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Abstract

Background: Implementation of control of parasitic diseases requires accurate, contemporary maps that provide
intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps
are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of
20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009.

Methods and Findings: Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were
assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and
climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time
geostatistical models were developed for each species, and were used to interpolate the probability that infection
prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated
to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for
associations between species. Population census data were combined with risk models and projected to estimate the
population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was
below the 20% threshold, with areas of endemicity $20% located around the shores of Lake Victoria and on the coast.
Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased
over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment.

Conclusions: Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence
of STH and suggest that a quarter of Kenya’s school-aged children live in areas of high prevalence and warrant mass
treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in
helminth control.
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Introduction

In Africa, an increasing number of countries are implementing

national treatment programmes for the control of soil-transmitted

helminths (STH). The main strategy of these programmes is the

delivery of deworming through the public school system, which

has been demonstrated as a cost-effective way to reduce infection

and morbidity of STH and improve educational outcomes [1–4].

There have also been moves to integrate mass drug administration

(MDA) for STH and schistosomiasis with other neglected tropical

diseases (NTDs), including lymphatic filariasis (LF) and onchocer-

ciasis [5,6]. Whatever the implementation approach, governments

need to target treatment appropriately, based on reliable and up-

to-date information on the geographical distribution of infection

[7]. The ability to map the distribution of STHs has been greatly

enhanced in recent years by the use of geographical information

systems, remote sensing and spatial statistics [8,9]. Recent work

has increasingly employed a Bayesian geostatistical modelling

approach, which provides a flexible and powerful tool for risk

mapping, enabling investigation of spatial heterogeneity, environ-

mental predictors and associated uncertainties. To date, Bayesian

geostatistics has been used to predict spatial patterns for a number

of NTDs, including STH [10–12], schistosomiasis [13–15], Loa loa

[16] and LF [17], facilitating prediction of infection prevalence in

unsurveyed areas, targeting of large-scale control programmes and

prioritisation of future data collection. Whilst the derived risk maps
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are statistically appealing, their uptake by managers of national

control programmes could be improved. This is in part due to

difficulty in interpreting these continuous, species-specific maps

and translating them into practical guidance for STH control at

district levels, which is defined on the basis of combined

prevalence of any STH species. Furthermore, the extent to which

models can be extrapolated temporally remains unclear [13,18].

This is particularly relevant when decision makers need to rely on

historic data to implement control in a rapidly changing

epidemiological context, due to both general improvements in

socio-economic and sanitary conditions and previous deworming

efforts.

In this study, we use the largest assembly of contemporary

empirical evidence for STH in any country in Africa to map the

observed prevalence of STH across Kenya using a space-time

model based geostatistical approach, and estimate the spatially-

varying probability that mass treatment is warranted. The

resulting models are used to calculate the school-aged population

at risk of infection and requiring MDA in Kenya.

Methods

Analysis outline
The objective of these analyses was to determine the spatial

distribution of observed prevalence of STH infection in Kenya.

Data on the observed prevalence of hookworm, Ascaris lumbricoides

and Trichuris trichiura spanning 34 years were collated using search

principles and criteria outlined below, in order to create a robustly

geo-located dataset of helminth surveys. This database was used to

produce a continuous predictive surface of combined observed

STH prevalence adopting a Bayesian space-time geostatistics

approach, adjusting for environmental covariates; no spatial

prediction was made for areas masked as environmentally

unsuitable for STH transmission (maximum land surface temper-

ature (LST) .40uC). The resulting models were used to

interpolate the probability across Kenya that combined observed

STH prevalence is greater than 20%, the threshold recommended

by the World Health Organization (WHO) as indicating the need

for targeted MDA [19]. Validation procedures were implemented

to assess the accuracy of endemicity predictions. Finally, the total

population at risk of STH infection was extracted by district in

order to guide targeted intervention strategies.

Data sources
Data on the prevalence of infection in Kenya were abstracted

from an ongoing project to develop a Global Atlas of Helminth

Infection (www.thiswormyworld.org; [7]). For this project, survey

data are identified through structured searches of electronic

bibliographic databases, complemented with manual searches of

local archives and libraries and direct contact with researchers. A

manual search of archives of the Division of Vector Borne and

Neglected Tropical Diseases of the Kenya Ministry of Public

Health and Sanitation in Nairobi proved a particularly useful

source of information. References from identified publications

were checked for additional surveys. Estimates of infection

prevalence were included according to pre-defined criteria: only

cross-sectional prevalence surveys were included; data were

excluded if based on hospital or clinic surveys, post-intervention

surveys, or surveys among sub-populations, such as among

refugees, prisoners or nomads. For data from clinical trials or

cohort studies, only baseline, pre-intervention estimates of

prevalence were included. In instances where multiple surveys

from the same location were conducted at different times, each

survey was included. Abstracted data included details on the

source of the data, date and location of survey, characteristics of

the surveyed population, survey methodology, method of diagno-

sis, age range of sampled individuals, and the number of

individuals examined and the number positive with hookworm,

A. lumbricoides and T. trichiura. Authors of published data were

contacted if relevant information was unclear from the original

reports. For the current analysis, survey data were collected

between 1974 and 2009.

