; Byerley, WF; Black, DW; Crowe, RR; Oksenberg, JR; Mirel, DB; Kendler, KS; Freedman, R; Gejman, PV (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460 (7256). pp. 753-7. ISSN 0028-0836 DOI: https://doi.org/10.1038/nature08192

Downloaded from: http://researchonline.lshtm.ac.uk/3681/

DOI: 10.1038/nature08192

Usage Guidelines

 $Please \ refer \ to \ usage \ guidelines \ at \ http://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$

Available under license: Copyright the publishers

LETTERS

Common variants on chromosome 6p22.1 are associated with schizophrenia

Jianxin Shi¹, Douglas F. Levinson¹, Jubao Duan², Alan R. Sanders², Yonglan Zheng², Itsik Pe'er³, Frank Dudbridge⁴, Peter A. Holmans⁵, Alice S. Whittemore⁶, Bryan J. Mowry⁷, Ann Olincy⁸, Farooq Amin⁹, C. Robert Cloninger¹⁰, Jeremy M. Silverman¹¹, Nancy G. Buccola¹², William F. Byerley¹³, Donald W. Black¹⁴, Raymond R. Crowe¹⁴, Jorge R. Oksenberg¹⁵, Daniel B. Mirel¹⁶, Kenneth S. Kendler¹⁷, Robert Freedman⁸ & Pablo V. Gejman²

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5-1%, with high heritability (80-85%) and complex transmission¹. Recent studies implicate rare, large, high-penetrance copy number variants in some cases², but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 ($P = 9.54 \times 10^{-9}$). This region includes a histone gene cluster and several immunityrelated genes-possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.

The symptoms and course of schizophrenia are variable, without forming distinct familial subtypes¹. There are positive (delusions and hallucinations), negative (reduced emotions, speech and interest), and disorganized (disrupted syntax and behaviour) symptoms, as well as mood symptoms in many cases. Onset is typically in adolescence or early adulthood, and rarely in childhood. The course of illness can range from acute episodes with primarily positive symptoms to the more common chronic or relapsing patterns often accompanied by cognitive disability and histories of childhood conduct or developmental disorders.

To search for common schizophrenia susceptibility variants, we carried out a genome-wide association study (GWAS) in cases from three methodologically similar National Institute of Mental Health repository-based studies, and screened controls from the general population. Cases were included with diagnoses of schizophrenia or (in 10% of cases) schizoaffective disorder, with the schizophrenia syndrome present for at least six months, genotyped with the Affymetrix 6.0 array. Because the frequencies of tag SNPs and disease susceptibility alleles can vary across populations, we carried out a primary analysis of the larger MGS European-ancestry sample (2,681 cases, 2,653 controls), and then further analyses of the Affrican-American sample (1,286 cases, 973 controls) and of both of these samples combined, to test the hypothesis that there are alleles that influence susceptibility in both populations. All association tests were corrected using principal component scores indexing subjects' ancestral origins. Genotypic data were imputed for additional HapMap SNPs in selected regions.

These analyses did not produce genome-wide significant findings at a threshold of $P < 5 \times 10^{-8}$ (see Supplementary Methods). Table 1 summarizes the best results in the European-ancestry and African-American analyses. The strongest genic findings were in *CENTG2* (also known as AGAP1; chromosome 2q37.2, $P = 4.59 \times 10^{-7}$) in European-ancestry subjects, and in *ERBB4* (2q34, $P = 2.14 \times 10^{-6}$) in African-American subjects. Common variants in *ERBB4* (the strongest signal in African-American subjects) and its ligand neuregulin 1 (*NRG1*) have been reported to be associated with schizo-phrenia³. Further information about results in previously reported schizophrenia candidate genes is provided in Supplementary Results 3 and Supplementary Data 2.

