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Abstract

Background: Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains
unclear what overall reduction in transmission is achievable using currently available tools.

Methods and Findings: We developed an individual-based simulation model for Plasmodium falciparum transmission in an
African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with
parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the
effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated
nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs,
additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine
in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation
rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector–species combinations, and patterns of
seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting
(EIR,3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels
(,1% parasite prevalence in all age-groups) provided usage levels are high and sustained. In two of the moderate-
transmission settings (EIR,43 and 81 ibppy), additional rounds of IRS with DDT coupled with MSAT could drive parasite
prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are
insufficient to reach this threshold. In both high-transmission settings (EIR,586 and 675 ibppy), either unrealistically high
coverage levels (.90%) or novel tools and/or substantial social improvements will be required, although considerable
reductions in prevalence can be achieved with existing tools and realistic coverage levels.

Conclusions: Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the
associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-
transmission settings when vectors are primarily endophilic (indoor-resting), provided a comprehensive and sustained
intervention program is achieved through roll-out of interventions. In high-transmission settings and those in which vectors
are mainly exophilic (outdoor-resting), additional new tools that target exophagic (outdoor-biting), exophilic, and partly
zoophagic mosquitoes will be required.

Please see later in the article for the Editors’ Summary.

Citation: Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, et al. (2010) Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-
Based Evaluation of Intervention Strategies. PLoS Med 7(8): e1000324. doi:10.1371/journal.pmed.1000324

Academic Editor: Sanjeev Krishna, St. George’s Hospital Medical School, United Kingdom

Received March 9, 2010; Accepted July 1, 2010; Published August 10, 2010

Copyright: � 2010 Griffin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Bill & Melinda Gates Vaccine Modeling Initiative, the UK Medical Research Council, Microsoft Research, and the
TransMalariaBloc European Commission FP7 Collaborative project (HEALTH-F3-2008-223736). TDH is funded by an Imperial College Junior Research Fellowship.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: ACG has received payment for advice on malaria transmission modeling from Glaxo SmithKline.

Abbreviations: ACT, artemisinin-combination therapy; EIR, entomological inoculation rate; EPI, Expanded Program for Immunization; GMEP, Global Malaria
Eradication Program; HBI, human blood index; ibppy, infectious bites per person per year; IRS, indoor residual spraying; LLIN, long-lasting insecticide treated net;
MSAT, mass screening and treatment; SP, sulphadoxine-pyrimethamine

* E-mail: a.ghani@imperial.ac.uk

PLoS Medicine | www.plosmedicine.org 1 August 2010 | Volume 7 | Issue 8 | e1000324



Introduction

Over the past five years, dramatic declines in malaria disease

caused by Plasmodium falciparum have been reported across a range

of settings within sub-Saharan Africa. These declines are

associated with increased distribution of long-lasting insecticide-

treated nets (LLINs) and with the switch from a failing drug

regimen to artemisinin-based combination therapies (ACT) as

first-line therapy [1–4]. Whilst this pattern of reducing disease is

encouraging, there remain many countries within Africa that

continue to have a high burden of disease and hence malaria

remains a leading cause of mortality in children under five years of

age [5]. Thus control of the disease, and ultimately elimination of

the parasite in this continent, remain major public health goals.

Eradication of malaria was attempted in the 1950s under the

auspices of the World Health Organization-led Global Malaria

Eradication Program (GMEP) [6]. Notably, Africa was not

formally included in this program despite clear evidence of the

large disease burden within the continent at that time. However,

elimination campaigns were subsequently undertaken on a smaller

scale within Africa, most prominently in two areas of moderate to

high transmission in Nigeria (the Garki project [7,8]) and on the

Kenyan/Tanzanian border (the Pare-Taveta project [9]), but also

periodically in areas of lower transmission including the Kenyan

highlands [10] and the island of Madagascar [11]. These

campaigns included frequent insecticide spraying of houses to

reduce the vector populations and rounds of mass treatment to

reduce the human infectious reservoir. Whilst substantial declines

in infection and disease were observed in all of these campaigns,

the control measures were not sufficient to eliminate the parasite

on a short time scale, and failure to sustain control programs

inevitably led to rebound of infection and disease in later years.

This under-performance was perceived as a lack of success by past

eradication attempts, which may in part be attributed to over-

optimism about what could have been achieved with the tools then

available [12].

Two years ago, following a renewed commitment to malaria

control from donor organizations, the focus shifted again to

malaria eradication as an ultimate goal. Previously, many

countries had already intensified their own malaria control

programs with much success in reducing both the burden of

disease and ongoing transmission [1–4,13,14]. However, Africa

poses the biggest challenge to a global eradication initiative, given

the heterogeneous yet ubiquitous nature of P. falciparum transmis-

sion across much of the continent. Levels of transmission in Africa

range from absent or low in many urban areas, through epidemic

outbreaks in the highlands, to highly seasonal or perennial

transmission in rural areas [15,16]. This variable transmission

pattern is further complicated by local variation in the major

Anopheles vector populations that sustain transmission (principally

An. gambiae s.l. and An. funestus, although approximately 70 relevant

species have been identified worldwide [17]). Of the 47 countries

within sub-Saharan Africa, the majority are currently classified by

WHO/Roll-Back Malaria as being in the control stage and thus

need to scale up interventions to sustain control and reduce the

burden of disease via a reduction in transmission [18]. On the

northern borders of the continent, transmission is already low,

with Egypt and Algeria in the elimination phase and Morocco and

Mauritius having interrupted local transmission. Similarly, in the

southernmost countries, a sustained move towards local control

and potentially elimination in border areas has been agreed upon

via cooperation with neighbouring countries (the ‘‘elimination

eight’’) [19]. On the island of Zanzibar, a highly successful control

program has reduced transmission to very low levels. However, a

recent assessment of the feasibility of moving to elimination

concluded that, whilst it is technically feasible to reduce local

transmission to zero in this setting, the resources, both financial

and operational, required to sustain elimination in the face of

repeated reintroduction from mainland Africa make this a difficult

prospect [20].

Compared to the past campaigns in the 1950s, additional tools

are now available which, combined with sustained policy

commitment, may make local elimination achievable in some

settings and can aid control of disease by dramatically reducing

malaria prevalence in countries with high rates of ongoing

transmission. These include new LLINs, which have increased

killing effects on the vectors compared to traditional nets and are

more durable [21–25], and ACTs, which, through their

gametocytocidal effect, can impact transmission from humans to

vectors [26,27]. In addition, a pre-erythrocytic malaria vaccine,

RTS,S, has shown promising results in Phase II trials [28–34] and

could soon contribute to elimination programs. National control

agencies have varying levels of resources but can rarely implement

all major control interventions at a given time. Understanding how

to choose policy that is appropriate to the local setting is therefore

key to effective control. Whilst the efficacies of most interventions

have been individually evaluated in the field, the impact of

different combinations of these is not clear. Field trials will be

important to inform control policies but will be able to test only a

few of the combinations of interventions in a limited number of

settings.

