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Abstract

Background: Epstein-Barr virus (EBV) and cytomegalovirus (CMV) are persistent herpesviruses that have various
immunomodulatory effects on their hosts. Both viruses are usually acquired in infancy in Sub-Saharan Africa, a region
where childhood vaccines are less effective than in high income settings. To establish whether there is an association
between these two observations, we tested the hypothesis that infection with one or both viruses modulate antibody
responses to the T-cell independent meningococcal polysaccharide vaccine and the T-cell dependent measles vaccines.

Methodology/Principal Findings: Infection with EBV and CMV was diagnosed by the presence of virus-specific IgM in the
peripheral blood or by the presence of IgG at higher levels than that found in umbilical cord blood. Anti-meningococcus IgG
and IgM were quantified by ELISA. Anti-measles antibody responses were quantified by haemagglutinin antibody inhibition
assay. Infants infected with EBV had reduced IgG and IgM antibody responses to meningococcal polysaccharides and to
measles vaccine. Infection with CMV alone predicted no changes in the response to meningococcal polysaccharide. While
CMV alone had no discernable effect on the antibody response to measles, the response of infants infected with both CMV
and EBV was similar to that of infants infected with neither, suggesting that the effects of CMV infection countered the
effects of EBV on measles antibody responses.

Conclusions: The results of this exploratory study indicate that infection with EBV is associated with reduced antibody
responses to polysaccharides and to measles vaccine, but suggest that the response to T-cell dependent antigens such as
measles haemagglutinin may be restored by infection with CMV.
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Introduction

Infant vaccination is one of the most important strategies to

combat infectious disease worldwide. However, it has been known

for four decades that the efficacy of infant vaccines in Sub-Saharan

Africa is lower than in high income settings [1] and that

intercurrent infections like malaria may influence antibody

responses [2,3]. For instance, the efficacy of the live attenuated

measles vaccine is typically over 90% in Europe and North

America [4–6], but below 70% in West Africa [7–9].

In Sub-Saharan Africa, infection with the herpesviruses Epstein-

Barr virus (EBV) and cytomegalovirus (CMV) usually occurs during

infancy [10–12], after which they establish lifelong infection [13,14].

Although infection is usually asymptomatic, both viruses have

powerful effects on the lymphocyte populations involved in vaccine-

mediated immunity. EBV infects B-cells and during acute infection,

up to 50% of B-cells may be infected [15]. While EBV infection is

usually asymptomatic in healthy individuals, it can cause severe

disease in immunocompromised individuals and coupled with

chromosomal translocations, causes Burkitt’s lymphoma Burkitt’s

lymphoma in infants whose immune systems have been suppressed

by malaria [16,17]. In the absence of disease, EBV infected B-cells

accumulate a relatively high number of mutations which suggests

that EBV may influence the B-cell compartment even in the

absence of clinical disease [18]. The effect of EBV infection on B-

cell responses to vaccines or concurrent infections is unknown.
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Unlike EBV, CMV has a powerful influence on T-cells even

though T-cells are not a major target for CMV infection [19]. The

T-cell populations of CMV-infected individuals show considerably

higher levels of differentiation [20–23], even among young infants

who are still receiving childhood vaccinations [24]. These effects

vary with age as CMV-induced differentiation in the elderly is

associated with reduced subpopulations of naı̈ve T-cells and poor

vaccine responses [23,25], but infected infants show no such

evidence of reduction of the naı̈ve T-cell pool or of CMV-

associated reduction in T-cell response to measles vaccine [26].

Polysaccharide vaccines stimulate B-cells independently of T-

cells, suggesting that they may be particularly vulnerable to

modulation by EBV. Although the meningococcus polysaccharide

does not induce lasting immunity if administered before four years

[27], the WHO still recommends vaccination irrespective of age to

contain the outbreaks of meningococcal meningitis that periodi-

cally sweep the Sub-Saharan ‘meningitis belt’ [28,29] and so it

remains a valuable tool in child health.

