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Abstract: Many aquatic ecosystems in Australia are impacted or threatened by salinisation; however,
there is a paucity of records detailing the changes in salinity of individual water bodies that extend
beyond a few decades. One way to overcome this issue is the use of inference models, which have
typically been based on biological proxies. This pilot project investigates the potential for mid-infrared
spectroscopy (MIRS) to provide an alternative method of reconstructing past salinity levels in
Australian lakes. A small (19 lakes) calibration dataset was used to develop a MIRS-based lake water
salinity inference model (measured vs. inferred salinity, based on leave-one-out cross-validation,
R2 = 0.64). This model and a previously published diatom–salinity model were both used to infer
salinity levels in Tower Hill Lake in south-eastern Australia, over the last 60 years. Comparisons
between these reconstructions and measured salinity data from Tower Hill Lake indicate that salinities
inferred by the MIRS model more closely resembled the measured values than those produced using
the diatom model, predominantly in terms of the actual values inferred, but also with regard to
the trends observed. This supports the hypothesis that MIRS can provide a valuable new tool for
reconstructing lake salinity.

Keywords: salinity; lake sediments; southern Australia; palaeolimnology; infrared spectroscopy;
diatoms; palaeoecology

1. Introduction

Salinity is a leading cause of soil degradation in Australia, resulting from alterations to land use,
particularly vegetation clearance. In Australia, salinity has major economic and environmental impacts;
over 2 million hectares of land is already affected by dryland salinity, whilst a further 3.7 million
hectares has a high potential to be affected [1]. Without successful intervention, this is likely to
increase to 17 million hectares by 2050 [2]. Many aquatic ecosystems in Australia are also impacted
or threatened by salinisation [3,4]. For example, increasing salinity has already halved the number
of bird species present in Western Australian wetlands [5]. However, long-term monitoring data are
not available for the majority of Australian wetlands and lakes. Such information is important for
understanding the extent and degree of lake salinisation induced by land-use change, establishing
realistic remediation targets, and for inferring past climate, particularly in non-outlet lake systems.
Consequently, alternative methods, such as palaeolimnology, are required to improve understanding
of salinity within Australia [6,7].

Palaeolimnological methods that quantify past environmental conditions predominantly rely on
the development of spatial calibration models. Within this paper, the term “spatial calibration model”
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refers to a multivariate regression model (typically using partial least-squares regression) used to
determine the relationships between: (1) the value of the proxy in sediment samples from a number of
different lakes or wetlands across a large spatial area; and (2) selected physical and chemical parameters
from the same waterbodies, sampled at the time of sediment collection. Such predictive calibration
models rely on the assumption that the processes responsible for differences over a spatial gradient
will also be applicable for changes that have occurred over time. Furthermore, these models will only
be accurate if the variable of interest (e.g., salinity) is the environmental factor that has the strongest
influence on the selected proxy [8].

A number of studies have previously developed quantitative reconstructions of salinity
within Australia, predominantly using spatial calibration models based on diatom and ostracod
assemblages [9–15]. There are, however, a number of difficulties associated with some of these.
For example, although diatom-based models have often been used to quantify past salinity levels
overseas, in Australia their applicability is frequently limited by the impact of land-use changes,
as diatoms are also sensitive to water quality shifts associated with land-use change [16]. Diatom-based
inference models can also be hampered by poor diatom preservation in many Australian wetlands [17].
Taphonomic problems such as preferential transportation, different settling rates, and varying
susceptibility to breakage or dissolution can also reduce the accuracy of diatom reconstructions.
Finally, even when considering recent sediments that are not subject to the above issues, significant
disparities between diatom inferred values and monitoring data may still be observed [18]. Such issues
can also apply to other biological proxies used to infer past changes in salinity within Australian
waterways. For example, distinct differences between living foraminiferal communities and the
assemblages preserved within sediments have been reported [19], and differential dissolution of
ostracods dependent on both on carapace morphology and the sedimentary microenvironment has
also been observed [20]. Consequently, there is a need to develop a new, alternative method of
determining past salinity levels.