As shown in Supplementary Table 17, power was adequate in the MGS European-ancestry sample to detect very common risk alleles (30–60% frequency, log additive effects) with genotypic relative risks of approximately 1.3, with lower power in the smaller African-American sample. The results indicate that there are few or no single common loci with such large effects on risk. The lack of consistency between the European-ancestry and African-American analyses could be due to low power, but new genome-wide analyses presented in the companion paper by the International Schizophrenia Consortium (ISC)⁴ (discussed further later) suggest that although there is substantial overlap between the sets of risk alleles that are detected by GWAS in pairs of European-ancestry samples, much less

¹Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94304, USA. ²Center for Psychiatric Genetics, NorthShore University HealthSystem Research Institute, Evanston, Illinois 60201, USA. ³Department of Computer Science, Columbia University, New York, New York 10027, USA. ⁴Medical Research Council-Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK. ⁵MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Heath Park, Cardiff CF23 6BQ, UK. ⁶Department of Health Research and Policy, Stanford University, Stanford, California 94304, USA. ⁷Queensland Centre for Mental Health Research, and Queensland Institute for Medical Research, Brisbane, Queensland 4072, Australia. ⁸Department of Psychiatry, University of Colorado Denver, Aurora, Colorado 80045, USA. ⁹Department of Psychiatry and Behavioral Sciences, Atlanta Veterans Affairs Medical Center, and Emory University, Atlanta, Georgia 30322, USA. ¹⁰Department of Psychiatry, Washington University, St Louis, Missouri 63110, USA. ¹¹Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA. ¹²School of Nursing, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA. ¹³Department of Psychiatry, University of California at San Francisco, California 94143, USA. ¹⁴Mental Health Clinical Research Center, and Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA. ¹⁵Department of Neurology, School of Medicine, University, Cambridge, Massachusetts 02142, USA. ¹⁷Departments of Psychiatry, and Human Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

Table 1 MGS GWAS recults

SNP	Chromosome/ band	Location (bp)	Odds ratio	P value	Gene(s)	Function/relevance
European-ancest	ry analysis					
rs13025591	2q37.2	236460082	1.225	4.59×10^{-7}	CENTG2	GTPase activator; deletions reported in autism cases ¹⁴
rs16941261	15q25.3	86456524	1.255	8.10×10^{-7}	NTRK3	Tyrosine receptor kinase; MAPK signalling
rs10140896	14q31.3	88288291	1.216	$9.49 imes 10^{-7}$	EML5	Microtubule assembly
rs17176973	5p15.2	10864474	1.679	2.16×10^{-6}		(50 kb upstream of DAP ; mediates interferon- γ -induced cell death)
rs17833407	9p21.3	21738320	0.804	3.02×10^{-6}		(54 kb upstream of <i>MTAP</i> ; enzyme involved in polyamine metabolism)
rs1635239	Xp22.33	3242699	0.790	3.04×10^{-6}	MXRA5	Cell adhesion protein
rs915071	14q12	31503609	0.834	3.94×10^{-6}		(102 kb downstream of NUBPL; nucleotide binding protein-like)
rs11061935	12p13.33	1684035	0.773	4.06×10^{-6}	ADIPOR2	Adiponectin (antidiabetic drug) receptor
rs6809315	3q13.11	107360155	0.828	$7.58 imes 10^{-6}$		
rs1864744	14q31.3	88020759	0.828	7.59×10^{-6}	PTPN21	Regulation of cell growth and differentiation
rs1177749	10q23.33	97887981	0.835	1.29×10^{-5}	ZNF518	Regulation of transcription
rs17619975	6p22.3	15510731	0.611	1.49×10^{-5}	JARID2	Neural tube formation; histone demethylase; adjacent to DTNBP1 (candidate gene)
African-America	n analvsis					
rs1851196	2a34	212178865	0.733	2.14×10^{-6}	ERBB4	Neuregulin receptor
rs3751954	17q25.3	75368080	0.528	4.59×10^{-6}	CBX2	Polycomb protein; histone modifications, maintenance of transcriptional repression
rs10865802	3p24.2	25039902	1.330	6.73×10^{-6}		
rs17149424	9q34.13	134523705	1.680	8.00×10^{-6}	DDX31	RNA helicase family; embryogenesis
rs2162361	10q23.31	90037689	2.020	$9.19 imes 10^{-6}$	RNLS	Degrades catecholamine (regulation of vascular tone)
rs17149524	9q34.13	134546628	1.642	$9.59 imes 10^{-6}$	GTF3C4	Required for RNA polymerase III function
rs2587562	8q13.3	73153592	1.301	1.56×10^{-5}	TRPA1	Cannabinoid receptor (cannabis may ↑ schizophrenia risk¹); pain, sound perception
rs4316112	8p12	32539889	0.564	1.59×10^{-5}	NRG1	Neuregulin 1: schizophrenia candidate gene: neuronal development
rs4732838	8p21.1	28098106	0.768	1.68×10^{-5}	ELP3	Histone acetyltransferase, RNA polymerase III elongator
rs9927946	16p13.2	8990868	0.718	1.70×10^{-5}		(26 kb upstream of UPS7; ubiquitin fusion protein cleavage; induction of apoptosis)
rs13065441	3q26.2	172478029	0.626	1.94×10^{-5}	TNIK	Stress-activated serine/threonine kinase
rs2729993	8p12	34116593	0.687	2.14×10^{-5}		