By contrast, the live attenuated measles vaccine induces a broad

range of T-cell and antibody responses [30,31] so is unlikely to be

so vulnerable to any one mechanism of modulation.

As early life CMV and EBV infection and relatively low vaccine

efficacy are both characteristic of Sub-Saharan Africa, we

hypothesised an association between CMV and EBV infection in

infancy and reduced antibody responses to vaccines. We therefore

quantified their influence on antibody responses to the polysac-

charide vaccine against Neisseria meningitidis (meningococcus) and

the live attenuated measles vaccine. We recruited infants from an

ongoing cohort in a peri-urban area of The Gambia and

administered the vaccines at nine months of age. Two months

later, we compared the vaccine antibody responses of infants

infected with CMV and/or EBV to those who remained

uninfected.

Materials and Methods

Subjects and vaccinations
Infants were recruited at birth from the maternity ward of

Sukuta Health Centre. Informed consent was obtained from their

mothers and documented by signature or thumb print. Recruit-

ment was restricted to healthy singletons, defined by a birth weight

of at least 1.8kg and no congenital abnormalities, and whose

mothers had not been admitted for hospital treatment during

pregnancy or labour.

The area served by Sukuta Health Centre is peri-urban, and the

population is characterised by low income and crowded

accommodation. Breast feeding is usually continued well into the

second year and 50% of infants are infected with CMV by 10

weeks of age [10]. The HIV status of study subjects was unknown,

but adult prevalence in the region was below 2.5% at the time of

the study [32], so is unlikely to be a significant confounder of this

study. Exposure to malaria is low [33] and no cases of measles

have been reported over the last 7 years. No children were

clinically ill at the time of vaccination, and no outbreaks of

measles, meningitis, Respiratory syncytial virus or Rotavirus

occurred during the study.

All study subjects received childhood vaccinations according to

the Expanded Program of Immunisation, which included

inoculation with the live attenuated Edmonston-Zagreb strain of

the measles virus (Serum Institute of India) at nine months. In

addition, all infants were vaccinated with 50 mg each of

meningococcus subtypes A and C capsular polysaccharide

(Sanofi-Pasteur), also at nine months. All infants received a second

dose of meningococcus conjugate C vaccine (kindly donated by

Wyeth-Lederle) between three and four years of age to ensure

continued protection.

The study was approved by the Gambia Government/MRC

ethics committee.

Sampling schedule
Umbilical cord blood was collected from 224 infants at birth,

and heparinised plasma was stored. At nine months, 1 ml of blood

was collected into a serum separator tube (Becton-Dickinson) for

serum collection from 194 infants. At eleven months, 4 ml of

blood was collected for serum antibody measurements from 182

subjects and full laboratory data was available for 178 subjects

(Fig. 1). Loss to follow–up was mainly due to migration (46%) or

refusal to be bled (18%). All plasma and serum samples were

stored at 250uC or below, and subjected to no more than three

freeze-thaw cycles in the course of the study.

Diagnosis of EBV and CMV
As many of the umbilical cord blood plasma samples contained

substantial levels of maternally derived anti-EBV and CMV IgG, it

was not possible to base diagnosis at nine or eleven months purely

on IgG serostatus.

When infants received the measles and meningococcus vaccines

at nine months, infants were classified as infected if they met one of

two criteria, which were 1/virus-specific IgG levels exceeded the

levels in their umbilical cord blood or 2/a detectable level of virus-

specific IgM. Infants were classified as uninfected if they met one

of three criteria: 1/virus-specific IgG and IgM levels were

undetectable at the time of sampling, 2/virus-specific IgG and

IgM levels were both undetectable at eleven months, as infants

infected at nine months would have an antibody response by

eleven months, or 3/virus-specific IgG levels were detectable but

below cord blood levels at nine months while IgM levels converted

from undetectable to detectable between nine and eleven months.