The longitude and latitude of each survey were determined

using a combination of resources including a national schools

database developed by the Ministry of Education in 2008 using

geographical positioning systems (GPS); a village database digitised

from topographical maps in 2002 by the International Livestock

Research Institute in Nairobi; a range of electronic gazetteers (see

Brooker et al. [7]); and contact with authors who used GPS.

Estimating combined prevalence of any STH
Survey reports typically provide proportions infected with

individual worm species, and rarely give data on the combined

proportion infected with any STH species, although it is the

prevalence of infection with any STH species (i.e. combined

prevalence of all STH) that is important when making decisions

about effective targeting for treatment. Therefore, combined STH

prevalence was calculated using a simple probabilistic model,

incorporating a small correction factor to allow for non-

independence between species, following the approach of de Silva

and Hall [20]. In brief, when assuming the probability of infection

with one species to be independent of infection with others, the

combined probability of having at least one infection is the simple

probability law for the union between three elements: PHAT = H +
A + T 2 (HA) 2 (AT) 2 (HT) + (HAT) where PHAT is the com-

bined STH prevalence, H is the prevalence of hookworm

infection, A the prevalence of A. lumbricoides and T the prevalence

of T. trichiura. Previous analysis of 60 datasets from 20 countries by

de Silva and Hall suggests that, due to non-independence,

overestimation of combined STH prevalence using simple

probability increases by 0.6% for every 10% increase in

Author Summary

Effective targeting of mass drug administration for the
treatment of soil-transmitted helminths (STH) requires
reliable, up-to-date maps that indicate where prevalence
exceeds the 20% intervention threshold recommended by
the World Health Organization. We present a new
approach for mapping the prevalence of STH in Kenya,
incorporating observed prevalence data from 945 cross-
sectional surveys undertaken between 1974 and 2009. The
distribution of each species was modelled using model-
based geostatistics; models included information on
environmental factors, the spatial distribution of existing
surveys and when these surveys were conducted. Result-
ing risk maps were combined and linked with population
data enabling estimation of the population at risk of any
STH infection and requiring treatment in 2009. In most
areas, there was high certainty that combined STH
prevalence was below the 20% intervention threshold,
with areas of high prevalence located around the shores of
Lake Victoria and on the coast. Results also suggest that
observed prevalence decreased over time and emphasise
the importance of continued surveillance in areas where
observed prevalence was historically high. We show how
spatial modelling can be used to develop up-to-date maps
of STH risk to help improve the precision of decision
making in disease control.
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prevalence [20]. The true combined observed prevalence of STH

can therefore be estimated as PHAT 4 1.06. This correction factor

was thus incorporated into the estimation of combined observed

prevalence of STH. This approach to estimating combined

prevalence is used, both when presenting observed prevalence

data and when using species specific models to develop spatial

models of combined observed prevalence, as explained below.

Ecological and climatic covariates and limits of
transmission

A set of ecological and climatic covariates were assembled from

a variety of sources, as described elsewhere [21]. Monthly average

LST and precipitation at 30-arcsec (,1 km) resolution were

downloaded from the WorldClim website [22]. These were

produced from global weather station temperature records

gathered from a variety of sources for the period 1950–2000

and interpolated using a thin-plate smoothing spline algorithm

[23]. Enhanced vegetation index (EVI; a measure of vegetation

density) for 2001–2005 were obtained from the Moderate

Resolution Imaging Spectroradiometer (MODIS) [24], and

elevation was obtained from an interpolated digital elevation

model from the Global Land Information System of the United

States Geological Survey ((http://edcwww.cr.usgs.gov/landdaac/

gtopo30/). Distance to permanent water bodies was derived in

ArcMap 9.2 from an electronic map obtained from the World

Wildlife Fund (Global 200 Ecoregions data [25]). Maximum LST,

elevation and precipitation were standardised to optimise sampling

during Markov Chain Monte Carlo (MCMC) simulation by

subtracting the arithmetic mean and dividing by the standard

deviation.

These ecological and climatic data, along with results from

previous studies, were used to define the spatial limits for the

transmission of STH. Specifically, it has been shown experimen-

tally that the development of free-living infectious stages of A.

lumbricoides and T. trichiura ceases at 38uC and hookworm at 40uC
[26–29]. This is supported by an observed relationship between

prevalence across sub-Saharan Africa and maximum LST, shown

in Figure 1. On this basis, using monthly LST at 30–arcsec

(,1 km) spatial resolution [22], areas were masked as unsuitable

for STH transmission where maximum LST .40uC. No spatial

prediction was subsequently made for such areas.