Shown are the top 12 results (excluding duplicates—SNPs in the same genes or regions with less significant results) of the MGS European-ancestry (2,681 cases, 2,653 controls) and African-American (1,286 cases, 973 controls) MGS GWAS analyses. Listed are genes within 10 kb of the SNP and annotated information on possible functional relevance; or (in parentheses), information on genes within 150 kb. The odds ratio is for the tested allele (see Supplementary Data 2). Supplementary Data 1 contains results for all SNPs with *P* < 0.001, and full gene names. Results of a further exploratory analysis that combined the two data sets are summarized in Supplementary Results 1, Supplementary Table 18 and Supplementary Data 1.

overlap is seen between European-ancestry and African-American samples. This could be because there are actually major differences between the sets of segregating common disease variants in these two populations, and/or because many risk variants are tagged by different GWAS markers or not adequately tagged by the GWAS array, which has poorer coverage of alleles that are more frequent in African populations. The hypothesis underlying our combined analysis, on the other hand, was that there could also be allelic effects common to these populations.

For many common diseases, common risk alleles with genotypic relative risks in the range of 1.1 to 1.2 have been detected when samples were combined to create much larger data sets⁵. Therefore, we carried out a meta-analysis of European-ancestry data with two other large studies: the ISC (3,322 cases, 3,587 controls) and the SGENE consortium (2,005 cases, 12,837 controls). Note that because the Aberdeen sample was part of both the ISC and SGENE consortia, Aberdeen data were excluded from SGENE association tests for the meta-analysis. To identify the regions containing the strongest findings across the three studies (which used several Affymetrix and Illumina genotyping platforms), each group created a list of the SNPs with the best Pvalues in its final analysis (for example, those with P < 0.001 in MGS), and provided the other groups with its Pvalues for the SNPs on their lists, on the basis of the genotyped or imputed data or data for the best proxy based on linkage disequilibrium. On the basis of these initial results, all available data for genotyped SNPs and imputed HapMap II SNPs were then shared for regions of interest, of which four emerged from the Europeanancestry data: 1p21.3 (PTBP2), 4q33 (NEK1), 6p22.1-6p21.31 (extended major histocompatibility complex (MHC) region) and 18q21.2 (TCF4). We then combined Pvalues for all SNPs in each region by appropriately weighting Z scores for sample size, accounting for the direction of association in each sample.

In the meta-analysis of European-ancestry MGS, ISC and SGENE data sets, seven SNPs on chromosome 6p22.1 yielded genome-wide significant evidence for association. These SNPs span 209 kilobases (kb) and are in strong linkage disequilibrium $(r^2 > 0.9)$, with substantial linkage disequilibrium across 1.5 megabases (Mb) (Table 2 and Fig. 1). Because of the strong linkage disequilibrium among these SNPs, it is unclear whether the signal is driven by one or several genes, by intergenic elements, or by longer haplotypes that include susceptibility alleles in many genes. The region includes several types of genes of potential interest. The strongest evidence for association was observed in and near a cluster of histone protein genes, which could be relevant to schizophrenia through their roles in regulation of DNA transcription and repair^{6,7} or their direct role in antimicrobial defence⁸. Other genes in the broad region are involved in chromatin structure (HMGN4), transcriptional regulation (ABT1, ZNF322A and ZNF184), immunity (PRSS16; the butyrophilins⁹), G-protein-coupled-receptor signalling (FKSG83) and in the nuclear pore complex (POM121L2), although the functions of many genes in the region (and of intergenic sequence variants) are not well understood.