Two months after receiving the measles and meningococcus

vaccines, at eleven months of age, infants were classified as

infected if they met one of three criteria: 1/virus-specific IgG levels

exceeded the levels in their umbilical cord blood, 2/if they had

detectable levels of virus-specific IgM, or 3/if they had been

classified as infected at nine months. Infants were classified as

uninfected if they met one of three criteria: 1/virus-specific IgG

and IgM levels were both undetectable at nine months and IgM

levels remained undetectable at eleven months, or 2/virus-specific

IgG and IgM levels were both undetectable at eleven months.

Infants for whom none of the above criteria could be met were

unclassified.

Virus-specific antibody levels were measured using ETI-VCA-G

and ETI-EBV-M Reverse ELISAs (Diasorin), which detect IgG

and IgM respectively to the viral capsid antigen (VCA). Infection

with CMV was diagnosed using the ELICYTOK-G Plus ELISA

(Diasorin) to detect IgG and either the ETI-CYTOK-M Reverse

Plus (Diasorin) or the Cytomegalovirus IgM CAPTIATM ELISA

(Trinity Biotech) to detect IgM.

Diagnosis for exposure to malaria parasites
Exposure to malaria was assessed by testing for the presence of

IgG antibody specific for two merozoite surface antigens, apical

membrane antigen 1 (AMA1) [34] and the two allelic types of

merozoite surface antigen 2 (MSP2) [35] using an ELISA method

as previously described [36]. Samples were classified as seropos-

itive if the optical density reading was above 3 standard deviations

of the mean value obtained by testing 20 sera from non-immune

tourists visiting The Gambia [33].

EBV & CMV Alter Ab. Responses
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Measurement of vaccine responses
Antibody responses to measles and meningococcus were

measured using the serum samples collected at eleven months of

age. Responses to meningococcus were quantified with an ELISA

adapted from a previously published protocols [37]. Standards

were prepared from reference serum CDC 1992 (NIBSC) at 1/100

for meningococcus A and 1/200 for meningococcus C, and eight

doubling dilutions of triplicate preparations were carried out for

each microplate, enabling results to be expressed as mg ml21.

Anti-measles antibody response was measured using the

haemagglutinin antibody inhibition assay (HAI) [38], and

calibrated against the second WHO standard. Assay sensitivity

was 15.6 mIU and minimum detectable value was 31.2 mIU.

Results are expressed as the log2 titre at which no haemaggluti-

nation was observed.

Assessment of EBV viral load
Samples were collected from 40 of the 43 EBV-seropositive

infants at eleven months of age. Aliquots of 200 ml of blood were

centrifuged at 2000 g for 5 min, plasma was removed and DNA

was isolated into 50 ml using the DNA Mini Kit reagents (Qiagen).

Positive control EBV DNA was extracted from B95-8 cells [39]

and Namalwa cells [40] using similar methods. The DNA

concentration of the samples was determined by UV spectropho-

tometry. The number of EBV genome copies in the DNA samples

was determined by real-time PCR. Briefly, 5 ml of DNA (1–5 ng/

ml) was included in a 25 ml reaction using the manufacturer’s

protocol (Qiagen Quantitect Virus kit). After a 10 min step at

95uC step to activate the polymerase, cycling (40 cycles) was

performed. Cycling (40 repeats) (15 s at 95uC, followed by 60 s at

60uC with data acquisition at either 470 nm source, 510 nm

Figure 1. Study Design. A Study design showing times at which samples were collected, EBV and CMV serology was carried out, vaccines were
administered and vaccine-specific responses were measured. B numbers of infants in the cohort and involved in analysis, and numbers infected with
EBV and CMV at nine and eleven months.
doi:10.1371/journal.pone.0014013.g001
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detection for FAM (EBV BALF5 probe) or 530 nm source,

555 nm detection for JOE (B2M probe). The primers and probes

are described in Table 1. The EBV genome number in test

samples was quantified relative to B95-8 and Namalwa DNA and

the EBV copy number per cell in the test samples was expressed

relative to the b-2 microglobulin gene [41]. The lower limit of

detection was four EBV copies in 5 ml DNA sample ( = 50 ml

original blood volume).