Bayesian space-time modelling approach
Prevalence of hookworm, A. lumbricoides and T. trichiura were

modelled separately. Variable selection from abstracted survey

covariates (age range of sampled individuals, method of diagnosis)

and environmental covariates was performed using fixed-effects

grouped logistic regression models in Stata/SE 10.0 (StataCorp,

College Station, TX, USA) with backwards elimination. Bayesian

space time multivariable models were subsequently developed in

WinBUGs version 1.4 (MRC Biostatistics Unit, Cambridge and

Imperial College London, UK) (see Text S1). The number of

examined and egg-positive individuals for each species at each

survey location were modelled as binomial variates (i.e. grouped

hierarchical logistic regression), conditional on a vector of fixed

environmental covariate effects as described above and a

geostatistical random effect that modelled spatial correlation using

an isotropic, stationary exponential decay function [30]. To

capture changes in prevalence over time, a temporal first-order

autoregressive function was also included, under the assumption

that fitted temporal correlation exists only with the preceding year

[18,31].

Spatial prediction
Predictions of infection prevalence were made on a 0.160.1

decimal degree (approx 11611 km at the equator) grid covering

Kenya, at every point considered suitable for STH transmission

(i.e. maximum LST ,40uC). Prediction was performed in

WinBUGs using the spatial.unipred command, which implements

an interpolation function (krigging) for the spatial random effect.

Kato-Katz is the WHO recommended diagnostic for surveillance

of STH infections [32,33], and mass drug administration is

targeted at school-aged children [16]. Thus, models were coded so

that the predictive surfaces represented school-based surveys using

the Kato-Katz technique for diagnosis. Predicted prevalence at

each realisation was calculated for two years (1989, 2009), chosen

to provide both a historical and contemporary representation of

infection levels. Prediction was carried out by adding the

interpolated geostatistical random effect and the temporal random

effect corresponding with the year of interest to the sum of the

products of the covariate coefficients and the values of the

covariates at each prediction location. The overall sum was then

back transformed from the logit scale to the prevalence scale.

Prevalence of STH at each realisation was estimated using the

probabilistic model given above, producing a posterior probability

distribution for combined STH at each prediction location.

Probability contour maps were subsequently developed by

calculating the observed proportion of the STH posterior

probability distribution at each prediction location that exceeded

WHO policy intervention thresholds (20% and 50% prevalence)

[16]. Prediction locations were classified as endemic if the

probability that observed STH prevalence exceeded 20% (the

MDA once-yearly intervention threshold) was .0.5 (i.e. this was

the most likely category). These locations were further classified as

hyper-endemic if the probability that observed STH prevalence

exceeded 50% (the MDA twice-yearly intervention threshold) was

.0.5. Digital administration level 2 (district) boundaries and a

population distribution map of Kenya (adjusted population counts

for the year 2000 projected to 2009 by applying the national,

medium variant, inter-censal growth rates, as previously described

[34], at 5 km2 resolution) were overlaid on the endemicity-class

surface to determine the proportion of the district population

living in each endemicity class. Districts were defined as MDA

Figure 1. Relationship between mean land surface temperature
(LST) and prevalence of soil-transmitted helminth infection.
LST estimated from global weather station temperature records,
Estimates are derived from 3,714 spatially unique cross-sectional survey
locations across sub-Saharan Africa, provided by the Global Atlas of
Helminth Infection (www.thiswormyworld.org). Error bars show the
standard error of the mean.
doi:10.1371/journal.pntd.0000958.g001

Mapping Soil Transmitted Helminths in Kenya

www.plosntds.org 3 February 2011 | Volume 5 | Issue 2 | e958



intervention districts if over 33% of the population were in

endemic (once-yearly MDA) or hyperendemic (twice yearly MDA)

endemicity classes. This cut-off was chosen post-estimation as the

level that ensures treatment of .80% of the population predicted

as exceeding the 20% prevalence threshold. The proportion of the

Kenyan population of school-going age (5–14 years) was estimated

as 0.26, based on the World Population Prospects: 2008 Revision

Population Database (http://esa.un.org/unpp/index.asp?panel = 3;

accessed 11th May 2010) and the number of treatments needed

estimated using a primary-school net enrolment rate of 0.815 (http://

data.worldbank.org/indicator/SE.PRM.NENR; accessed 11th May

2010; [35]).

Model validation
Model validation was performed by randomly allocating the

survey locations to one of four subsets (each containing

approximately 25% of the total dataset) and training the space

time models on the three subsets whilst simultaneously predicting

infection prevalence at the locations of the fourth, excluded subset

(as done previously [10]). This was repeated for each subset, giving

an observed and predicted value for all 945 survey locations.

Validation statistics included area under the curve (AUC) of the

receiver operating characteristic (ROC; a plot of sensitivity vs. one

minus specificity, where the predicted probability of infection

being greater than 5%, 20% and 50% were compared to observed

values) to assess discriminatory performance of the predictive

model [36] AUC values of ,0.7 indicate poor discriminatory

performance, 0.7–0.8 acceptable, 0.8–0.9 excellent and .0.9

outstanding discriminatory performance. The correlation coeffi-

cient between observed and predicted prevalence and the mean

error and mean absolute error were used to assess bias (mean

error) and the accuracy (mean absolute error) of predictions.