Mathematical models provide a tool with which to explore the

expected impact of different interventions against malaria, both

individually and in combination, on a range of program endpoints

[26,35–40]. Whilst simple models can provide important general

insights, the heterogeneity in transmission intensity [41–43], the

variability in vector species composition and associated bionomics

[17,35], and the seasonality in vector populations [44] are all

important factors that affect the transmission potential of a site and

the likely impact of intervention packages. We therefore

constructed an individual-based simulation model which captures

these key factors while remaining sufficiently mathematically

tractable to enable the baseline model parameters to be rigorously

fitted to data within a Bayesian framework. The model includes

the suite of current tools most often employed by (or likely to be

employed by) National Malaria Control Programs—namely,

LLINs, IRS, ACTs in case treatment and in mass treatment

campaigns, and a vaccine with characteristics similar to the

RTS,S/AS01 vaccine now in Phase III trials. The principal aim of

the modelling presented here is to explore the potential for current

control measures to reduce parasite prevalence to a low level

(defined here as below a threshold of 1% prevalence across all age

groups detected through microscopy which represents a level

below which surveillance would likely switch to case detection) as

laid out in the control phase of the global elimination framework

[45]. We illustrate our results by applying our model to six well-

characterized transmission sites which represent the full range of

transmission intensity–vector species combinations and seasonality

patterns most commonly observed across Africa.

Methods

Simulation Model for Malaria Transmission Dynamics
We developed a stochastic simulation model for P. falciparum

transmission dynamics in which people are represented as

individuals while vectors are represented as aggregated popula-

tions, stratified by species. The model builds on an earlier

compartmental model which incorporates the acquisition and loss

Strategies to Reduce Malaria
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of immunity to disease and to detectable parasitaemia [46,47], but

is extended to incorporate infection-blocking immunity and

heterogeneity in biting rates. Full technical details are given in

Protocol S1 and the flow diagram is presented in Figure 1A.

Briefly, individuals begin life susceptible (S) to infection but with

partial maternal immunity determined by the level of immunity in

women of childbearing age. Maternal immunity decays in the first

six months of life, thereby increasing susceptibility to disease.

Individuals become infected at a rate determined by the force of

infection in the population (L), which is determined by the ratio of

vectors to humans, the biting rate per mosquito on humans, the

proportion of infectious mosquitoes in the vector population, and

the person’s level of anti-infection immunity. On infection, they

pass through the liver (pre-patent) stage and then either develop

clinical disease (with a probability w determined by their current

level of anti-disease immunity) or develop patent (detectable under

microscopy) asymptomatic infection (12w). Those who develop

clinical disease have a fixed probability (fT) of being treated

successfully (T), in which case they will clear infection and,

depending on the drug, enter (with rate rT) a period of

prophylactic protection (P) before returning (rP) to being

susceptible to new infection. Those who fail treatment (12fT) are

assumed to eventually clear disease (D) and become patently

asymptomatic (A) with rate rD. From patent asymptomatic

infection, individuals will eventually move to a sub-patent stage

(U) which can be an important component of the infectious

reservoir [48], at a rate (rA) that depends on their current level of

anti-parasite immunity. Sub-patent infection is eventually cleared

(rU) and individuals return to being fully susceptible. From all

infected states, acquiring a new infection in the presence of an

existing infection (superinfection) is possible. Rather than explicitly

tracking mixed infections, we assume that the new infection

dominates and thus individuals move to either the clinical disease

or asymptomatic states dependent on their level of anti-disease

immunity. Individuals become infectious to vectors, at differing

rates, in the clinical disease, patent and sub-patent asymptomatic

Figure 1. Transmission model; EIR, prevalence and seasonality; and infectious reservoir. (A) Flow diagram for the human component of
the model. S, susceptible; T, treated clinical disease; D, untreated clinical disease; P, prophylaxis; A, asymptomatic patent infection; U, asymptomatic
sub-patent infection. (B) The relationship between EIR and parasite prevalence in children under 15 y. Solid line: fitted relationship; filled circles: data
representative of this age group; open circles: data from other age groups (mostly younger) used in the model fitting. (C) The relationship between
transmission intensity characterized by EIR and seasonality, defined as the proportion of EIR over a single calendar year that occurs within the peak
three months of transmission. The colours of the markers indicate the different transmission settings and the shapes the species. (D) The estimated
age-specific infectious reservoir for the different transmission settings defined in (C), with the same colours as (C). This is defined as the product of the
age-specific biting rate, age-specific prevalence states (T, D, A, and U), state-specific onward infectivity to mosquitoes and the size of the population
at this age.
doi:10.1371/journal.pmed.1000324.g001
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stages—the states that compose the human infectious reservoir

(Figure 1D). Four types of human immunity are included and

are modelled dynamically. Maternal immunity, which protects

against clinical disease, is assumed to decay exponentially from

birth. Anti-disease immunity, which reduces the probability of

developing clinical symptoms on infection, and infection-blocking

immunity, are both exposure-driven whilst anti-parasite immunity,

in which individuals control parasite densities and thus leave the

patent infection state more quickly, is assumed to develop with

age, conditional on having been exposed.

Three Anopheles vector species (An. gambiae s.s., An. funestus, and

An. arabiensis) are modelled explicitly as the predominant vectors in

the transmission sites that we consider. Vectors begin susceptible

and on taking an infectious bite move into a latent state. From this

they become infectious to humans, with infectivity determined by

their human blood index (HBI) and biting rate and are assumed

never to recover before death. Vector density is assumed to follow

a seasonal pattern as determined by fitting an appropriate

functional form to entomological data from the areas considered

(see Table 1 and Protocol S4).

Model Parameterization
Model parameterization was undertaken in several stages. First,

a literature search was undertaken to formulate prior distributions

for all model parameters. Where there was no information in the

literature, vague priors were used or parameters were fixed if they

could not be identified from subsequent model fitting. The human

model parameters were estimated by fitting the equilibrium model

conditional on EIR using Bayesian Markov Chain Monte Carlo

(MCMC) methods to data on the stationary distributions of

parasite prevalence (by both microscopy and PCR) by age from 34

locations across a wide range of transmission intensities from

Africa (see Protocol S3) and of clinical disease incidence from two

settings in Senegal [49]. Site-specific prior distributions for EIR

were used based on published data ([50] and Protocol S3). By

fitting the model to these data we were able to characterize the

relationship between EIR (ibppy, the number of infectious bites

per person per year) and parasite prevalence (Figure 1B). The

parameters determining the onward transmissibility of the human

infectious stages (clinical disease, patent and sub-patent infection)

to mosquitoes were obtained by model fitting to data from human

feeding studies and the Garki project [7,51–54]. These parameters

combined with parasite prevalence determine the age profile of the

infectious reservoir (Figure 1D) [55,56]. Only age-targeted

strategies are sensitive to this profile. Parameters for the vector

model were taken from the literature. A full listing of model

parameters, their prior and posterior medians, and literature

sources are given in Table S3.1 in Protocol S3. To run the model

in specific settings, data on vector species composition, their

seasonal profile, and the intensity of transmission (EIR) were

extracted from the literature (Table 1, Figure 1C, Figure 2, and

Protocol S4). A functional form was fitted to monthly data on

either EIR or vector density to enable a single seasonal driver

input (emergence of vectors) into the model. Full details of the

settings and the seasonal profile fitting are in Protocol S4.