P values of less than 10^{-7} were also observed in the meta-analysis in *HLA-DQA1* (*P* = 6.88 × 10^{-8} , Table 2), suggesting autoimmune mechanisms. This gene is in the class II HLA region, which is not in linkage disequilibrium with 6p22.1 in the MGS sample. We note also that the MGS GWAS (see Supplementary Data 1, European-ancestry results) produced some evidence for association in the *FAM69A-EVI-RPL5* gene cluster, which has been implicated in multiple sclerosis, a DQA-associated autoimmune disorder¹⁰.

Furthermore, in an analysis reported in the companion paper by the ISC⁴, case-control status in the MGS sample could be predicted with very strong statistical significance on the basis of an aggregate test of large numbers of common alleles, weighted by their odds ratios in the single-SNP association analysis of the ISC sample (see ref. 4 for

Table 2 Met	a-ana	lysis results i	n the ext	mg MG	HC class I S freqs	and II regions	Ρ	alues			Odds ratio	s		nformation			
rs ID	No.	þþ	A1/2	Ctrl	Cases	Comb	MGS	ISC	SGENE	MGS	ISC	SGENE	MGS	ISC	SGENE	Band	Gene(s) (location)
rs6939997 rs13199775 rs9461219	т о ю	25929203 25936761 25944906	T/C T/A G/C	0.089 0.087 0.087	0.080 0.075 0.075	$\begin{array}{c} 4.90 \times 10^{-7} \\ 1.19 \times 10^{-7} \\ 4.72 \times 10^{-7} \end{array}$	$\begin{array}{c} 1.40 \times 10^{-1} \\ 5.12 \times 10^{-2} \\ 4.99 \times 10^{-2} \end{array}$	5.66×10^{-4} 5.66×10^{-4} 2.68×10^{-3}	$\begin{array}{c} 2.85 \times 10^{-4} \\ 2.57 \times 10^{-4} \\ 2.52 \times 10^{-4} \end{array}$	0.900 0.869 0.868	0.785 0.785 0.826	0.712 0.710 0.710	0.978 0.999 1.000	0.851 0.851 1.000	0.955 0.956 0.956	6p22.2 6p22.2 6p22.2	SLC17A1 (intr) SLC17A1 (intr) SLC17A1 (up),
rs9467626 rs2072806	4 v	25981725 26493072	A/C G/C	0.091 0.115	0.080 0.097	1.65×10^{-7} 9.27×10^{-7}	$5.32 imes 10^{-2}$ $5.91 imes 10^{-3}$	$7.47 imes 10^{-4}$ $2.80 imes 10^{-4}$	2.68×10^{-4} 3.40×10^{-2}	0.872 0.836	0.784 0.814	0.710 0.857	0.988 0.959	0.806 1.000	0.959 0.971	6p22.2 6p22.1	SLC1/A3 (dWn) SLC17A3 (intr) BTN3A2 (dWn),
rs2072803	9	26500494	C/G	0.115	0.097	$8.19 imes 10^{-7}$	$5.53 imes 10^{-3}$	$2.80 imes 10^{-4}$	3.23×10^{-2}	0.835	0.814	0.856	0.960	1.000	0.974	6p22.1	BTNZAZ (Intr) BTNZAZ (intr bound), BTNZA1 ()