Validation was repeated for models without temporal and/or

spatial random effects.

Results

Survey data
A total of 976 independent surveys conducted between 1975

and 2009 were identified through our searches, of which 945

surveys (97%), including some 106,370 individuals, could be geo-

positioned. The majority (96%) of surveys were conducted among

children in schools. Of the included surveys, 813 were spatially

unique locations, whilst the rest were surveys undertaken in the

same location but at different times.

Figure 2 presents the observed geographical distribution of

each species as well as the estimated combined prevalence of STH,

based on all the included survey data. The observed prevalence of

all STH species is highest in western Kenya and on the coast;

pockets of observed high prevalence of A. lumbricoides and T.

trichiura prevalence also occur in central Kenya. In addition to

geographical variation, observed prevalence also varies over time

(Table 1): for example, mean combined STH prevalence in

Central Province was 43.8% in the period 1980–1989 (n = 86

surveys), but only 12.6% in the period 2000–2009 (n = 80 surveys).

Bayesian space time modelling
In univariate analysis, all tested environmental covariates were

statistically significant predictors of infection prevalence (See Text
S2). In particular, infection prevalence was significantly associated

with the diagnosis method used for all species. Prevalence was also

significantly associated with maximum LST, elevation, precipita-

tion, EVI and distance to permanent water bodies. Note that the

odds ratios are on the same scale (standard deviations) for each

variable, which were standardised to have a mean of zero and a

standard deviation of one. Model-based geostatistical analysis

resulted in some weakening of associations between environmental

predictors and odds of infection, because these environmental

covariates are themselves spatially correlated. Multivariable

analysis (Table 2) indicated that the odds of A. lumbricoides was

significantly lower in community-based surveys compared with

school surveys and showed borderline associations with maximum

LST. Estimates of T. trichiura odds were lower in community based

surveys and in surveys that used alternative diagnostic methods to

Kato Katz, significantly decreased with increasing maximum LST

and elevation, and demonstrated a borderline negative association

with precipitation. Odds of hookworm infection also differed

significantly with diagnostic method, was significantly negatively

associated with maximum LST and elevation, and demonstrated

borderline positive associations with precipitation.

Variance of the geostatistical random effect (which indicates a

propensity for clustering not explained by the environmental

covariates) was similarly large for all three STH species. For all

three species the distance at which spatial correlation fell below

5% was 39–49 km (95% credible intervals ranging between 31–

68 km), corresponding with a very rapid decline in spatial

correlation with distance at larger scales, after accounting for

covariates. The variance of the temporal random effect was

greatest for A. lumbricoides, indicating greater variation over time

compared with hookworm and T. trichiura. A closer inspection of

the temporal random effect associated with each year (Figure 3)

shows that, although there is considerable inter-year variation,

there is evidence of a general decline in prevalence odds over time

for all three STH species, after adjusting for the spatial distribution

of the survey data. Bayesian space-time models were also run on a

restricted dataset comprising surveys that reported using Kato

Katz for diagnosis of infection, with no major differences in

findings observed (see Text S2).

For each STH species, and for the combined prevalence of

STH, models consistently had an AUC (area under the ROC

curve) estimate .0.85 for each prevalence threshold investigated,

and in most instances AUC .0.9, indicating very good

discriminatory performance of the model to classify areas

(sensitivity and specificity) (Table 3) [36]. For comparison, at a

20% prevalence threshold the AUC was 0.91 (95% CI 0.89, 0.93)

for the full space-time model, compared with 0.86 (0.81, 0.91) in a

model that only accounted for spatial correlation, 0.80 (0.76, 0.83)

when accounting for only temporal clustering, and 0.6 (0.56, 0.64)

when neither of these random effects were included. Mean error of

the space-time model predictions was ,3% for each STH species,

and 5% for combined prevalence, suggesting that the models

consistently under-predicted prevalence.

Predictive prevalence and probability contour maps
Predictive maps of combined STH prevalence in school-aged

children (i.e. school-based surveys using Kato-Katz for diagnosis)

were created from the spatial model for two example years (1989

and 2009), shown in Figure 4a–b. Masked areas shown in grey

have a mean LST .40uC, and so were considered outside the

environmental limits for STH transmission. Clusters of high

combined STH prevalence were located on the shores of Lake

Victoria in western Kenya, and along the coast. Consistent with

the temporal random effects shown in Figure 3, there are notable

differences in predicted combined prevalence between years;

overall prevalence was considerably lower in 2009, with predicted

combined prevalence of 10 to 20% for much of the country, whilst

in 1989 this was higher at .20–30%. Continuous probability

contour maps are presented in Figure 4c–d. Areas within the red

Mapping Soil Transmitted Helminths in Kenya
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colour range (indicating probabilities of at least 70%) are those

where there is a high probability that the mass drug administration

(MDA) intervention threshold of 20% is exceeded, the blue areas

(indicating probabilities of # 30%) are those where there is a low

probability that the 20% threshold is exceeded, whilst the yellow-

orange areas (indicating probabilities of .30% but ,70%) can be

considered as areas of high uncertainty. The model for 2009 is

characterised by generally low uncertainty, with pockets of higher

uncertainty surrounding western and coastal regions (a conse-

quence of the posterior mean prevalence being very close to 20%).