Interventions
The implementation of each intervention is described briefly

below. Full mathematical details and tables of parameter values

are provided in Protocols S2 and S3.

Long-lasting insecticide-treated nets. We adapted an

existing model [36] to our individual-based framework. Nets are

assumed to have four effects: direct killing of a mosquito that lands

on them, repellency which results in a longer gonotrophic cycle

and possible diversion to a non-human blood host, a direct

protective effect for the individual sleeping under the net, and a

reduction in transmission from infected individuals sleeping under

the net to susceptible mosquitoes. The degree of indoor-biting

(endophagic) behaviour for the different species is incorporated

into the model when assessing the LLIN effect. These behaviours

are assumed to remain constant throughout the intervention.

Indoor residual spraying. IRS was added to the LLIN

model as an additional intervention which can kill mosquitoes as

they rest within the house or repel them before they feed. In the

model the repellency effect extends the duration of the

gonotrophic cycle in the same way as the repellency effect of

LLINs. For IRS the killing effect depends primarily on the indoor-

resting (endophilic) nature of the species as well as its HBI.

Simulations assumed a DDT-like insecticide with a half-life of

6 mo which acts by repelling and killing mosquitoes [57].

Switch to ACT as first-line treatment. Effective treatment

(i.e., treatment which fully clears infection) was assumed to be

given to a proportion of those developing clinical disease.

Treatment failures were not explicitly modelled but are assumed

Table 1. Summary of the six malaria transmission settings considered here.

Country Location Population
Type of
Transmission

Reported
Annual EIR
(ibppy)

Fitted
Annual EIR
(ibppy)

Anopheles Species Relative
Abundance Reference

Cameroon Nkoteng Rural Moderate, perennial 94 81 72% An. funestus; 28% An.
gambiae s.s.

[97]

Democratic Republic
of Congo

Kinkole Rural Moderate, perennial 48 43 Nearly 100% An. gambiae s.s. [98]

Ghana Kassena-Nankana
District

Rural High, seasonal 630 586 60% An. gambiae s.s.; 40% An.
funestus

[99]

Mozambique Matola, Maputo Coastal
suburb of
capital

Moderate, perennial 28 46 42% An. arabiensis; 46% An. funestus
(additional 12% An. coustani are not
considered here)

[100]

Tanzania Matimbwa Rural High, seasonal 703 675 85% An. gambiae s.s.; 10% An.
funestus; 5% An. arabiensis

[101]

Uganda Kjenjojo Kasiina Rural Low 7 3 65% An. gambiae s.s.; 35% An.
funestus

[102]

doi:10.1371/journal.pmed.1000324.t001
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to follow the same infection path as untreated infections. The half-

life of the drugs pre-ACT (where we assume sulphadoxine-

pyrimethamine [SP] was first-line therapy) and following ACT

introduction determine the period of prophylaxis. In addition, the

gametocytocidal effect of ACTs was incorporated as a reduction in

onward infectiousness as in a previous model, based on data from

human-to-mosquito transmission experiments involving treated

patients [27].

Mass drug administration. We considered the impact of a

mass screening and treatment approach (MSAT) using a single

dose of an ACT. We assumed that a rapid diagnostic test (RDT)

would have approximately the same sensitivity as microscopy and

thus all those in the clinical disease or asymptomatic patent

infection stages would receive the drug, but that the uninfected

and sub-patent infected individuals would not. The ACT was

assumed to clear any infection present and provide a period of

prophylactic protection (25 d, corresponding to an artemisinin

coupled with a drug such as SP). The coverage level refers to the

number of individuals screened.

Pre-erythrocytic vaccine. A pre-erythroyctic vaccine was

assumed to reduce the probability of transmission from mosquitoes

to people. It remains unclear whether this lower exposure to

infection will affect the development of anti-disease immunity.

Here we assume that it does but that it has no effect on the

development of anti-infection immunity. Individual vaccine

efficacy was assumed to decay exponentially with a half-life of

3 y. The vaccine is delivered through the Expanded Program for

Immunization (EPI) and given at ages 3–5 mo, or as a mass

vaccination program across all ages every 3 y.

Transmission Settings
We considered the impact of these interventions, individually

and in combination, in six different settings that characterize the

spectrum of transmission patterns of P. falciparum across Africa.

These settings range in transmission intensity from measured EIRs

of approximately 5 to over 500, translating in our model to

parasite prevalence in 2- to 10-year-olds of 14% to 85%. In 2007,

80% of Africa’s population was estimated to reside in an area with

parasite prevalence in 2- to 10-year-olds of .5% and 50% in an

area with prevalence .40% [16]. These specific settings,

summarized in Table 1, Figure 1C, and Figure 2, were chosen

because of the large number of both entomological and clinical

Figure 2. Fitted seasonal profile of EIR for the six transmission settings by vector species. The fitted seasonal profiles of EIR per day and
fitted annual EIR were obtained by fitting a transformed sinusoidal function to reported time series of either EIR or mosquito densities in the settings
(see Protocol S4). Grey, total; red, An. gambiae s.s.; blue, An. funestus; green, An. arabiensis. (A) Nkoteng, Cameroon; (B) Kinkole, DRC; (C) Kassena-
Nankana District, Ghana; (D) Matola, Maputo, Mozambique; (E) Matimbwa, Tanzania; (F) Kjenjojo Kasiina, Uganda.
doi:10.1371/journal.pmed.1000324.g002
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studies undertaken in these areas and to represent patterns of

perennial/seasonal transmission of varying intensity and with

different mixes of Anopheles species. We fitted the model to data

from these settings, which we take as our baseline scenarios.

For each scenario, we present the mean of ten simulation runs in a

population of 10,000 individuals, which was sufficient to approximate

the dynamics in a larger population. The population size was

assumed to be static over time, with age structure based on data from

Tanzania. After introducing infection, the model was run for 50 y to

reach equilibrium representing the situation in the year 2000.

Between 2000 and 2010 we increased the distribution of LLINs from

a baseline of zero coverage to a maximum of 20% coverage [58] and

implemented a switch to ACT as first-line therapy in the year 2000.

Combinations of interventions were then introduced from 2010

onwards. Note that this does not necessarily reflect the true

intervention programs in place in these settings in these years, and

hence model outputs do not directly predict expected patterns in

these settings; rather they give an indication of the likely effectiveness

of the modelled intervention packages in different setting types.

Intervention Package Scenarios
Coverage here is defined as the proportion of individuals

receiving an intervention (for LLINs ownership, for vaccination

those receiving the vaccine, for IRS those that reside in houses

where spraying occurs, and for MSAT the number of individuals

screened). We separately consider the impact of adherence/usage

for LLINs, which is assumed to decay over time. This proportion

of people using LLINs is termed effective coverage. For IRS we

assume no loss of adherence. For MSAT we assume that all those

who are screened and positive on microscopy take the drug.