Statistical analysis
Association for infection with CMV and EBV was quantified

using Pearson’s chi-square test. Differences in the log10 trans-

formed vaccine response between CMV and EBV infection status

(and their interaction) were tested using linear regression adjusting

for the possible confounding effect of malaria infection. Due to the

high proportion of zero IgM responses to meningococcus C, the

responses were dichotomised around 0.10 mg ml-1and analysed

using logistic regression.

The HAI titres were categorized into 8 groups and ordinal

logistic regression was used to study the association with EBV and

CMV infections status, allowing for the possible confounding effect

of pre-vaccination measles antibody.

As the meningococcal ELISAs generated continuous data, they

were compared to EBV viral load by ANCOVA using CMV

serostatus as a fixed factor. If CMV serostatus was non-significant,

EBV viral load was compared to the antibody level by Spearman’s

correlation coefficient, and the four derived significances were

corrected for multiplicity by the step-down Bonferroni method.

Linear regression was used to test for the association between

EBV viral load and anti-meningococcus IgG and IgM adjusting

for CMV serostatus.

Analyses were performed using Stata 11 (Statacorp) and Matlab

7.4 (The MathWorks Inc). Differences were considered significant

at p,0.05.

Results

Analyses were restricted to the 178 subjects who were bled and

vaccinated at 9 months of age and who had antibody data at 11

months of age.

More infants were infected with CMV than EBV
CMV infection was usually earlier than EBV (Fig. 1). At nine

months, 115 of 173 (66%) classifiable subjects were CMV-infected

as opposed to 30 of 166 EBV-infected subjects. 10% of the CMV

uninfected subjects and 8% of the EBV uninfected subjects were

infected between 9 and 11 months of age. No significant

associations between seropositivity for CMV and EBV were found.

Few infants had been exposed to malaria or measles
At nine months, 30 of 176 (17%) samples tested were

seropositive for malaria. Seropositivity for malaria was not

associated with seropositivity for CMV or EBV.

Seropositivity for measles was uncommon before vaccination,

with only six of 178 (3.4%) infants tested immediately before

vaccination having a detectable level of haemagglutinating

antibody activity.

EBV infection was associated with low antibody
responses to meningococcus polysaccharide

There were no significant statistical interactions between the

effects of EBV and CMV on any of the responses to

meningococcus measured.

Levels of IgG and IgM to meningococcus A and C at 11 months

were compared by EBV serostatus at the time the vaccine was

administered at nine months. IgG responses were significantly

lower in EBV+ infants (p,0.05). However, there were no

detectable differences between EBV+ and EBV2 infants in the

anti-meningococcus A or C IgM levels (Table 2). When levels of

IgG and IgM to meningococcus A and C were compared by EBV

serostatus at the time of sampling at eleven months, both IgG and

IgM concentrations were lower in EBV+ infants (p,0.01) (Table 3).

Infection with CMV at either time of vaccination or at time of

sampling was not associated with anti-meningococcus antibody

levels at 11 months (Table 2, Table 3), and none of the responses

correlated with EBV viraemia at 11 months of age (data not shown).

Following these initial analyses, we then performed several tests

of the robustness of our analytic approach.

The majority of subjects who could not be classified had

detectable levels of IgG to CMV or EBV, but at levels lower than

in the umbilical cord blood. In order to test whether the results

could have been biased by failure to classify infants that were

actually uninfected, we repeated the regression analysis with all

unclassified infants as uninfected, and found that the associations

still remained significant (data not shown).

Eleven infants seroconverted for EBV between 9 and 11

months, and six seroconverted for CMV though none serocon-

verted for both To establish whether the difference between EBV-

infected and uninfected infants was due to the effect of infection

between the time of vaccination and sampling, we repeated the

regression analysis excluding any infants that seroconverted

between the two sampling times. The significant associations

remained the same as in the original analysis (data not shown).