In contrast, the 1989 model is characterised by high uncertainty

for much of the country.

Predictive prevalence and probability contour maps for the

three individual species are provided in Text S2. In brief,

prevalence of hookworm infection was predicted to be low (,20%)

throughout most of the country, with areas of higher prevalence in

south-western Kenya (on the shores of Lake Victoria) and in Kilifi

and Kwale districts on the coast. A. lumbricoides and T. trichiura

infections had similar distributions, with high prevalence clusters

in south-western Kenya and further north on the coast, in the

districts of Lamu and Tana River. A. lumbricoides demonstrated

greater variability over time, with an additional area of high

infection prevalence identified in the Central Province in 1989.

Populations living in areas classified as endemic or
hyperendemic in 2009

Intervention districts were defined as those where the

population-weighted proportion of the district falling into a

control-related endemicity class was greater than 33%, as shown

in Figure 5a. Based on this modelling procedure, once yearly

MDA with a benzamidazole, either albendazole or mebendazole,

for all children of school-going age is recommended for 17

districts; Kilifi, Kwale, Lamu and Mombasa in Coast Province,

Bondo, Gucha, Kisumu, Nyando, Nyamira and Siaya in Nyanza

Province, Bureti, Kericho and Nandi South in the Rift Valley

Province and Butere/Mumias, Mount Elgon, Bungoma and

Figure 2. Distribution of soil-transmitted helminth survey data. Empirical prevalence of (a) combined soil-transmitted helminth, (b) A.
lumbricoides, (c) T. trichiura and (d) hookworm infection from 945, cross-sectional surveys in Kenya 1974-2009. Combined prevalence was estimated
calculated using a simple probabilistic model of combined infection, incorporating a small correction factor to allow for non-independence between
species [20]. Biological transmission limits were estimated using maximum land surface temperature (LST), assuming no transmission when maximum
LST exceeds 40{degree}C.
doi:10.1371/journal.pntd.0000958.g002
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Kakamega in Western Province. Twice yearly MDA is recom-

mended for Busia in Western Province, where 54% of the district’s

population are estimated to live in a hyperendemic area

(prevalence $50%). These districts represent approximately 26%

(2.82 million) of Kenyan children of school-going age. Thus,

assuming a primary-school net enrolment rate of 81.5%, this

Table 1. Summary of the Kenya soil-transmitted helminth survey data.

Survey data points Persons examined Estimated combined STH prevalence (SD)

Total 945 106,370 37.0% (27.7%)

Upper age sampled

,5 years 46 9915 39.1% (26.9%)

5–9 years 820 92239 36.4% (27.9%)

10–14 years 79 4216 44.6% (21.8%)

Decade

1974–1979 39 10840 20.7% (20.0%)

1980–1989 205 34202 42.3% (22.9%)

1990–1999 183 20058 61.2% (27.5%)

2000–2009 513 41270 29.0% (24.2%)

Province

Central 169 24178 34.3% (21.1%)

Coast 215 20576 41.3% (30.0%)

Eastern 77 15350 13.3% (9.9%)

Nairobi 2 250 76.2% (28.2%)

North eastern 18 1181 0.2% (0.6%)

Nyanza 371 36534 42.1% (23.0%)

Rift Valley 35 4034 12.2% (15.0%)

Western 58 4267 80.7% (21.8%)

Type of sample survey

School 918 98750 38.2% (27.7%)

Community 27 7620 22.0% (20.0%)

Method of diagnosis

Kato-Katz 557 66920 38.6% (30.4%)

All others* 388 39450 36.6% (23.3%)

*Other diagnostic methods include concentration (12 surveys), sedimentation (22 surveys), direct smear (12 surveys) and 342 studies for which the diagnostic method
was not reported.
doi:10.1371/journal.pntd.0000958.t001

Table 2. Estimates of Bayesian hierarchical logistic regression models of soil-transmitted helminth species in Kenya. Data from
1974–2009.