Similarly, for the vaccine we assume that those offered it accept.

Finally, for all interventions there is a decay in protective efficacy

over time for those who have received and use the intervention.

For LLINs this is due to wear-and-tear and loss of insecticidal

effect. For IRS we model the loss of insecticidal effect. For vaccines

we assume that efficacy declines through waning protection.

Unless stated otherwise we assumed that IRS and MSAT were

given at 80% coverage (the maximum achievable in well-managed

control programs [59]) and the vaccine at 90% coverage (based on

EPI distribution statistics). For the roll-out of LLINs we considered

two realistic scenarios. In the first, distribution was increased

gradually to a maximum of 80% within 5 y and a new net was

distributed to individuals every 5 y. In the second, we assumed

almost immediate distribution at 80% coverage, redistribution

every 5 y, plus delivery of a net to 80% of newborn infants and an

average of 0.75 adults for every infant who receives a net

(Figure 3A). These coverage levels are similar to the targets set for

2010 for scaling up for impact in the Global Malaria Action Plan

[18]. In both scenarios, we assume that LLIN use wanes over time

so that effective coverage is lower. Here we assumed an

exponential decay at a rate 0.2 per year so that after 5 y effective

coverage is approximately 37% of the baseline level. We also

considered the impact of a theoretical (unachievable) maximum of

100% coverage with LLINs coupled with no decay in usage over

time (Figure 3A). Protective efficacy of the nets due to decaying

insecticide efficacy and wear-and-tear was assumed to decay

exponentially with a half-life of 2.64 y (Protocol S3 and [60]). We

did not consider any decay in effective coverage of IRS as we

assumed that coverage remained constant at each round (i.e.,

people do not refuse to have their house sprayed as the

intervention goes on). The protective efficacy of DDT was

assumed to decay exponentially with a half-life of 6 mo (Protocol

S3 and [57]). Adherence to LLINs given receipt was assumed to be

independent of IRS acceptance.

We undertook preliminary runs for IRS and MSAT to identify the

optimal time of year for annual programs. The optimal time was

defined on the basis of providing the maximum reduction in mean

prevalence of parasitaemia across all age groups in year 10 of the

intervention campaign. We found that in those settings which have a

clear seasonal peak in the EIR, it is always optimal to spray just before

the upward trend in EIR. In settings with less seasonality, there is less

difference in impact, but spraying at the start of the main transmission

season tends to remain optimal. In contrast, across most settings, the

optimal time of year to mass treat in terms of reducing overall

prevalence of asexual parasitaemia as an endpoint is at the beginning

of the period of lowest EIR (also shown in [61]), which generally

occurs approximately 2 mo after peak slide prevalence. For scenarios

in which IRS and MSAT were undertaken every 6 mo, they were

implemented at the optimal time of year as defined above, plus 6 mo

thereafter.

Effective coverage and protective efficacy do not alone

determine intervention effectiveness, as they also depend on

whether the same individuals receive multiple interventions or

whether interventions are randomly distributed across the

population. We therefore allowed correlations between repeat

distribution for each individual intervention (where a correlation

of 0 means that redistribution is completely random and of 1 that

redistribution always occurs to those who had previously received

the intervention). We also allowed correlations between receiving

LLINs, IRS, and MSAT. Here a positive correlation means that

individuals who receive one intervention are also more likely to

receive the other (which could reflect access to interventions) whilst

a negative correlation means that those who receive one

intervention tend not to receive the other (which would reflect a

propensity not to use multiple interventions).

As our focus is to consider intervention packages aimed at

reducing transmission, our primary outcome was the annual mean

prevalence of asexual parasitaemia as measured by microscopy in

the whole population up to 25 y following the start of the

intervention program. We chose this rather than prevalence

restricted to children as it enables us to correctly compare age-

targeted interventions. We specifically do not focus on short-term

‘‘predictions’’ or timelines, as our sensitivity analysis shows that

these are highly dependent on parameters relating to the loss of

acquired immunity (which impact the fitted duration of infection).

Currently these parameters are not well-estimated from the

available data (see Section 5.2.1 in Protocol S5, and Box 1).

Furthermore, time scales of impact will inevitably depend on the

speed with which scale-up of interventions occurs and so cannot be

reliably predicted without detailed assessment of local situations.

Software
A user-friendly software package for reproducing the simula-

tions presented here, as well as other potential combinations of the

interventions included in this paper, is freely available to download

from our Web site (http://www1.imperial.ac.uk/medicine/about/

divisions/publichealth/ide/research_groups/malaria/). A short

summary of the interface is provided in Protocol S6.

Results

Continued Scale-Up of LLINs
Continued scale-up of LLINs from the baseline assumption of

20% coverage could potentially reduce transmission across all six

transmission settings, given that the dominant vector species in

these settings are primarily endophagic and their peak biting times

coincide closely with normal sleeping hours [62] (provided changes

in mosquito behaviour in response to the interventions are not
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Figure 3. Impact on parasite prevalence of LLINs alone. (A) Example of the ways in which coverage of LLINs is considered to increase in
various model scenarios. Baseline (blue): our baseline scenario in which 80% coverage is achieved over five years but adherence also decays between
net distribution rounds; rapid (brown): as baseline but with more rapid scale-up to 80% coverage; rapid, no drop-out (green): rapid scale-up to 80%
coverage with no decay in adherence; 100% (yellow): 100% coverage with no decay in adherence (theoretical maximum effect). (B) Model-predicted
impact on parasite prevalence over calendar time of four scenarios for LLIN scale-up combined with an earlier switch to ACT as first-line therapy in
Kjenjojo Kasiina, Uganda. (C) Final parasite prevalence and (D) absolute reduction in parasite prevalence after 15 years of a sustained intervention
program in the six transmission settings with the baseline scenario for LLIN distribution, the rapid scenario for LLIN distribution, and the rapid
scenario with no loss of adherence for LLIN distribution.
doi:10.1371/journal.pmed.1000324.g003
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dramatic). However, the magnitude of the effect will depend not

only on the intensity of transmission in each setting but also how

roll-out is achieved, the final level of coverage, adherence to LLIN

use, and the decay in insecticide effectiveness over time. Figure 3A

shows four potential scenarios for scale-up if nets are redistributed

every 5 y. Theoretically, the greatest impact is achieved with rapid

deployment, 100% coverage, and perfect adherence. However,

even at this unrealistically high level, the efficacy will be less than

its maximum due to decaying effectiveness of the insecticide. Even

at the target coverage levels of 80%, with gradual roll-out and

realistic adherence, effective coverage levels can, on average, be as

low as 50% (Figure 3A). The additional decay in insecticide

efficacy over time can result in protective coverage levels as low as

30%. This is even without the additional limitation of an

interrupted supply chain, which is likely to reduce effective

coverage further [63].

