
o

THREE DIMENSIONAL ANALOGUE MODELLING OF

EXTENSIONAL FAULT SYSTEMS AND THEIR

APPLICATIONS TO THE BARROW-DAMPIER

SUB-BASIN, WESTERN AUSTRALIA

By

TARIQ MAHMOOD
MSc Applied Geology

JANUARY, T996

This thesis is submitted in fulfilment of the requirements of the Doctor of Philosophy
Degree in the National Centre foruPetroleuSfie,ol.çy and Geophysics at the

r-=-. ì^arì



DEDICATION

In memory of my beloved father
Haji Fazal Elahi Minhas

ll



STATEMENT OF AUTHENTICITY

To the best of my knowledge and belief, the thesis contains no material which has been

accepted for the award of any other degree or diploma in any University and the thesis

contains no material previously published or written by another person, except where due

reference is made in the text of the thesis.

If accepted for the award of the degree and, if applicable, I consent to the thesis being made

available for photocopying and loan.

Tariq Mahmood

u



ABSTRACT

Scaled models of tectonic structures are often used to show allowable geometries and to
illustrate the effects of progressive deformation. Analogue modelling is a tried and proven
technique for simulating extensional fault structures and can imitate the style of structures
imaged by seismic reflections. Sandbox models were constructed to simulate extensional
structures above simple listric, ramp-flat-ramp and complex detachment morphologies. Only
one modelling style was used in this thesis, that of a fixed footwall with a non-stretching

box which separates the footwall from the
se models cannot simulate thermal, isostatic,
. Dry quartz sand with a grain size of
material in 2D experiments, sand mixed with

computerised romography experiments. 
ts and coarse granular NaHCot was used in

Previous extensional sandbox models were unable to demonstrate structural patterns where

pre-existing faults with a range of orientations
3D technique has been devised to simulate ext
the sediments have been subject to more than
orientation. 3D models were stabilised and p
made as, both, forward models and as recon
interpretation. The forward models investigated hangingwall deformation and faulj patterns

in arèas where a listric extensional fault is modified by the presence of an existing fault at an

angle to the current detachment. The f,reld examples. involved constructing models of the

deiachment surface from depth converted seismic sections and deforming them to check the

accuracy of the initial interpretation. Computerised Tomography (CT) technique has also

been used to simulate progressive deformation.

2D experiments are repetitions of sandbox
some new results. These experiments dem
fault reactivation and nucleation during progr
particle motion during extensional deformation

lraphical depth-to-detachment and fault reconstruction techniques. Modified Chevron
Õoñstruction^ and Inclined Shear Construction, which imply movement parallel to the

detachment or inclined shear planes are considered likely to be accurate, whereas, my
analysis shows that even those are inadequate. A geometric interpretatiol gf particle paths
has 

-been 
suggested. A wide variety of deta< hment morphologies a-nd theil combinations

were constructe¿ in the 3D model box. 3D modelling allows edge effects to be avoided or
specifically included and allows for more com modelled. The
Uìitaing oi a side ramp into a 3D model can s that pre-date the
active ðxtensional features. These models patterns in plan
view, as the active faults approached pre-existing faults. These models show relative
distribution of pre-rift and- syn-rift sèdiments in extensional regimes. The models
constructed with an end ramp incorporating a side ramp show a rotational block and a crestal
collapse block parallel to each ramp with á third graben developed above the intersection of
the two detachment ramps. These experiments show that the hangingwall geometries are

mainly controlled by maiì active detachment, although, the side ramp has a strong influence
on the hangingwallitructure. Computerised Tomography is a non-destructive technique for
the analysis of internal fault geometries of analogue models. Materials with low X-ray
attenuatiôn a¡e the most appropriate for tomography. Various low density materials were
tested which have similar mechanical properties to sand and coarse granular NaHCO, was
selected as the most appropriate material. It provided results on the relative compaction and

dilation of a sedimeñiary sequence in extensional sedimentary basins. ' The main areas

chosen to model field examplès are from the North West Shelf, Western Australia. The
Barrow and Dampier Sub-baiins provided three examples to be modelled into a scaled model
box. Specif,rc 2D and 3D models constrained by seismic interpretation and depth
conversion, confirmed the existence of the Mermaid Fault as a ramp-flat-ramp detachment.
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There was a major period of extension on the detachment during the Permian with movement
diminishing through the Triassic. The modelling makes it clear that the substantial
unconformity developed between the Late Permian and Early Triassic involved considerable
uplift of the area to the west of Arabella- 1. 3D modelling of the Beagle Sub-basin suggests
that the Cossigny Fault was an early, deep seated fault that acted as a side ramp to later
extension. 3D modelling also shows that the sedimentation history in the Cossigny Trough
should be the same as that in the Beagle Trough and Thouin Graben. Flinders Fault is a
planar fault with hangingwall deformation where subsidence dominates over extension. This
case study suggested that the model can be improved by continuous sloping the distal part of
the detachment. 3D modelling of the Sholl Island Fault has conltrmed that the hangingwall
above low angle detachments deforms by rotation with little faulting and minimal
development of a crestal collapse block. The comparison of modelling with seismic can only
be achièved after depth conversion, so that the imaged structures are presented as true depth
sections.

Sandbox modelling work done in this thesis conclude that the shape of an extensional
detachment surface is the major control on the geometry of deformation of the hangingwall.
General rules have been concluded for the development of faults in extensional hangingwall
deformation controlled by the intersection and shape of the detachment. These rules only
apply to cases where the detachment does not stretch. The shape of rollover anticline differs
sügñily when the side ramp is planar rather than listric and in the planar case the hangingwall
deformation is mainly controlled by antithetic faults. Three prominent graben produce by
extension diagonally away from two pre-existing side ramps, two of them parallel to each
side ramp with a third graben at the intersection of detachments. A curved listric detachment
produce ã single graben parallel to the strike of the main detachment. Rotational extension

þroduce a stylè of extensional deformation where a naffow crestal collapse block on the slow
moving wall develops, this merges to form a wider crestal collapse block in the fast moving
zone. Differential eitension above a simple listric detachment creates an orthogonal transfer
fault zone. A listric end ramp constructed at an angle of 220 degrees to the active detachment
produce characteristic features, such as reduced subsidence above the "nose". This nose is a
natural consequence of extension from a backward dipping detachment morphology, e.9.,
the change in orientation between the Barrow and Dampier Sub-basins.
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