rs6904071 rs926300 rs6913660	► 8 6	27155235 27167422 27199404	A/G A/C	0.186 0.186 0.184	0.166 0.166 0.164	$\begin{array}{c} \mathbf{1.78 \times 10^{-8}} \\ \mathbf{1.06 \times 10^{-8}} \\ \mathbf{2.36 \times 10^{-8}} \end{array}$	$\begin{array}{c} 1.21\times 10^{-2}\\ 1.22\times 10^{-2}\\ 1.71\times 10^{-2}\end{array}$	3.03×10^{-4} 3.03×10^{-4} 3.03×10^{-4}	3.72×10^{-4} 2.08×10^{-4} 3.35×10^{-4}	0.879 0.879 0.884	0.819 0.819 0.819	0.799 0.791 0.798	0.987 0.989 0.998	0.851 0.851 0.851	0.988 0.988 1.000	6p22.1 6p22.1 6p22.1	HIST1H2AG (up),
rs13219181	10	27244204	G/A	0.183	0.163	$1.29 imes 10^{-8}$	1.47×10^{-2}	3.03×10^{-4}	$2.05 imes 10^{-4}$	0.881	0.819	0.791	0.983	0.851	0.989	6p22.1	HIST1H2BJ (dwn)
rs13194053 rs13219354 rs3800307 rs13212931	11 12 13	27251862 27293643 27293771 27313401	A C C C	0.182 0.118 0.205 0.124	0.162 0.102 0.183 0.108	9.54 × 10⁻⁹ 1.12 × 10 ⁻⁷ 4.35 × 10⁻⁸ 1 28 × 10 ⁻⁷	1.45×10^{-2} 3.59×10^{-2} 1.34×10^{-2} 3.09×10^{-2}	3.03×10^{-4} 5.11 × 10^{-4} 3.35×10^{-3} 76×10^{-3}	$\begin{array}{c} 1.48 \times 10^{-4} \\ 4.39 \times 10^{-4} \\ 6.12 \times 10^{-5} \\ 5.3 \times 10^{-4} \end{array}$	0.880 0.877 0.886 0.886	0.819 0.823 0.880 0.880	0.783 0.766 0.787 0.787	0.977 0.994 1.000	0.851 1.000 1.000	0.978 1.000 0.988 0.968	6p22.1 6p22.1 6p22.1	
rs6938200	15 16	27337244 27339129	A/G	0.117	0.102	2.68×10^{-7} 3.02×10^{-7}	4.51×10^{-2} 5.28×10^{-2}	3.96×10^{-4} 2.40×10^{-3}	1.11×10^{-3} 1.51×10^{-4}	0.882	0.874	0.780	1.000	1.000 0.992	0.987	6p22.1 6p22.1	PRSS16 (dwn) PRSS16 (dwn)
rs6932590 rs3800316 rs7746199	17 19	27356910 27364081 27369303		0.240 0.257 0.185	0.215 0.229 0.160	7.13×10^{-8} 3.81 × 10^{-8} 5.03×10^{-8}	3.37×10^{-3} 7.19 $\times 10^{-4}$ 6.85×10^{-4}	2.23×10^{-3} 3.51×10^{-3} 8.77×10^{-4}	8.48×10^{-4} 1.09×10^{-3} 5.70×10^{-3}	0.872 0.856 0.837	0.877 0.886 0.859	0.834 0.834 0.839	0.973 0.975 1.000	0.933 0.956 1.000	1.000 0.977 1.000	6p22.1 6p22.1 6p22.1	
rs3800318 rs16897515	20 21	27385999 27385999	A/C	0.180 0.173	0.154 0.154	6.38×10^{-7} 1.83×10^{-7}	2.80×10^{-2} 1.22×10^{-2}	8.82×10^{-4} 6.40×10^{-4}	2.21×10^{-3} 2.16×10^{-3}	228.0 0.876	0.853	0.822 0.816	0.998 1.000	1.000 1.000	0.972 0.972	6p22.1 6p22.1	POM121L2