In the low-transmission setting of Kjenjojo Kasiina, Uganda,

the basic reproduction number (R0) is already close to 1 in the

absence of additional interventions. Thus, parasite prevalence can

be reduced to below the 1% threshold over a 15 y time horizon

with LLIN use alone (Figure 3B). However, even in this relatively

low-transmission setting, high levels of coverage and adherence are

required. Furthermore, with decaying adherence in their use it is

likely that transmission will be sustained, albeit at a low level.

Furthermore, if LLINs have a lower killing effect than that

assumed here, our model would predict sustained transmission in

this setting (Figure S5.6 in Protocol S5).

In contrast, in the moderate-transmission settings of Nkoteng

(Cameroon), Kinkole (Democratic Republic of Congo or DRC),

and Maputo (Mozambique), and in the high-transmission settings

of Kassena Nankana District (KND) (Ghana), and Matimbwa

(Tanzania), scale-up of LLINs alone does not reduce parasite

prevalence to below 1%, even over longer time periods (Figure 3C).

We can, however, expect to see dramatic declines in the first five

years of the program followed by an increase to new endemic

levels as levels of immunity in the population change (Figure S5.1

in Protocol S5). The time scale of this rebound is difficult to

ascertain from current data due to uncertainty in the rate of loss of

acquired immunity (see section 5.2.1 in Protocol S5, and Box 1).

In high-transmission settings, with continued scale-up of LLINs

to 80% coverage within five years, the absolute drop in prevalence

is between 5% and 10%. If rapid scale-up occurs and adherence is

sustained, drops in prevalence of 20%–25% can be expected

(Figure 3D). However, despite the smallest relative impact

occurring in the high-transmission settings, because most cases

of infection and disease occur in these settings, the absolute impact

in terms of numbers of infections averted will be greater. Thus, in

terms of reduction in infections per net distributed, impact will be

greatest in these high-transmission settings.

Additional Use of IRS and MSAT
Whilst continued scale-up of LLINs is predicted to reduce

transmission substantially, under realistic assumptions about the

level of coverage and adherence to LLIN use, additional tools will

be necessary in many settings. In Kjenjojo Kasiina, Uganda,

yearly rounds of IRS with DDT combined with continued scale-

up of LLINs to 80% coverage is predicted to locally eliminate

transmission (Figure 4A). Yearly rounds of MSAT as an alternative

to IRS tend to have less impact although this would also achieve a

reduction below the 1% parasite prevalence threshold.

In the moderate-transmission setting of Kinkole, DRC, more

intensive rounds are required. Thus, in this setting, twice yearly

IRS and MSAT are required to reduce parasite prevalence below

the 1% threshold (Figure 4B). In contrast, in the slightly higher-

transmission setting of Nkoteng, Cameroon, this is not sufficient in

itself and additional faster scale-up of LLINs is needed to achieve

this threshold (Figure 4D). In Maputo, Mozambique, in which

transmission intensity as measured by EIR is similar to Kinkole,

DRC and lower than Nkoteng, Cameroon, even these more

intense programs are unable to reduce prevalence below the 1%

threshold (Figure 4C). This is due to the high proportion of

transmission that occurs via An. arabiensis in this setting, whose

more exophilic behaviour reduces the impact of IRS on

transmission. Assuming a lower degree of exophilic behaviour of

this species compared to our baseline assumption, this conclusion

continues to hold (section 5.2.2 in Protocol S5). In all three

moderate-transmission settings, IRS with an insecticide similar to

lambdacyhalothrin (which is less repellent and hence more lethal

but has a shorter half-life than DDT) is predicted to have a lesser

effect on transmission than DDT (Figure S5.7 in Protocol S5).

In both high-transmission settings (KND, Ghana and Ma-

timbwa, Tanzania), current tools are insufficient to reduce parasite

prevalence below the 1% threshold (Figure 4E and 4F; see also

higher levels of adherence and coverage in Figure S5.3 in Protocol

S5, and higher frequency of MSAT in Figure S5.8 in Protocol S5).

However, in both settings, an intense program involving rapid

scale-up of LLINs with sustained adherence and twice-yearly

rounds of MSAT and IRS could result in marked declines in

prevalence from 60% to 10% in the population as a whole

(Figure 4E and 4F). However, in these settings, the interventions

would need to be sustained indefinitely to maintain this new

endemic level. Yearly IRS and MSAT combined with 80%

coverage of LLINs is predicted to reduce parasite prevalence after

15 y to below 10% in moderate transmission settings and below

25% in high-transmission settings (Figure 4G). Again, the absolute

reduction will be greatest in the latter, with a 40%–50% drop in

parasite prevalence in these settings (Figure 4H).

Targeting and Overlap in Intervention Coverage
LLIN distribution programs initially focused on young children

as one of the high-risk groups for developing severe disease.

However, as shown in Figure 5A and elsewhere [23,24], this

strategy is unlikely to have an additional impact on transmission,

because the youngest children tend not to be major contributors to

the infectious reservoir (Figure 1D). However, if limited coverage is

achievable, substantially greater reductions in prevalence could be

Box 1. Uncertain Parameters

Whilst models can be useful tools in setting realistic
expectations for intervention programs, some key param-
eters in our current model are based on limited data.
Further empirical work in these areas could improve future
models. These include:

(a) The duration of natural infection and the extent to which
super-infection prolongs this duration or increases
infectivity;

(b) The rate of acquisition of immunity at different transmis-
sion intensities, and the rate of loss of immunity when
transmission is reduced;

(c) The bionomics of the principal vector species and the
impact of vector-targeted interventions on them;

(d) Detailed data on the speed with which coverage of
interventions is scaled up, heterogeneity in coverage
levels achieved, and the degree of adherence to the
interventions over time.

Strategies to Reduce Malaria

PLoS Medicine | www.plosmedicine.org 8 August 2010 | Volume 7 | Issue 8 | e1000324



Figure 4. Impact of combining LLINs with IRS and MSAT. (A–F) Impact of intervention scenarios incorporating IRS and MSAT on parasite
prevalence in the six transmission settings. All scenarios include the earlier switch to ACT as first-line therapy. ‘‘LLIN only’’ uses the baseline scale-up
for coverage. All other scenarios include LLIN scale-up using the baseline scenario except where noted. (G and H) Final parasite prevalence and
absolute reduction in prevalence after 15 years of a sustained intervention program in the six transmission settings with baseline scenario for LLIN
distribution; baseline LLIN + yearly MSAT; baseline LLIN + yearly IRS; baseline LLIN + yearly MSAT + yearly IRS.
doi:10.1371/journal.pmed.1000324.g004
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Figure 5. The effect of non-random distribution of interventions. (A and B) Parasite prevalence after 15 years of an intervention program as a
function of the target coverage of (A) LLIN distribution and (B) MSAT for Kinkole, DRC. Blue: if the intervention is distributed randomly; green: if the
intervention is preferentially distributed to the youngest children; red: if the intervention is preferentially distributed to those who are bitten most
frequently (excluding age dependency in biting rates). (C and D) Parasite prevalence after 15 years of a single intervention program as a function of
the frequency of the intervention and whether successive rounds are given randomly (green) or to the same people (purple) for Kinkole, DRC. (C) IRS;
(D) MSAT. (E and F) Parasite prevalence in all individuals (red), in 2- to 10-year-olds (blue) and EIR (green) after 15 years of a combined intervention
program as a function of the correlation in receipt of the two interventions for KND, Ghana. A correlation of 0 represents random distribution at each
round, 1 represents those receiving one intervention also receive the other and 21 represents those receiving one intervention do not receive the
other. (E) IRS and LLIN; (F) IRS and MSAT. For (E) and (F) there is 50% coverage per round for IRS and MSAT and the baseline scenario for LLINs.
doi:10.1371/journal.pmed.1000324.g005
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obtained if, for a given level of distribution, nets were targeted