Posterior mean OR (95% CI)

Variable A. lumbricoides Hookworm T. trichiura

Community based (vs. school based) 0.72 (0.51,0.96) 0.85 (0.57, 1.21) 0.45 (0.29, 0.68)

Other diagnostic method (vs. KK) 0.90 (0.72,1.1) 0.68 (0.53, 0.84) 0.43 (0.31, 0.57)

Maximum LST * 1.18 (0.93,1.46) 0.84 (0.73, 0.96) 0.83 (0.73, 0.99)

Elevation * 1.32 (0.84,1.80) 0.74 (0.60, 0.95) 0.75 (0.61, 0.93)

Precipitation * 1.01 (0.87,1.15) 1.13 (0.98, 1.28) 0.91 (0.77, 1.04)

EVI 2.57 (0.75,5.86) 0.62 (0.11, 1.64) 3.58 (0.47, 8.16)

Distance to permanent water bodies 0.77 (0.26,1.92) 1.24 (0.33, 3.14) 1.20 (0.34, 3.19)

w (rate of decay of spatial correlation) 6.83 (4.94, 9.02) 8.62 (6.35, 10.93) 7.06 (5.15, 9.15)

s2
space (variance of spatial random effect) 4.03 (3.05,3.97) 3.53 (2.83,4.53) 3.55 (2.78, 4.63)

s2
time (variance of temporal random effect) 1.22 (0.56, 2.45) 0.66 (0.32, 1.36) 0.87 (0.39, 1.67)

CI, Bayesian credible interval; EVI, enhanced vegetation index; Maximum LST, maximum land surface temperature.
*Variables were standardised to have a mean of 0 and a standard deviation of 1.
doi:10.1371/journal.pntd.0000958.t002
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suggests that 2.36 million doses of a benzimidazole (albendazole or

mebendazole) would be needed yearly if this model were to be

used to guide decision makers as to where MDA should be offered.

For reference, Figure 5b shows the population-weighted

proportion of each district exceeding the 20% prevalence

threshold for 2009 and Figure 5c shows the projected population

distribution in Kenya in 2009.

Discussion

Reliable and up-to-date maps of STH can help improve the

geographical targetting and cost-effectiveness of school-based

deworming. As global resources for deworming continue to

increase there is an urgent need to strengthen our understanding

of the spatial distribution of STH to inform planning at policy-

relevant scales. Here, we present a new approach that combines

GIS, geostatistics and high resolution environmental and popula-

tion data, to map the predicted prevalence of STH in Kenya

within a space-time Bayesian framework, incorporating data

assembled from 945 independent, empirical helminth surveys

spanning 34 years. The model distributions of combined STH

prevalence had a high predictive accuracy (as demonstrated when

splitting the database) and provide a description of how the

observed STH prevalence has changed over time. This combined

empirical and modelling approach providea a tool which could be

used to guide decision making in helminth control in Kenya. The

approach can also be extended to other endemic countries.

The 2009 risk map indicates that MDA is most warranted in

western and coastal areas of the country, as indicated by a high

probability that observed prevalence exceeds 20% (Figure 4c).

Encouraging, an estimated 67% of the 2009 population live in

areas where the predicted combined prevalence of STH is lower

than 20%, including a large majority (57%) for whom we can be

very certain (probability .0.7) that observed prevalence does not

exceed 20%. This classification of endemicity differs from that

predicted for 1989 and illustrates the importance of having up-to-

date data to appropriately guide control. Our analysis indicates

that observed combined STH prevalence has gradually decreased

over time across the country, with populations experiencing lower

observed prevalence of infection in more recent years. Conse-

quently, several districts that in 1989 would have been indicated

for targeted mass treatment based on the observed 20%

prevalence threshold are not indicated for targeted mass treatment

in 2009. Whilst the modelled extent of the temporal decline is

subject to potential bias in measurement and selection, some of

this decline may be attributable to small-scale implementation of

deworming interventions, or may result from urbanisation and

general improvements in socio-economic status, with associated

improvements in living conditions, water and sanitation, and

hygienic behaviour. For example, comparison of Demographic

and Health Surveys from 1989 and 2009 reveals that access to an

improved water source has risen nationally from 36.0% to 63.0%

of households [37,38]. Such secular changes are probably not

unique to Kenya and it is likely that much of Africa has

experienced a gradual decline in the prevalence of parasitic

diseases, including helminth infections. As deworming is scaled up

across Africa and transmission continues to decline, it will become

even more important to explicitly incorporate a time component

into spatial models.

The models also serve to identify important determinants of

observed infection patterns. The environmental and climatic

associations presented here are consistent with the known

biological determinants of helminth transmission [10,12]. Survey

design (either community or school based) and diagnostic method

are also important. In particular, the odds of hookworm and T.

trichiura were significantly higher when surveys used the Kato-Katz

method for diagnosis, confirming the increased sensitivity of this

Figure 3. Temporal random effects for hookworm, Ascaris
lumbricoides and Trichuris trichiura prevalence. Kenya from 1974–
2009. Values are on a log scale (values of ,0 indicate lower than
average odds, values .0 indicate higher than average odds). Error bars
show the 95% Bayesian Credible Intervals.
doi:10.1371/journal.pntd.0000958.g003

Table 3. Measures of discriminatory ability, correlation, bias and accuracy of Bayesian hierarchical regression models.