rs13195040 rs10484399 rs17693963 rs776351 rs12182446	22 24 25 25	27521903 27642507 27818144 27834710 27853717	G/A C/A A/C	0.087 0.091 0.101 0.255 0.247	0.076 0.080 0.085 0.236 0.227	$\begin{array}{c} 2.50 \times 10^{-7} \\ 3.50 \times 10^{-7} \\ 3.51 \times 10^{-7} \\ 3.22 \times 10^{-7} \\ 4.77 \times 10^{-7} \end{array}$	$\begin{array}{c} 1.04 \times 10^{-1} \\ 1.09 \times 10^{-1} \\ 2.87 \times 10^{-2} \\ 2.83 \times 10^{-2} \\ 2.99 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.00 \times 10^{-5} \\ 8.58 \times 10^{-6} \\ 6.00 \times 10^{-5} \\ 1.13 \times 10^{-4} \\ 7.17 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.82 \times 10^{-3} \\ 8.69 \times 10^{-3} \\ 8.85 \times 10^{-3} \\ 6.51 \times 10^{-3} \\ 1.22 \times 10^{-2} \end{array}$	0.892 0.895 0.864 0.905 0.905	0.714 0.762 0.781 0.855 0.850	0.768 0.795 0.795 0.865 0.874	1.000 1.000 1.000 0.999	1.000 1.000 0.993 1.000 1.000	0.983 1.000 0.986 1.000 0.990	6p22.1 6p22.1 6p22.1 6p22.1 6p22.1	ZNF184 (dwn)
rs9272219 rs9272535		32710247 32714734	T/G A/G	0.283 0.283	0.263 0.263	$6.88 imes 10^{-8}$ $8.87 imes 10^{-8}$	1.32×10^{-2} 1.63×10^{-2}	2.24×10^{-5} 2.47×10^{-5}	1.03×10^{-2} 9.92 × 10^{-3}	0.897 0.900	0.847 0.848	0.880 0.879	1.000 1.000	1.000 1.000	0.977 0.977	6p21.32 6p21.32	HLA-DQA1 (up) HLA-DQA1 (intr)
No. refers to the r reported by http; chromosome 6p, Supplementary M. was genotyped or	number ///snpp in the n Aethods ir had a	ing of SNPs in the er.chip.org): dwn neta-analysis of E as regards this th perfect proxy. Ge	linkage dis downstrea uropean-ai reshold). T nes within	sequilibrium am (within 1 ncestry MG he informat 10 kb of a S	diagram in l l0 kb of tran: lS, ISC and S ion content SNP are liste	ig. 1. A1/2, alleles 1 a scribed sequence); ii GENE data (see Tab for the SNP for each: d; see Fig. 1 for more	and 2 (minor/major ntr, intron; intr bour le 1 and Supplemen' study is the imputat e details for 6p22.1.	forward strand); cc id, intron-exon bouu ary Methods). Odd ion r ² reported by M See Supplementary	omb, combined analy ndary; up, upstream s ratios are reportec ACH 1.0 for MGS, ar Data 1 for further n	rsis (meta-a (within 10 h I for the mir nd the PLINh neta-analysi	nalysis) of (b). Shown lor allele. G (and IMPL s results.	the three are data f enome-wi JTE inform	data sets; ct or all SNPs de significal ation measu	I_{1} controls; f with $P < 10^{-}$ it meta-ana re for ISC ar	⁻⁶ in the exi lysis <i>P</i> value id SGENE, ri	r allele freque tended MHC es ($P < 5 \times 10^{-10}$ espectively.	ncies. For SNP locations (as class I and II regions of 0 ⁻⁸) are shown in bold (see 0.000' indicates an SNP that