towards those living in the local foci of transmission which impact

strongly on sustaining transmission [38,42,43,64]. Thus in

Kinkole, DRC, in a program of LLIN distribution with a low

20% coverage, if distribution is prioritised to those at highest risk

we could expect a reduction in prevalence after 15 y of

approximately 6% compared to a reduction of 3% if the same

number of nets were distributed randomly. A similar picture

emerges for MSAT programs (Figure 5B), although the effect of

targeting is greater for LLINs because in addition to their direct

protective effect, they kill mosquitoes in proportion to the rate at

which the protected person would have been bitten.

With any intervention, it is likely that the same individuals or

villages will tend to access the intervention at each distribution

round. Thus for example, if 80% coverage of LLINs is achieved,

but at each redistribution the same 80% receive the interven-

tion, then after three rounds of redistribution the percentage of

the population ever receiving an LLIN is 80%. However, if this

80% coverage reflects random distribution, then after three

rounds the percentage of the population ever receiving an LLIN

is 1006(120.260.260.2) = 99.2%. Figure 5C and 5D shows the

predicted effect of rounds of IRS and MSAT between these two

extreme (systematic versus random coverage) scenarios. In both

cases, assuming random distribution results in an overes-

timate of the effect of the intervention, and this difference

increases the more frequently IRS or MSAT is undertaken.

Thus, to optimize program effectiveness it is necessary to ensure

that as wide a proportion of the target population is reached by

the intervention.

In addition to correlations between those who receive an

individual intervention, there is likely to be overlap in those who

are offered different interventions. This is likely to be most strongly

correlated for IRS and LLINs, given the perception of these

interventions as providing direct protection to the individual or

household. A positive correlation will occur if the same individuals

access the interventions. Under these scenarios, we can expect the

least impact of the intervention program (Figure 5E). However, if

uptake is negatively correlated, for example if those who are

offered IRS and LLINs choose only to have one, for the same

overall coverage levels of the individual interventions total

population coverage is increased over and above naı̈ve expecta-

tions assuming both are randomly distributed. This increased total

coverage results in the largest reductions in transmission

(Figure 5E). Similar effects are observed for IRS and MSAT,

although again, this is not as pronounced as for LLINs given that

there is less redundancy between IRS and MSAT than between

two antivectorial measures (Figure 5F).

Additional Impact of RTS,S/AS01 Vaccine
In the low-transmission setting of Kjenjojo Kasiina, Uganda,

RTS,S (when it becomes available) could further reduce

transmission and thus negate the need for additional rounds of

IRS to speed declines. As found by others [65,66], vaccination at

birth under the EPI is expected to have relatively little impact

either with or without additional rounds of MSAT (Figure 6A). If

mass vaccination every 3 y is undertaken as an alternative

alongside the baseline scale-up of LLINs to 80% coverage,

prevalence is predicted to fall to under 1%.

In the moderate transmission settings of Kinkole, DRC

(Figure 6C), Maputo, Mozambique (Figure 6D), and Nkoteng,

Cameroon (Figure 6E), continuation of programs incorporating

IRS and MSAT in addition to LLIN distribution will be needed

even if a vaccine is available. However, with a mass vaccination

program prevalence in all three sites can be driven below 5%. In

Maputo especially, where IRS is predicted to be less effective, an

additional vaccination program has a noticeable further impact on

prevalence. In both high transmission settings (KND, Ghana,

Figure 6F; and Matimbwa, Tanzania, results not shown), mass

vaccination results in modest reductions in prevalence. Across all

transmission settings, a more efficacious vaccine with a longer

duration of protection would further reduce transmission (section

5.2.6 in Protocol S5).

Discussion

If deployed in combination, current interventions can result in

substantial declines in malaria prevalence across a wide range of

transmission settings. Our results show that in areas with relatively

low transmission (EIR,10 ibppy), increased distribution and use

of LLINs, coupled with the switch to an effective ACT as first-line

therapy, could reduce transmission to very low levels if high levels

of coverage and adherence are achieved. Defining low-transmis-

sion areas as those where parasite prevalence in 2- to 10-year-olds

is under 25%, approximately 20%–50% of individuals living in

areas of stable risk of P. falciparum transmission in Africa live in

such settings [16]. Additional use of IRS and/or MSAT in these

settings would speed this reduction and also allow overall parasite

prevalence to be reduced to ,1% even if adherence to LLIN use is

not perfect. These results agree with recent observations made in a

very low transmission setting in Western Kenya, in which the

parasite appears to have been eliminated in an area in which ACT

and LLIN usage have been coupled with IRS rounds [67]. Large

reductions have also been achieved in Zanzibar, where the

preintervention parasite prevalence was 9% in children aged 0 to

5 y and 12.9% in children aged 6 to 14 y [13]. After a switch to

ACT as first-line therapy and high coverage of both LLINs and

IRS rounds from 2003, parasite prevalence in all age groups is

now well below the 1% threshold. The challenge in such settings is

to sustain interventions at a sufficient level to maintain effective

control in the face of reintroduction from neighbouring areas via

human migration and travel.

In some moderate-transmission settings it is also possible to

reduce parasite prevalence below the 1% threshold with existing

tools. In our example settings, this could be achieved in Kinkole,

DRC where the endemic EIR was 48 ibppy if an intensive

program of twice-yearly IRS and MSAT were combined with

increasing LLIN coverage to 80% levels. In the slightly higher

transmission setting of Nkoteng, Cameroon (EIR = 96 ibppy),

current tools could reduce transmission below the 1% threshold

but in this case (perhaps unrealistically) high levels of adherence to

LLIN use would also be needed. Thus the first phase of

elimination programs is achievable in many areas in which the

LLIN and IRS in combination are effective (that is, in areas with

primarily endophilic vectors). Additional use of MSAT, to date not

considered by many programs, has the potential to speed further

declines in prevalence.