Mid-infrared spectroscopy (MIRS) offers several advantages over more traditional reconstructions
based on species assemblage data of biological proxies. Acquisition of the spectral data is rapid and
several hundred samples can be measured in one day. The rapid rate of measurement, combined with
the low cost of this method, allows for a greater number of sediment samples to be analysed given
the same temporal and financial constraints [21–23]. Consequently, higher resolution studies and
increased replication of samples are possible. Furthermore, less specialised knowledge and training are
required, relative to species identification and taxonomy. Accordingly, MIRS represents a promising
alternative to more costly and labour-intensive analyses of biological community assemblages.

The basic principle of MIRS is that infrared radiation stimulates molecular vibrations and,
as a consequence of the quantum mechanical behaviour, this radiation is absorbed at specific
wavenumbers. The wavelengths that this energy is absorbed at correspond to molecular vibrations [24].
Consequently, the wavelengths at which the MIRS radiation is absorbed can provide information about
the molecular structure of the sample [25]. As every molecule has a unique chemical composition,
it also has a unique infrared spectrum. Lake sediments consist of biogenic material derived from
organisms formerly living in a lake and its catchment, as well as minerogenic material eroded from
surrounding soils [26]. MIRS spectra of sediment consist of a combination of spectral signatures from
all these components. The use of predictive calibration models provides one means of disentangling
this information and extracting both qualitative and quantitative information about lake sediments
and the conditions that create them. MIRS is often used in soil science where predictive models
enable a wide range of chemical parameters (Table 1) [17,20–23,26–30] to be reliably determined
more quickly and cheaply than traditional analyses [31,32]. Given that MIRS can be used to quantify
a range of variables in dried soils, it should be equally suitable for inferring similar properties of dried
lake sediments.



Water 2016, 8, 479 3 of 17

Table 1. Existing IR based models derived from sediments compared to a selection of published models
for similar parameters in soils. A full summary of mid-infrared (MIR) calibration models developed
for soils is beyond the scope of this paper. The analytical method is shown in brackets where different
analytical methods have been used for the one element or compound.

Soils Lake or Marine Sediments

Parameter R2 Reference Parameter R2 Reference

Organic Matter
Organic Carbon

0.98
0.73

0.83–0.92
0.94

[27]
[28]
[29]
[30]

Organic Carbon

0.43–0.66 1,2

0.82
0.84–0.99 2

0.96

[33]
[34]
[21]
[22]

Inorganic Carbon 0.98 [30]

Inorganic Carbon

Dolomite

0.80
0.84–0.99 2

0.92
0.96 1

0.99 1,2

[34]
[21]
[22]
[35]
[36]

Total Carbon 0.95 [30]

Total Nitrogen 0.76
0.88

[29]
[30] Total Nitrogen

0.62–0.84
0.86
0.99

[23]
[34]
[22]

Organic Nitrogen 0.86 [37]

Total Phosphorus 0.48 [38]

pH
0.19–0.21

0.72
0.77

[38]
[31]
[29]

Electrical Conductivity 0.08–0.79
0.20–0.32

[29]
[38]

Aluminum (dithionate extraction)
Exchangeable Aluminum

0.69
0.64

[29]
[37] Aluminum Oxide 0.99 1,2 [35]

Iron (AAS)
Iron (dithionate extraction)

Iron (DTPA extraction)

0.97
0.79
0.55

[39]
[29]
[37]

Exchangeable Magnesium 0.74
0.76

[29]
[37]

Lead 0.66 [39]

Silica (dithionate extraction)
Silica (oxalate extraction)

0.69
0.69

[29]
[29]

Biogenic Silica

Silicate

0.64
0.64–0.94 2

0.93
0.97

0.98 1,2

[32]
[21]
[22]
[36]
[35]