To test whether malaria infection had any effect on anti-

meningococcus antibody levels, we repeated the regression

analysis with seropositivity to P. falciparum, defined as a detectable

response to any of the three antigens tested, as a factor. We found

no effect on the associations (data not shown).

EBV infection predicted low antibody responses to
measles unless there was concurrent CMV infection

There were significant interactions between the effects of EBV

and CMV infection on the anti-measles antibody response, so it

was inappropriate to perform multiple comparisons on the four

possible groups.

The same trends were apparent whether the infants were

classified by CMV and EBV serostatus at the time of vaccination

at nine months or the time of antibody measurement at eleven

Table 1. Primers used for quantification of EBV by real-time
PCR.

Name Function Sequence (59 to 39)

mo 052 EBV BALF5 forward
primer

CCTTTGGCGCGGATCCTC

mo 053 EBV BALF5 reverse
primer

TCCTTCTTGGCTAGTCTGTTGAC

mo 054 EBV BALF5 probe
59 6-FAM, 39 TAMRA

CATCAAGAAGCTGCTGGCGGCC

mo 055 B2M forward primer GGGAATTGATTTGGGAGAGCATC

mo 056 B2M reverse primer AGGTCCTGGCTCTACAATTTACTAA

mo 057 B2M probe
59 HEX, 39 TAMRA

AGTGTGACTGGGCAGATCATCCACCTTC

doi:10.1371/journal.pone.0014013.t001
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months. In both cases, antibody levels of the EBV+CMV2 infants

were considerably lower than those of any of the other three

groups, while differences between the other three groups were

small (Fig. 2).

The EBV+CMV2 group accounted for only 8 of the 161 (5.0%)

classifiable infants at nine months and 13 of 159 (8.2%) at eleven

months. The median log (base 2) HAI titre of the EBV+CMV2

infants was 2.5 as compared to 4.0 among EBV2CMV2 infants

classified by serostatus at nine months. The difference based on

serostatus at eleven months was smaller, but the median inhibiting

titre was 3.0 among EBV+CMV2 infants compared to 4.0 among

EBV2CMV2 infants.

Table 2. Antibody responses to meningococcus A and C, grouped by EBV/CMV serostatus at nine months.

Meningococcus strain Antibody isotype Group n Median (mg ml21) IQR P*

A IgG EBV2 136 2.05 1.30–3.92 0.03

A IgG EBV+ 30 1.40 0.80–2.31

A IgM EBV2 136 1.29 0.68–2.33 0.10

A IgM EBV+ 30 0.97 0.35–1.74

C IgG EBV2 136 3.20 1.59–6.80 0.04

C IgG EBV+ 30 2.47 1.21–3.86

C IgM EBV2 136 0.10 0.01–0.19 0.08

C IgM EBV+ 30 0.08 0.02–0.12

A IgG CMV2 58 2.00 1.40–4.41 0.12

A IgG CMV+ 115 1.75 1.16–3.56

A IgM CMV2 58 1.30 0.69–2.36 0.55

A IgM CMV+ 115 1.13 0.58–2.27

C IgG CMV2 58 3.67 1.77–6.63 0.28

C IgG CMV+ 115 2.68 1.35–5.63

C IgM CMV2 58 0.09 0.01–0.19 0.83

C IgM CMV+ 115 0.09 0.02–0.17

*Calculated by linear regression model. Significant values in bold.
Infection with EBV at time of vaccine administration at nine months predicts reduced antibody responses to both meningococcus A and C, but infection with CMV has
no effect. Groups refer to the CMV and EBV serostatus at the time the vaccine was administered at nine months.
doi:10.1371/journal.pone.0014013.t002

Table 3. Antibody responses to meningococcus A and C, grouped by EBV/CMV serostatus at eleven months.