We considered one area, Maputo, Mozambique, in which the

high proportion of An. arabiensis (exhibiting a high degree of

exophilic behaviour), made elimination more difficult. Whilst the

scale of the declines that our model predicts are similar to those

observed in an IRS-based campaign in that area (that commenced

in 2000 using Bendiocarb rather than DDT [4]), this study also

demonstrated a greater impact on the population of An. arabiensis

compared to that resulting from our model. This may be because

our estimate of the degree of exophilic behaviour is too high

(see Protocol S3) or because mosquito behaviour changes both

with season and with setting [35,68–71] and requires further

exploration.
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Figure 6. Impact of additional vaccination on parasite prevalence in the different transmission settings. All runs assume the RTS,S
vaccine is 50% efficacious and has a half-life of 3 years. PEV at EPI denotes the pre-erythrocytic vaccine being given through the Expanded Program
on Immunization, whilst mass PEV denotes a mass vaccination campaign. All runs include LLINs. (A) PEV at EPI with or without additional MSAT in
Kjenjojo, Uganda (B) Mass PEV with or without additional MSAT in Kjenjojo, Uganda (C to F) MSAT and IRS with mass PEV in: (C) Kinkole, DRC, (D)
Maputo, Mozambique, (E) Nkoteng, Cameroon and (F) KND, Ghana.
doi:10.1371/journal.pmed.1000324.g006
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In high transmission intensity settings, current tools can be used

to substantially reduce transmission and the associated disease

burden, but are insufficient to drive prevalence below the pre-

elimination threshold. This finding is not surprising given the high

basic reproduction numbers previously estimated in large parts of

sub-Saharan Africa [43]. Such outcomes have been observed in

the Bioko Island control program where, with intensive ongoing

interventions, parasite prevalence in 2- to 5-year-olds fell from

42% to 18% between 2004 and 2008 [14]. Similarly, in the 1970s

Garki project in Nigeria, an area of moderate to high transmission

(annual EIRs in the range 20–130 ibppy), substantial declines in

prevalence were recorded but elimination was not achieved [7]. In

these settings, additional new tools are likely to be required if pre-

elimination targets are to be achieved.

Whilst a detailed comparison of the range of potential tools

under development is beyond the scope of this paper, there are

two broad areas of innovation that merit further consideration.

The first aims to target the mosquitoes that are not reached by

current interventions, particularly those on whom indoor-targeted

interventions are least successful. Notably, this includes major

species such as An. arabiensis, which preferentially rest outdoors

after feeding and may also obtain blood meals from non-human

animals. These mosquitoes could be targeted in a number of ways,

including additional interventions that are applied on non-human

hosts [72], killing adult females feeding or resting outdoors [73–

75], or at source in the larval habitat [76,77]. Secondly, our results

on the levels of human adherence required in high-transmission

settings suggest that interventions that do not strongly depend on

human participation are likely to be needed. The methods

outlined above are examples of such approaches.

Our results confirm findings by others that the bionomics of the

local vector species, including the degree of exophagy, exophily, and

zoophagy [35,36,78], can potentially be a strong determinant of

intervention success. Current tools, in particular LLINs and IRS, are

focused towards species with strong endophagic, endophilic, and

anthropophagic tendencies. Further data on the degree of endophilic

behaviour of the different Anopheles species, coupled with information

on how these parameters may change in response to interventions (we

assumed here that they remain fixed),are critically needed to

understand the longer-term impact of IRS and LLINs on

transmission. Historically, there is some evidence of species

replacement following the introduction of IRS in three different

geographical locations [79]. More recently, a shift in species relative

abundance (though not replacement or increased density) has been

observed in Western Kenya following high coverage of LLINs

[80,81]. In addition, mapping of vector species distribution and

proportional composition [17] is critical to the ability to predict

program success outside of the well-studied research areas.

Behavioural aspects of intervention programs are characterized

in multiple ways. For example, the WHO report bed-net coverage

as the number of nets distributed per person at risk [5], whilst

Malaria Indictor Surveys collect data on the proportion of

households owning a net or sleeping under a net [82]. Our results

demonstrate that patterns of coverage and effective coverage are

an important determinant of intervention success and may be one

reason why simple models of LLIN impact have tended to appear

highly optimistic [35–38]. Furthermore, it is unrealistic to assume

perfect and uniform adherence. Indeed, rates of sleeping under

LLINs tends to be highest in young children, but lower in school-

aged children [83], who are important contributors to the

infectious reservoir (Figure 1). Furthermore, whilst we did not

explicitly consider reduction in adherence or take-up of IRS, this is

likely to occur after repeated rounds as perceived risk declines, and

will reduce the impact of the intervention. Receipt of interventions

is also an important consideration in assessing impact, particularly

if coverage levels are low. It is well recognized that malaria

transmission is highly focal with some individuals at much higher

risk than others [42,43,64,84,85]. Our results confirm other

models’ findings [43,64] that, by targeting interventions at areas of

intense transmission, substantially greater reductions in transmis-

sion are possible than by distributing them randomly or by

focusing distribution towards younger children. However, little

attention has previously been paid to the heterogeneous

distribution of interventions within such target populations. In

general, the impact of an intervention will be lower if the same

individuals in the target population continually receive and adhere

to the intervention than if distribution fully covers the target

population. Thus data on repeat uptake of interventions would be

useful to determine true target population coverage levels.

Furthermore, health systems will need to be strengthened and

laboratory capacity put in place to allow rapid identification of

these foci. In addition, overall coverage levels can potentially be

enhanced through consideration of a wide range of different

delivery mechanisms appropriate to the local setting [86–88].

One aspect with the potential to hinder elimination campaigns

not considered here is the development of resistance—either to

drugs, to the insecticides used to treat nets or for indoor residual

spraying, or to vaccines—and the potential for alterations in the

behaviour of the vector in response to the interventions. Resistance

to DDT was a particular problem during the GMEP and is

credited with being a major reason for the abandonment of the

program. DDT resistance at varying levels has now been reported

in over 50 anopheline species [89]; thus, to reduce the further

emergence of resistance, elimination campaigns should aim to

reduce transmission as rapidly as possible. The recent emergence

of partial drug resistance to artemisinin in Cambodia [90] has

further highlighted the need to guard against and reduce the

emergence and spread of resistance, particularly as access to

treatment is scaled up.

Our model is necessarily a simplification of the more complex

dynamics underlying malaria transmission and control, so

numerical results should be interpreted more as providing intuitive

insight into potential scenarios than as firm predictions of what

might happen in a given setting. Furthermore, whilst we give an

indication of impact over a 25-year time horizon (including graphs

that track expected trends over this period), given the uncertainty

in some of the key parameters, it is not possible to give short-term

indications of impact or timelines. Precise, accurate prediction

remains challenging for a number of reasons. First, the mean

duration of asymptomatic infection, and the dynamics of

acquisition and loss of immunity, are key parameters determining

the speed of decline in parasite prevalence once transmission is

reduced [47]. These are both poorly understood in semi-immune

populations. These parameters also determine the time scale for

which interventions would need to remain in place to ensure that a

rebound in infection and disease does not occur. Current best

estimates of model parameters suggest that this is likely to be

decades rather than months or years, but further data are needed

to refine these estimates.