Titanium dioxide 0.95 1,2 [35]

Zinc 0.96 [38]

Total Petroleum Hydrocarbons 0.62–0.92 [32]

% Clay
0.21–0.32

0.67
0.87

[37]
[27]
[30]

% Sand
0.74

0.79–0.85
0.94

[27]
[28]
[31]

% Silt
0.49
0.84

0.58–0.79

[27]
[31]
[28]

% Coarse >2 mm 0.33–0.51 [37]

Notes: 1 indicates that, instead of a multivariate calibration model (as presented here), these papers used the
peak height or area to calculate the amount present; 2 indicates the correlation (R) between the variables is
stated, rather than the coefficient of determination (R2).

In comparison to soils, fewer properties of sediments (lacustrine, riverine, or marine) have been
quantified using MIRS (Table 1) [22,33–36,40,41]. Furthermore, where MIRS methods have been
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applied to sediments, they have predominantly utilised a mathematical approach [40] whereby the
concentration of a compound in a dilute potassium bromide (KBr) disc is linearly related to the
absorbance at specific wavelengths. Thus, by knowing the spectral peaks associated with specific
compounds and determining the relative height of these, the amounts of compounds present in
a sample can be calculated. This approach, along with similar methods based on peak area rather
than height, have been used for quantitative determination of silica, carbonate, kaolinite, and other
minerals in sediments derived from lake, marine, and riverine environments [42–44]. MIRS has also
been used for more detailed investigations, such as identifying humic materials [45,46].

Although spatial calibration models are not widely used for MIRS analysis of sediments (Table 1),
there has been some development in this area. For example, predictive models based on MIRS
have previously been used to determine the amount of total organic carbon, total inorganic carbon,
total organic nitrogen, and biogenic silica within lake sediments [21,23,47]. Such research demonstrates
the applicability of MIRS for determining a range of environmental parameters. One advantage
of spatial calibration models is that they allow parameters that influence the sediments but do not
have a strong spectral signature (within the range being considered) to be inferred. For example,
infrared spectroscopy has been used to determine water quality parameters at the time of sediment
deposition, such as total organic carbon content [48]. The current paper, therefore, investigates the
hypothesis that MIRS can also be used to infer the lake water salinity at the time of sediment deposition.

2. Materials and Methods

This study focused on lakes from the western plains of Victoria, Australia (Figure 1) that had
a salinity less than 20 mg·L−1. This criterion was implemented because changes in salinity below this
point tend to have the greatest ecological impact with regards to turnover of species. Many species
that inhabit lakes above this salinity level can tolerate a very wide range of salinity [49], thus changes
in salinity will have a proportionally lesser effect. Applying this criterion also enabled us to compare
our data with an existing reconstruction [9] derived from a diatom-based calibration model [17].
The latter performs best at lower salinities (presumably because of the greater turnover discussed
above), thus using this range would enable an appropriate comparison of the models produced.
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Based on previously recorded salinities [17], 44 lakes were initially selected for sampling, however,
during the field campaign it was found that 15 of these were dry whilst the salinities of 9 others
exceeded the selection criterion and 1 lake was inaccessible. Consequently, 19 lakes were incorporated
in the calibration dataset. Surface sediments were collected from either the deepest part of the lake or
from the centre of the lake when no bathymetric data were available. Sediments were collected using
a modified Hongve corer [50]. The sediment/water interface was suctioned off using a large-bore 50 mL
medical syringe; the material removed did not exceed 2 mm in core depth. This technique was used
as the surface sediments were too soft to remove in a more traditional manner (i.e., using a spatula
or core cutter). Given the very rapid sedimentation rates observed in almost all Australian lakes
since European arrival [51–54] and the thin layer of sediment collected, it is assumed that the samples
represent a few years of accumulation, at most.