Figure 1 | Chromosome 6p22.1: genetic association and linkage disequilibrium results in European-ancestry samples. Genome-wide significant evidence for association ($P < 5 \times 10^{-8}$, threshold shown by solid red line, SNPs by large red diamonds) was observed at seven SNPs across 209 kb. *P* values are shown for all genotyped and imputed SNPs (25,900,000–27,875,000 bp) for the meta-analysis of European-ancestry MGS, ISC and SGENE samples (8,008 cases, 19,077 controls). Red circles indicate other SNPs with $P < 5 \times 10^{-7}$. Not shown are two SNPs in *HLA-DQA1* (6p21.32; lowest $P = 6.88 \times 10^{-8}$, 32,710,247 bp; see Supplementary Data 1). Locations are shown for RefSeq genes and *POM121L2*. Pairwise linkage disequilibrium relationships are shown for 26 SNPs with $P < 10^{-7}$ (except that SNPs 5 and 6 are shown, despite slightly larger *P* values, to

details). As expected, results were similar for an analysis with MGS as the discovery sample and ISC as the target (see Supplementary Results 3). As discussed in the ISC paper, the results demonstrate that a substantial proportion of variance may be explained by many common variants, most of them with small effects that cannot be detected one at a time.

We have identified a region of association of common SNPs with schizophrenia on chromosome 6p22.1. Further research will be required to identify the sequence variation in this region that alters susceptibility, and the mechanisms by which this occurs. The results of this meta-analysis and of the aggregate analysis of multiple alleles reported in the ISC paper strongly suggest that individual common variants have small effects on schizophrenia risk, and that still larger samples may be valuable. The larger goal of research in the field will be to detect and understand the full range of rare and common sequence and structural schizophrenia susceptibility variants. Association findings will advance knowledge of pathophysiological mechanisms, even if they initially explain small proportions of genetic variance. Future advances in the knowledge of gene and protein functions and illustrate linkage disequilibrium for that segment; and a SNP in strong linkage disequilibrium with SNPs 25 and 26 is omitted). Linkage disequilibrium was computed from MGS European-ancestry genotyped and imputed SNP data. The signal is poorly localized because of strong linkage disequilibrium: of the seven significant SNPs, 7–8 and 9–11 are in nearly perfect linkage disequilibrium; they are in or within ~30–50 kb of a cluster of five histone genes (*HIST1H2BJ*, *HIST1H2AG*, *HIST1H2BK*, *HIST1H41* and *HIST1H2AH*; 27,208,073–27,223,325 bp). These SNPs are in moderately strong linkage disequilibrium ($r^2 = 0.52$ –0.77) with two other significant SNPs 70–140 kb away, upstream of *PRSS16* (SNP 13) or between *PRSS16* and *POM121L2* (SNP 18). See Table 2 and Supplementary Figs 10 and 11 for further details.

interactions should make it possible to dissect the functional sets of pathogenic variants on the basis of previous hypotheses.

METHODS SUMMARY

Details of MGS subject recruitment and sample characteristics are provided in the Supplementary Methods (section A1). DNA samples were genotyped using the Affymetrix 6.0 array at the Broad Institute. Samples (5.3%) were excluded for high missing data rates, outlier proportions of heterozygous genotypes, incorrect sex or genotypic relatedness to other subjects. SNPs (7% for African-American, 25% for European-ancestry and 27% for combined analyses) were excluded for minor allele frequencies less than 1%, high missing data rates, Hardy–Weinberg deviation (controls), or excessive Mendelian errors (trios), discordant genotypes (duplicate samples) or large allele frequency differences among DNA plates. Principal component scores reflecting continental and within-Europe ancestries of each subject were computed and outliers were excluded. Genomic control λ values for autosomes after quality control procedures were 1.042 for African-American and 1.087 for the larger European-ancestry and combined analyses.

For MGS, association of single SNPs to schizophrenia was tested by logistic regression (trend test) using PLINK¹¹, separately for European-ancestry, African-American and combined data sets, correcting for principal component scores that reflected geographical gradients or that differed between cases and controls, and for sex for chromosome X and pseudoautosomal SNPs. Genotypic data were imputed for 192 regions surrounding the best findings, and for further regions selected for metaanalysis¹². Detailed results are available in Supplementary Data 1 and 2, and complete results are available from dbGAP (www.ncbi.nlm.nih.gov/sites/entrez?db=gap).

Meta-analysis of the MGS, ISC and SGENE data sets was carried out by combining *P* values for all SNPs (in the selected regions) for which genotyped or imputed data were available for all data sets, with weights computed from case-control sample sizes. See the companion papers for details of the ISC and SGENE analyses^{4,13}.