Validation statistics A. lumbricoides Hookworm T. trichiura Combined STH

Area under the ROC curve (95% CI)

5% threshold 0.92 (0.89, 0.93) 0.87 (0.83, 0.90) 0.91 (0.88, 0.94) 0.91 (0.886, 0.94)

10% threshold 0.92 (0.90, 0.94) 0.87 (0.84, 0.89) 0.90 (0.88, 0.92) 0.90 (0.87, 0.92)

20% threshold 0.92 (0.90, 0.94) 0.86 (0.84, 0.90) 0.91 (0.89, 0.94) 0.91 (0.89, 0.93)

50% threshold 0.87 (0.83, 0.90) 0.91 (0.90, 0.94) 0.92 (0.89, 0.96) 0.91 (0.89, 0.93)

Correlation coefficient 0.737 0.775 0.802 0.808

Mean error 20.01 20.01 20.02 20.03

Mean absolute error 0.09 0.11 0.08 0.14

ROC, receiver operating characteristic, a plot of sensitivity vs. one minus specificity; values of ,0.7 indicate poor discriminatory performance, 0.7–0.8 acceptable, 0.8–0.9
excellent and .0.9 outstanding discriminatory performance. Correlation coefficient of 1 indicates perfect correlation between observed and expected prevalence. Mean
error is the mean difference between observed and expected prevalence (assesses bias of estimates). Mean absolute error is the mean absolute difference between
observed and expected prevalence (assesses accuracy of estimates).
doi:10.1371/journal.pntd.0000958.t003
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method [39,40]. Our adopted Bayesian framework may in the

future be expanded to include adjustment for measurement error

of these different diagnostic tools. For example, recent work

employing Bayesian methods has sought to estimate the sensitivity

and specificity of diagnosis in the absence of a gold standard

[31,41], and future refinements of our models will seek to reliable

integrate measurement error into model predictions. Other

sources of uncertainty also remain. For example, despite inclusion

of environmental covariates, some small scale residual spatial

variation remains - represented by the spatial random effects. This

suggests that other factors, which may be related to poverty,

hygiene and other small-scale environmental covariates, influence

the observed current distribution of STH in Kenya. It should also

be acknowledged that these maps represent stable rural popula-

tions; prevalence may vary among sub-populations such as

nomads and refuges, or those living in urban slum areas with

inadequate sanitation and overcrowding. In these instances, risk

maps may under-estimate infection prevalence, and targeted

surveys may be necessary before control decisions are made.

The explicit estimation of uncertainty is a particular strength of

our adopted model-based geostatistics approach, which takes

empirical estimates of infection prevalence and generates continu-

ous maps by interpolating prevalence at unsurveyed locations on a

grid system. Bayesian geostatistical inference acknowledges error or

uncertainty associated with the data such that for each prediction

location a distribution of possible prevalence values is generated (i.e.

a posterior probability distribution). These uncertainties, which

arise from the constraints of finite sampling, error in survey

Figure 4. Continuous predicted combined soil-transmitted helminth (STH) prevalence and probability contour maps for Kenya.
Probability contour map shows the probability that combined STH prevalence exceeds 20%. Estimates of predicted prevalence are the mean
posterior predictive values from a Bayesian space-time model for (a) 2009 and (b) 1989. The probability contour maps show the spatial distribution of
probability that combined STH prevalence is .20% for (c) 2009 and (d) 1989. Biological transmission limits were estimated using maximum land
surface temperature (LST), assuming no transmission when maximum LST exceeds 40{degree}C.
doi:10.1371/journal.pntd.0000958.g004
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measurements, uneven data distribution, and the inevitable

presence of apparently random, unexplained, variation in preva-

lence, can have considerable implications for risk mapping

approaches. For example, the WHO recommends implementation

of targeted mass treatment for STH when the mean combined

prevalence is $20% [19]. However, as a consequence of the degree

of certainty, a predicted prevalence of 25% may or may not imply a

high probability that the true prevalence exceeds 20% [16], as

demonstrated in Figure 4b and 4d. An understating of these

uncertainties can thus hugely assist decision making for disease

control [42]. For example, the probability contour maps presented

here help distinguish not only those areas where we can be certain

that infection prevalence exceeds the 20% prevalence intervention

threshold, but also those areas where we are still very uncertain and

so where additional surveys are likely to be most helpful. For 2009,

these areas of high uncertainty are few, and are limited to western

and coastal areas close to recommended intervention districts.

An important limitation of traditional risk mapping strategies

concerns spatial aggregation; that is, decision-making typically

occurs at a district level, whereas environmental risk maps present

continuous estimates. Surveys are often conducted in areas of

known high endemicity, as reflected by the overall high prevalence

Figure 5. Control planning maps for Kenya in 2009. (a) Recommended intervention districts for 2009, and (b) the proportion of the population
for each district exceeding the prevalence threshold. Prediction locations are defined as exceeding the prevalence threshold if the probability that
prevalence is $20% is .0.5. Recommended intervention districts are defined as: once yearly mass drug administration (MDA), at least 33% of the
district exceeds 20% prevalence threshold, and twice yearly MDA, at least 33% of the district exceeds 20% prevalence threshold. Continued
surveillance is recommended for districts where historically .75% of the district exceeded the 20% prevalence based on 1998 and 1988, and areas of
high uncertainty are those where we can only be 50–65% certain that prevalence is lower than 20%. For reference (c) shows the distribution of
population density across Kenya, using the Gridded Population of Kenya (as previously described [34]), and the biological transmission limit,
estimated using maximum LST .40uC.
doi:10.1371/journal.pntd.0000958.g005
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reported by the survey data. Mean prevalence may however vary