Electrical conductivity (EC), as an indicator of salinity, was measured at the time of
sediment sampling using a TPS 90-FL Field Lab multimeter that was calibrated before each use.
EC measurements were taken from within the photic zone, approximately 1 m below the water surface.
The salinity was calculated by multiplying the measured EC value by 0.64 [55]. Water temperature,
pH, and dissolved oxygen (DO) were also measured in the field using this device. As the majority
of these lakes are shallow (<5 m deep), minimal stratification is assumed and thus no attempt was
made to measure changes in these parameters with depth through the water column. Water samples
were collected approximately 50 cm below the surface for the analysis of chloride (Cl), alkalinity,
aluminium (Al), iron (Fe), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), total nitrogen
(TN), total phosphorus (TP), and sulphur (S). Water samples were also collected and filtered to allow
the dissolved concentrations of the latter 7 parameters to be determined, along with phosphate and
total carbon (TC). Analyses of these samples were undertaken at the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) Land and Water laboratories using standard methods.
This range of chemical data was intended to provide information about the calibration lakes and
their settings with only a subset consisting of Cl, Ca, dissolved N, EC, and pH incorporated in the
calibration dataset. These parameters are all ecologically meaningful yet, despite previous research
indicating that MIRS-based models can quantify these parameters within soils [29,31], these methods
have yet to be applied to lake sediments. In contrast, well-developed MIRS-based calibration models
already exist for quantifying the proportion of organic carbon, inorganic carbon, and biogenic silica in
lake sediments; thus these compounds were not considered here.

An existing sediment core from Tower Hill forms the basis of the salinity reconstruction developed
herein. This core was collected in 2000 with both collection and subsampling details described
elsewhere [9]. To briefly summarise, two cores were collected approximately 50 m in from the western
edge of the lake. One of these was predominantly used for dating and midge studies whilst the second
core was primarily used for the diatom reconstruction; remnant samples from the latter have been used
herein. The chronology consisted of 10 210Pb dates constrained by a marked change in stratigraphy that
corresponded to the date the lake was most recently inundated [9]. Sediments below this stratigraphic
marker could not be reliably dated using 210Pb and thus have not been included within this study.

Prior to MIRS analyses, samples were air-dried and machine-ground to a fine powder (nominal
particle size of <100 µm) in a single puck Rocklabs© mill. Samples were analysed as neat powders
using a rapid scanning Fourier-transform spectrometer (Bio-rad 175C, Hercules, CA, USA) with
an extended range KBr beamsplitter and DTGS (deuterated triglycine sulphate) detector (spectral
range of 8300–440 cm−1) at 4 cm−1 resolution. Spectral frequencies were referenced against an internal
He–Ne laser to give a precision and accuracy of 0.01 cm−1. The diffuse reflectance accessory
(Harrick™ DRS-3SO) used off-axis geometry and was set up for maximum energy without removing
stray specular radiation. An initial KBr blank spectrum was run to test the spectrometer performance
and as a reference for calculating the sample spectra in absorbance units. Each sample spectrum
acquisition and processing took 1 min per sample over 60 scans. Only the MIRS range (4000–470 cm−1)
was used for further analysis. Spectra were baseline corrected prior to model development. All data
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were mean centred and chemical data were autoscaled in The Unscrambler V 9.8 (Camo Software AS,
Oslo, Norway). Chemical parameters were then related to the spectral dataset using the kernel partial
least-squares (PLS) regression model available in The Unscrambler. A PLS analysis was performed
in the Unscrambler for each variable, individually, using the autofit function. This function fits the
number of axes that the software thinks best explains the variance in the data. The plots of residual
variance were used to confirm the optimal number of axes. Models were initially developed using
untransformed chemical data, however, given the skewed distribution observed for some variables,
a square-root transformation was also applied. Cross-validation of PLS models was performed
using an iterative, leave-one-out, procedure (LOOCV). In the latter, one lake is omitted from the
calibration model, the salinity is predicted for that lake and then compared to the actual measured
value. The model is then re-run including the first lake that was omitted but with a second lake left
out. This process continues until each lake has been sequentially omitted. This provides an estimate of
the error associated with the model. The above analyses were all performed using The Unscrambler
V 9.8 (Camo Software AS).