Second, there are multiple model structures that can reproduce

important characteristics of malaria epidemiology such as the age

patterns of infection prevalence across different transmission

settings. Whilst we have invested substantial effort in developing

a modern statistical framework to better choose between model

structures and to estimate associated model parameters, there are

limited data to distinguish some aspects of the model. In the

current exercise, we have focused on fitting the human model

cycle to a wide range of datasets. This will be extended in future
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applications to fit the full cycle using explicitly seasonal models to

more detailed data from specific research sites. In addition, the

individual intervention models have not to date been validated by

fitting to specific trial data. This process is underway. Such fitting

will enable the addition of uncertainty bounds to model output

through sampling of parameter posterior densities [91]. If feasible,

this could be extended to incorporate model uncertainty using a

Bayesian methodology [92].

Third, in our current model we use a relatively simple vector

cycle in which the vector population is driven by a constant birth

rate. This may underestimate the additional impact of interven-

tions that increase vector mortality and thus reduce population-

level fecundity. Vector models which incorporate capacity

constraints and behavioural change are a natural extension that

may better represent competition for larval habitats [93].

However, to date, such models have not been adequately

validated against weather measurements and entomological data

and thus further work is required to obtain a model that can

reproduce entomological patterns from multiple transmission

settings.

Last, our current model has been developed and parameterized

to be applied to single locations. It thus considers isolated areas

and does not address the focal and heterogeneous nature of

transmission on a wider spatial scale or the connectedness of local

populations. As such, the current model cannot be used to assess

the risk of reintroduction of the parasite from outside areas, which

has been shown to be a major challenge in ongoing control [94].

However, it is possible to extend this framework to a fully spatial

continental-scale simulator. The major challenge here is not in

developing the software tool but in parameterising the model

across settings. Basic requirements of such a model, e.g. human

population size in each area, are not well known across parts of

Africa, although synthetic data derived from satellite observations

can be used as a proxy [95,96]. In addition, such models require

local-level information on vector species, seasonality patterns,

intensity of transmission, and human movements to enable

assessment of the risks of transmission spatially.

Despite these limitations, mathematical models based on the

biology of the transmission cycle provide an appropriate tool for a

range of stakeholders to explore the potential impact of current

and future interventions on malaria transmission and disease

burden in a systematic manner. Further development of the

models and approaches outlined here can help to identify optimal

policies for the range of stages of malaria elimination programs

from the consolidation phase outlined here, through the pre-

elimination and elimination phases, to sustained elimination. By

considering current tools and exploring potential future interven-

tions, models can help us to understand the limits of current

strategies and evaluate the potential for future products to achieve

the ultimate goal of global eradication.
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Editors’ Summary

Background. Half the world’s population is at risk of
malaria, and every year nearly one million people—mainly
children living in sub-Saharan Africa—die from this
mosquito-borne parasitic disease. Most malarial deaths are
caused by Plasmodium falciparum, which is transmitted to
people by mainly night-biting Anopheles mosquitoes. When
infected mosquitoes feed on people, they inject sporozoites,
a parasitic form that replicates inside human liver cells. After
a few days, the liver cells release ‘‘merozoites,’’ which invade
red blood cells where they replicate rapidly before bursting
out and infecting more red blood cells. This increase in the
parasitic burden causes malaria’s characteristic fever.
Infected red blood cells also release ‘‘gametocytes,’’ which
infect mosquitoes when they take a blood meal. In the
mosquito, the gametocytes multiply and develop into
sporozoites, thus completing the parasite’s life cycle.
Malaria can be prevented by spraying the insides of
houses (where most Anopheles species feed and rest) with
insecticides (indoor residual spraying, IRS) and by sleeping
under bed nets that have been treated with long-lasting
insecticides (long-lasting insecticide nets, LLINs). Mass
screening and treatment (MSAT) with effective antimalarial
drugs can also reduce malaria transmission.

Why Was This Study Done? Early attempts to eradicate
malaria (reduce its global incidence to zero) in the 1950s
reduced the incidence of malaria to zero in some countries
(malaria elimination) and greatly reduced malarial illnesses and
deaths in others (malaria control). However, this eradication
program was aborted in the 1970s in part because of emerging
drug and insecticide resistance. Recently, the advent of
artemisinin-based combination therapies and new insecticides
and the prospect of a malaria vaccine have renewed interest in
controlling, eliminating, and ultimately eradicating malaria.
Consequently, in September 2008, the Roll Back Malaria
Partnership launched the Global Malaria Action Plan, which
aims to reduce malaria deaths to near zero by 2015. But are the
currently available tools for reducing malaria transmission
sufficient to control and eliminate malaria in Africa, the
continent where most malaria deaths occur? In this study, the
researchers use a new mathematical model of P. falciparum
transmission to investigate this question.

What Did the Researchers Do and Find? The
researchers’ P. falciparum transmission model consists of
‘‘compartments’’ through which individuals pass as they
become infected with parasites, develop immunity, become
infectious to mosquitoes, and so on. The researchers used
published data about parasite prevalence (the proportion of
the population infected with parasites) and about relevant
aspects of mosquito, parasite, and human biology, to
estimate the chances of an individual moving between

compartments. Finally, they used the model to explore the
impact over 25 years of increased coverage of LLINs, IRS, and
MSAT, and of a future vaccine on malaria transmission in six
representative African settings. In a low-transmission setting,
80% coverage with LLINs reduced the parasite prevalence to
below 1% in all age groups. In two moderate-transmission
settings, LLIN scale-up alone failed to reach this target but
the addition of IRS and MSAT drove the parasite prevalence
below 1%. However, this combination of interventions did
not control malaria in a moderate-transmission setting in
which a mosquito species that bites and rests outside houses
contributes to malaria transmission. Finally, in two high-
transmission settings, parasite prevalence could be driven
below 1% only by setting unrealistic coverage targets for
existing interventions.

What Do These Findings Mean? This new mathematical
model greatly simplifies the complex dynamics of malaria
transmission and includes several assumptions about which
there is considerable uncertainty. The findings of this study
are not, therefore, firm predictions of the future of malaria
control in specific settings. Nevertheless, they suggest that it
should be possible to make large reductions in malaria
transmission and the associated disease burden in Africa
over the next 25 years using currently available tools.
Specifically, in regions where transmission is low or
moderate and mosquitoes mainly feed indoors, it should
be possible to reduce parasite prevalence to less than 1%
provided a sustained intervention program is achieved.
Importantly, however, these findings suggest that in regions
where malaria transmission is high or where mosquitoes rest
and bite outside houses, new approaches will be needed to
control and eliminate malaria.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000324.

N Information is available from the World Health Organiza-
tion on malaria (in several languages); the 2009 World
Malaria Report provides details of the current global
malaria situation

N The US Centers for Disease Control and Prevention provide
information on malaria (in English and Spanish)

N Information is available from the Roll Back Malaria
Partnership on its approach to the global control of
malaria, including the Global Malaria Action Plan and a fact
sheet on malaria in Africa

N MedlinePlus provides links to additional information on
malaria (in English and Spanish)
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