Meningococcus strain Antibody isotype Group n Median (mg ml21) IQR P*

A IgG EBV2 124 2.15 1.35–4.13 0.003

A IgG EBV+ 41 1.43 0.90–2.31

A IgM EBV2 124 1.38 0.71–2.44 0.002

A IgM EBV+ 41 0.92 0.32–1.30

C IgG EBV2 124 3.44 1.75–7.44 0.006

C IgG EBV+ 41 2.41 1.19–3.80

C IgM EBV2 124 0.11 0.02–0.19 0.01

C IgM EBV+ 41 0.07 0.00–0.12

A IgG CMV2 51 2.03 1.31–4.44 0.08

A IgG CMV+ 121 1.86 1.20–3.56

A IgM CMV2 51 1.35 0.67–2.46 0.39

A IgM CMV+ 121 1.13 0.61–2.25

C IgG CMV2 51 3.61 1.95–6.19 0.26

C IgG CMV+ 121 2.70 1.37–6.18

C IgM CMV2 51 0.09 0.01–0.19 0.86

C IgM CMV+ 121 0.09 0.02–0.17

*Calculated by linear regression model. Significant values in bold.
Infection with EBV at eleven months predicts reduced antibody responses to both meningococcus A and C, but infection with CMV has no effect. Groups refer to EBV
and CMV serostatus at the time of sampling at 11 months.
doi:10.1371/journal.pone.0014013.t003
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CMV infection alone showed little effect on antibody titre, but

appeared to offset the reduced antibody response associated with

EBV as the median titre among EBV+CMV+ infants was 5.0 both

at nine and eleven months (Fig. 2).

Incorporating pre-vaccination measles antibody titre into the

regression model had no effect on the associations between CMV

and EBV with anti-measles antibodies, or the interaction between

CMV and EBV, and neither the presence nor the titre of pre-

vaccination anti-measles antibodies was associated with anti-

measles antibodies in any of the groups at 11 months.

Discussion

We found that EBV infection prior to or shortly after

vaccination at 9 months of age predicted lower antibody responses

to both the T-cell-dependent measles and T-cell-independent

meningococcus polysaccharide antigens, but that co-infection with

CMV was associated with responses equivalent to those found in

uninfected infants.

We can only speculate on the immune mechanisms underlying

these interactions as the study focussed on antibody measure-

ments. However several mechanisms of interaction between viral

infections have been described. For instance, one virus may induce

an immune response that inhibits growth of another [42,43], or

specific immune responses induced by one virus may cross-react

with epitopes expressed by another [44].

The lower antibody responses in EBV-infected infants are

consistent with the finding that EBV infection of B-cells induces

mutations that may interfere with antibody production [18]. Work

on mouse models showed that the immune system can only

support a finite number of antibody producing cells [45], so it is

also possible that EBV-induced expansion reduces the available

niches for vaccine-specific antibody producing cells.

Co-infection with CMV appeared to return antibody levels to

the T-cell-dependent haemmaglutinin to levels found in EBV2

infants. As there was no effect of CMV infection on antibody to

the T-cell-independent meningococcus vaccine, this suggests

restoration was mediated through T-cells. In The Gambia, we

have previously found that CMV infection drives CD4 T-cell

differentiation in infants and that cellular responses to CMV

correlate with the antibody response to measles vaccine [26],

which suggests that exposure to CMV may enhance antibody

production through non-specific upregulation of CD4 T-cell

mediated help. Studies in The Gambia [26] and Malawi [46]

have shown that CMV infection is associated with a relatively high

proportion of memory cells in both the CD4 and CD8 T-cell

compartments, which accords with our findings. These putative

interactions of CMV with vaccines need to be studied on a larger

scale in early infancy when the incidence of CMV is highest and

vaccination most intense.