An independent validation was performed to assess the validity of salinity values inferred from
the MIRS calibration model. Reconstructed values from a sediment core collected from Tower Hill
Lake in 2000 were compared to historical monitoring data. Salinity data were available for 1983–1990
from the Tower Hill Lake State Game Reserve, from two sampling locations. EC data were available
for 1993–1996 from Australian Water Technologies. To facilitate comparisons between the different
datasets, EC was again converted to salinity using a conversion factor of 0.64 [55]. Due to irregular
sampling frequencies, annual averages have been calculated from these datasets. In addition, a single
salinity measurement was also available for 2007 and 2008 [56]. Finally, the MIR-inferred salinity
reconstruction was compared with a diatom-inferred salinity record from this site [9]. Errors on
the two different reconstructions have been calculated as ± the root mean squared error (RMSE) of
the model.

3. Results

The calibration lakes were all well-oxygenated and predominantly circumneutral to slightly
alkaline (Table 2). The majority of lakes had a water depth less than 5 m and water temperatures
within the upper meter ranged between 17 and 23 ◦C (Table 2). Nutrient levels were frequently low,
although a few lakes within the calibration set had higher nutrient levels (Figure 2). Although the
criterion used to select the lakes was that the salinity was less than 20‰, the highest recorded salinity
within the calibration dataset was 10.2‰. Temperature, pH, EC, Cl, and Na all showed a relatively
even distribution across their gradients (Figure 2). Although DO had a relatively even distribution,
there were a few outliers with higher values. The remaining variables were all skewed to varying
degrees, with more samples in the low–mid values and fewer samples with higher values (Figure 2).
A pronounced outlier was visible in each of TN, P, and S (Figure 2); the outlying sample for TN
and TP was from Yallakar Lake whilst the outlying S sample was from Immensal North. EC was
strongly correlated with Na and Cl (R = 0.94 and 0.89, respectively). EC showed moderate correlations
(R = 0.47 and 0.53) with K and Mg, respectively, but no correlation with Al, Ca, or TP. A weak negative
correlation (R = −0.3) was observed between EC and alkalinity. These results reinforce previous
findings that Na and Cl are the dominant salts present in surface waters from this area [57] and justify
the use of EC as a measure of salinity within this study [55].

Significant variability was observed in the spectra of the different sediment samples (Figure 3),
especially within the lower spectral range, which suggests varying mineralogy or organic content.
However, of the chemical parameters examined, only salinity showed a significant relationship with the
spectral data. No significant axes were identified for any parameter other than EC and

√
EC, and thus

R2 values could not be calculated for the other variables. It is noted, however, that only a small number
of chemical parameters were assessed and these results do not preclude other environmental or
chemical variables from also influencing the spectra. The results do, however, indicate that the salinity



Water 2016, 8, 479 7 of 17

at the time of sediment deposition exerts some influence on the spectral signature of lake sediments.
Interestingly, as the salinities increase, the spectral differences between samples diminish, thus less
variability is observed between the spectra of lakes 16–19 than is seen between lakes 1–5 (Figure 3).
A biplot of the PLS components (Figure 4A) shows samples with salinity less than 2.5% (lakes 1–8) form
a separate group to those with higher salinities. This separation indicates that the spectral signature
of the sediments reflects, to some degree, the salinity of lake water overlying the sediments at the
time of their deposition. The lakes with low salinities tend to be more widely dispersed on the scatter
plot (Figure 4A) than lakes of higher salinities, again reflecting the greater variability observed in the
spectra of the former (Figure 3).