significantly across districts, with localised pockets of high

prevalence. In Kwale district for example, the predicted combined

prevalence in 2009 varied between 5% and 53%, making the

district-level mean prevalence of 21% harder to interpret. Risk

maps are primarily restricted to continuous estimates due to the

huge computational costs associated with prediction over large

areas, constraining modelling approaches to those that produce

independent, marginal predictions prediction that ignore correla-

tion between prediction locations. Importantly, whilst these

provide valid estimates of uncertainty for each location considered

in isolation, it is not possible to construct valid probability

distributions for a group of prediction locations, such as a district

[43]. In the future, it may be feasible to develop joint simulation

approaches that allow for robust estimates of mean prevalence at

varying levels of spatial aggregation, such as those employed by

Gething et al [43]. However, here we negate these problems by

presenting the proportion of the population for each district that

live in an area where prevalence exceeds the 20% threshold. This

simple and statistically robust measurement provides an accurate

indication of population at risk and represents a practical

adaptation of modern Bayesian geostatistical techniques.

Bias associated with measurement error also represents an

important limitation when interpreting the current model. The

diagnostic sensitivity of different techniques can vary considerably

[40,44,45], and whilst attempts were made to adjust for this, a

large proportion of the surveys included did not mention the

diagnostic method used nor the numbers of stool samples taken.

Similarly, as the majority of surveys were school-based, selection

bias may be present if the socio-demographic characteristics of

school-going children varied through time or space. Notably, the

proportion of surveys reporting using Kato Katz increased over

time, whilst primary school enrolment rates have risen from 56%

in 1998 to nearly 82% in 2009 [35]. The number of stool samples

typically examined per individual may also have changed over

time. Further, as infection intensities reduce as a consequence of

the scale-up of control, the influence of measurement error in

diagnosis will become more pronounced and must be taken into

account. Specifically, a reduction in infection intensity would

reduce test sensitivity, resulting in lower observed prevalence. Such

systematic changes and potential biases may have served to

dampen or exaggerate the temporal and spatial trends in modelled

prevalence, and should be borne in mind during interpretation.

However, restricting analysis to surveys that used Kato Katz did

not lead to different conclusions. Current treatment guidelines are

however based on prevalence as determined using the diagnostic

tools currently available [16,32]. Thus, whilst the modelled

distribution of STH infection may under-predict true prevalence,

it does still provide a reliable indication of whether deworming is

warranted given current WHO recommendations [16]. Further

research is needed to investigate the full implications of diagnostic

sensitivity and specificity for epidemiological surveillance and

mapping of helminth species, particularly in the context of

ongoing control.

A final limitation relates to how we estimate the combined

prevalence of any STH species. In this instance, the distribution of

each STH species was modelled independently and combined

probability distributions were subsequently calculated post-esti-

mation, using a probabilistic model that adjusts for non-

independence between species [20]. Whilst this overcomes the

considerable computational costs associated with joint modelling

of all three species, it does risk over-estimating combined

prevalence in areas of very low prevalence and conversely

under-estimating prevalence in areas of very high prevalence.

Despite this, we believe that this aspect is unlikely to have a major

effect at a policy-decision level, which concerns mid-level

prevalence values (20 to 50%).

Conclusion and future directions
Accurate and up-to-date maps of STH are essential for decision-

making in helminth control. Our prediction of STH prevalence in

2009 highlights the marked heterogeneity of prevalence across

Kenya and the importance of a geographically targeted approach

to implementing control. The observed reduction in prevalence

over time also serves to warn against relying on purely historic

data when planning control; this will only become more important

as control is implemented at increasing large scales. The resulting

maps give an accurate description of the observed distribution of

STH species across Kenya (together with associated uncertainties),

and provide decision-makers with the information that can be used

to prioritise districts for targeted STH control programmes among

school-aged children, following the WHO recommendations.

The current work forms part of an ongoing project, the Global

Atlas of Helminth Infection (www.thiswormyworld.org), which

seeks to develop an open-access, global information resource on

the distribution of STH and schistosomiasis [7,46]. The work

presented here will be expanded to predict STH prevalence across

all of sub-Saharan Africa. For each country, three types of maps

will be presented: (i) a Survey Data Map showing the observed

prevalence of infection based on survey data; (ii) a Predictive Risk

Map showing the probability that infection prevalence warrants

MDA, according to recommended WHO thresholds; and (iii) a

Control Planning Map showing which districts require MDA

treatment or where further surveys would be helpful in defining

risk [47]. These maps will provide a sound epidemiological basis

for guiding global investments in helminth control and country

deworming efforts across the continent.
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