Received 29 May; accepted 10 June 2009.

Published online 1 July; corrected 6 August 2009 (see full-text HTML version for details).

- Tandon, R., Keshavan, M. S. & Nasrallah, H. A. Schizophrenia, "just the facts" what we know in 2008. 2. Epidemiology and etiology. Schizophr. Res. 102, 1–18 (2008).
- Cook, E. H. Jr & Scherer, S. W. Copy-number variations associated with neuropsychiatric conditions. *Nature* 455, 919–923 (2008).
- Arnold, S. E., Talbot, K. & Hahn, C. G. Neurodevelopment, neuroplasticity, and new genes for schizophrenia. *Prog. Brain Res.* 147, 319–345 (2005).
- The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature* doi:10.1038/ nature08185 (this issue).
- Manolio, T. A., Brooks, L. D. & Collins, F. S. A. HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).
- Adegbola, A., Gao, H., Sommer, S. & Browning, M. A novel mutation in JARIDIC/ SMCX in a patient with autism spectrum disorder (ASD). Am. J. Med. Genet. A. 146A, 505–511 (2008).
- Costa, E. et al. Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2, 29–36 (2007).
- Kawasaki, H. & Iwamuro, S. Potential roles of histones in host defense as antimicrobial agents. *Infect. Disord. Drug Targets* 8, 195–205 (2008).
- Malcherek, G. et al. The B7 homolog butyrophilin BTN2A1 is a novel ligand for DC-SIGN. J. Immunol. 179, 3804–3811 (2007).
- Oksenberg, J. R., Baranzini, S. E., Sawcer, S. & Hauser, S. L. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. *Nature Rev. Genet.* 9, 516–526 (2008).
- 11. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and populationbased linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

- Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet. 84, 235–250 (2009).
- Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature doi:10.1038/nature08186 (this issue).
- Wassink, T. H. et al. Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 136B, 36–44 (2005).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank the study participants, and the research staff at the study sites. This study was supported by funding from the National Institute of Mental Health (USA) and the National Alliance for Research on Schizophrenia and Depression. Genotyping of part of the sample was supported by the Genetic Association Information Network (GAIN), and by The Paul Michael Donovan Charitable Foundation. Genotyping was carried out by the Center for Genotyping and Analysis at the Broad Institute of Harvard and MIT with support from the National Center for Research Resources (USA). The GAIN quality control team (G. R. Abecasis and J. Paschall) made important contributions to the project. We thank S. Purcell for assistance with PLINK.

Author Contributions J.S., D.F.L. and P.V.G. wrote the first draft of the paper. P.V.G., D.F.L., A.R.S., B.J.M., A.O., F.A., C.R.C., J.M.S., N.G.B., W.F.B., D.W.B., R.R.C. and R.F. oversaw the recruitment and clinical assessment of MGS participants, and the clinical aspects of the project and analysis. A.R.S., D.F.L. and P.V.G. performed database curation. D.F.L., J.S., I.P., F.D., P.A.H., A.S.W. and P.V.G. designed the analytical strategy and analysed the data. D.B.M. oversaw the Affymetrix 6.0 genotyping, and J.D., Y.Z., A.R.S. and P.V.G. performed the preparative genotyping and experimental work. J.R.O. contributed to the interpretation of data in the MHC/HLA region, and K.S.K. contributed to the approach to clinical data. P.V.G. coordinated the overall study. All authors contributed to the current version of the paper.

Author Information Data have been deposited at dbGaP (http://

www.ncbi.nlm.nih.gov/sites/entrez?db=gap) under accessions phs000021.v2.p1 and phs000167.v1.p1, and the NIMH Center for Collaborative Genetic Studies on Mental Disorders (http://www.nimhgenetics.org) under studies 6, 29 and 29C. The authors declare competing financial interests: details accompany the full-text HTML version of the paper at www.nature.com/nature. Reprints and permissions information is available at www.nature.com/reprints. Correspondence and requests for materials should be addressed to P.V.G. (pgeiman@mac.com).