Water 2016, 8, 479  7 of 17 

 

(lakes 1–8) form a separate group to those with higher salinities. This separation indicates that the 

spectral signature of the sediments reflects, to some degree, the salinity of lake water overlying the 

sediments  at  the  time  of  their deposition. The  lakes with  low  salinities  tend  to  be more widely 

dispersed on the scatter plot (Figure 4A) than lakes of higher salinities, again reflecting the greater 

variability observed in the spectra of the former (Figure 3). 

 

Figure 2. The distribution of physical and chemical data from lakes included within this study. Each 

parameter  has  been  arranged  in  order  of  increasing  values  for  that  parameter;  lake  names  and 

locations are shown in Figure 1. 

Figure 2. The distribution of physical and chemical data from lakes included within this study.
Each parameter has been arranged in order of increasing values for that parameter; lake names and
locations are shown in Figure 1.



Water 2016, 8, 479 8 of 17

Table 2. Summary statistics for physical and chemical parameters of lakes within the calibration
dataset. Data presented is from the unfiltered water samples, thus represents both dissolved and
particulate matter.

Parameters Minimum Maximum Mean Standard Deviation Skewness

Salinity (‰) 0.5 10.2 4.2 3.5 0.5
EC (µS/cm) 0.7 15.9 6.6 5.4 0.5

DO (%) 77.1 163.4 106.6 20.1 1.2
pH (pH units) 7.0 10.2 8.5 0.7 0.4

Temperature (◦C) 18.0 22.6 20.0 1.4 0.7
Alkalinity (meq/L) 0.2 28.8 7.7 7.1 1.9

Cl (mg/L) 45.1 5000.0 2076.1 1733.6 0.3
TN (mg/L) 1.1 26.5 7.4 6.4 1.8
Al (mg/L) 0.0 400.0 36.0 92.6 3.8
Fe (mg/L) 0.0 290.0 26.0 67.0 3.8
Ca (mg/L) 17.4 120.0 50.9 30.7 0.8
K (mg/L) 5.5 140.0 48.0 40.9 1.2

Mg (mg/L) 18.5 400.0 165.6 138.7 0.6
Na (mg/L) 85.0 3300.0 1347.8 1068.6 0.4
TP(mg/L) 0.0 3.5 0.6 0.9 2.3
S (mg/L) 1.1 320.0 81.6 82.7 1.4
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A plot of the residual variance indicates the initial amount of variance within the dataset,
the amount remaining after each component is sequentially added to the model, and the amount of
variance that is explained by each component (Figure 4B). In this plot, the “calibration” set refers
to a model which incorporates all 19 lakes and thus shows the fit of the model to the training data.
In contrast, the validation data is derived from the iterative LOOCV procedure and thus provides
an indication of the prediction error of the model variation (Figure 4B). For example, the calibration
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data suggest that a five-component model would account for 90% of the variance within the dataset,
with a nine-component model accounting for 99% of the variance. In contrast, the validation data
shows that a five-component model explains only ~65% of the variance. Furthermore, within the
validation data, 19% of the variance cannot be explained regardless of how many additional
components are included. This indicates that some of the explained variance within the calibration set
is not related to salinity but rather is attributable to other differences in the spectra. This raises the
possibility that another variable, not captured within the calibration dataset, contributes to the spectral
variability. This could potentially relate to the variability observed within samples from lakes with low
salinity values discussed above. However, the high residual variance could also indicate a significant
component of noise within the model, which could result from the small number of lakes incorporated
within the calibration dataset.

The residual variance should decrease as additional components are added to the model. If the
residual variance remains the same, it indicates that the additional component is reflecting variance
that has already been captured by one or more of the existing components. If the variance increases
with the addition a component, this indicates that variable represents a component associated with
noise in the calibration dataset. Consequently, the slight increase in residual variance observed within
the validation data for a six-component model can be attributed to noise and thus indicates that
a five-component model is the best choice for these data. A five-component PLS model for

√
EC,

as a measure of salinity, was subsequently developed and performed reasonably (R2
LOOCV = 0.64,

RMSEP = 0.7 g·L−1). It is noted, however, that the model underestimates the variance within
the calibration set, with values in the lower range overestimated and values in the upper range
underestimated (Figure 4C).