We were unable to distinguish the effects of infection with EBV

and CMV at time of vaccination from the effects at time of

sampling so could not establish whether low vaccine antibody

levels in EBV-infected infants are programmed at the time of

infection or whether infections after vaccination are able to down

regulate current antibody production. In either case, approxi-

mately 20% of infants were infected with EBV at nine months and

consequently subject to lower immune response which is a

substantial number, even if post-vaccination EBV infection does

not have the same downregulatory effects.

It is unlikely that EBV infection alone is sufficient explanation

for reduced efficacy of measles vaccine in Africa, as only 10% of

Figure 2. Infection with EBV but not CMV downregulates antibody responses to measles. Infection with EBV is associated with reduced
antibody responses to measles unless infants are coinfected with CMV. Plots of serum haemagglutinin-inhibiting activity at eleven months of age,
plotted against the serostatus at A the time of vaccination at nine months of age and B the time of sampling at eleven months of age. Titres are
expressed as log2. Grey bars indicate medians. Significances refer to the statistical interaction between the effects of EBV and CMV infection.
doi:10.1371/journal.pone.0014013.g002
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infants were EBV+CMV2. However the magnitude of the

reduction in antibody responses suggests that EBV may be a

contributing factor along with early age of immunisation,

persistence of maternal antibody [47] and intense exposure during

measles outbreaks due to overcrowding [48].

Malaria has been associated with immunosuppression of

responses to viral infection [17,49] and the meningococcal

polysaccharide and Haemophilus influenzae vaccines [2,3]. However

the lack of association between low level malaria exposure and

CMV or EBV infection in this cohort, or between malaria

exposure and antibody response to vaccines makes it unlikely that

malaria infection confounded the association between antibody

levels and CMV and EBV infection in this cohort. Together with

the low HIV prevalence and lack of concurrent disease outbreaks,

it is unlikely that another infection was behind the observed

differences. Due to shortage of sera we could not measure pre-

vaccination meningococcal antibody concentrations. However,

previous studies in the region have shown that maternal antibody

decays quickly and that infants have undetectable or very low

levels [50] and very low carriage rates [51], so past or intercurrent

infection with meningococci are unlikely to have influenced our

results.

Our exploratory study was relatively limited in size and cannot

provide a mechanistic explanation for the potentially important

findings. Larger studies will be necessary to establish whether

CMV or EBV infection bears on vaccine efficacy or enhances

susceptibility to invasion by polysaccharide-encapsulated bacteria

such as Streptococcus pneumoniae or Neisseria meningitidis, which are

common in this region. Furthermore, understanding the interac-

tion of these common early life infections with the infant immune

system may shed light on the non-specific effects of vaccines

reported in West Africa [52,53].

Conclusions
Infection with EBV reduced antibody responses to the T-cell

independent meningococcal polysaccharide vaccines while infec-

tion with CMV had no effect. Infection with EBV alone reduced

the antibody response to the live measles vaccine, but co-infection

with CMV reversed the effects of EBV and elevated the antibody

response to levels similar to those of infants infected with neither

virus.
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11. Biggar R, Henle W, Fleisher G, Böcker J, Lennette E, et al. (1978) Primary

Epstein-Barr virus infections in African infants. I. Decline of maternal antibodies

and time of infection. Int J Cancer 22: 239–243.

12. Martro E, Bulterys M, Stewart J, Spira T, Cannon M, et al. (2004) Comparison
of human herpesvirus 8 and Epstein-Barr virus seropositivity among children in

areas endemic and non-endemic for Kaposi’s sarcoma. J Med Virol 72:

126–131.

13. Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus.

J Gen Virol 87: 1763–1779.

14. Cohen J (2000) Epstein-Barr virus infection. N Engl J Med 343: 481–492.

15. Hochberg D, Souza T, Catalina M, Sullivan J, Luzuriaga K, et al. (2004) Acute

infection with Epstein-Barr virus targets and overwhelms the peripheral memory

B-cell compartment with resting, latently infected cells. J Virol 78: 5194–

5204.
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