Water 2016, 8, 479  9 of 17 

 

contrast, the validation data is derived from the iterative LOOCV procedure and thus provides an 

indication of the prediction error of the model variation (Figure 4B). For example, the calibration data 

suggest that a five‐component model would account for 90% of the variance within the dataset, with 

a nine‐component model accounting for 99% of the variance. In contrast, the validation data shows 

that a five‐component model explains only ~65% of the variance. Furthermore, within the validation 

data, 19% of the variance cannot be explained regardless of how many additional components are 

included. This indicates that some of the explained variance within the calibration set is not related 

to salinity but rather is attributable to other differences in the spectra. This raises the possibility that 

another variable, not captured within the calibration dataset, contributes to the spectral variability. 

This could potentially relate to the variability observed within samples from lakes with low salinity 

values  discussed  above.  However,  the  high  residual  variance  could  also  indicate  a  significant 

component  of  noise  within  the  model,  which  could  result  from  the  small  number  of  lakes 

incorporated within the calibration dataset. 

The residual variance should decrease as additional components are added to the model. If the 

residual variance remains the same, it indicates that the additional component is reflecting variance 

that has already been captured by one or more of the existing components. If the variance increases 

with the addition a component, this indicates that variable represents a component associated with 

noise in the calibration dataset. Consequently, the slight increase in residual variance observed within 

the validation data for a six‐component model can be attributed to noise and thus indicates that a 

five‐component model is the best choice for these data. A five‐component PLS model for √EC, as a 
measure of salinity, was subsequently developed and performed reasonably (R2LOOCV = 0.64, RMSEP 

= 0.7 g∙L−1). It is noted, however, that the model underestimates the variance within the calibration 

set, with values  in  the  lower  range overestimated and values  in  the upper  range underestimated 

(Figure 4C). 

 

Figure 4. (A) A biplot of the PLS components showing the distribution of lakes (numbered in order 

of increasing salinity) with lakes of salinities <2.5‰ located to the left of the grey line; (B) the residual 

variance with differing numbers of model  components  and  (C)  a  comparison of MIRS predicted 

conductivity values (√EC) with measured values, using an  iterative,  leave‐one‐out cross‐validation 

process, and with the regression line shown (―). 

Figure 4. (A) A biplot of the PLS components showing the distribution of lakes (numbered in order of
increasing salinity) with lakes of salinities <2.5‰ located to the left of the grey line; (B) the residual
variance with differing numbers of model components and (C) a comparison of MIRS predicted
conductivity values (

√
EC) with measured values, using an iterative, leave-one-out cross-validation

process, and with the regression line shown (—).



Water 2016, 8, 479 10 of 17

The first two components (PC1 and PC2) have 43% and 29% influence on the model, respectively
(Figure 4B). Further components have less effect on the model. The influence of the spectral regions on
each component in the salinity model is indicated by the loading weights. Although the full spectral
range used is shown, wavelengths associated with higher loading weights will have the greatest
influence on the model, whilst those with smaller loadings will have less influence. The loading
plot (Figure 5) shows that the relationship between PC1 and salinity is predominantly influenced by
kaolinite, signified by the three peaks between 3600 and 3700 cm−1 [40,58]. The peak at 918 cm−1 may
also indicate an influence of kaolinite on PC1, but this peak is not definitive. Many compounds with
bonds visible within the lower wavenumbers have spectra that overlap, and the resulting complexity of
the spectra can hinder identification. PC1 is also negatively related to organic matter (OM), as indicated
by the alkyl peaks around 2800–2900 cm−1 [40].
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Figure 5. Loading plot showing the relative importance of individual wavenumbers to the first two PC
axes of the salinity inference model. Wavenumbers with higher values (either positive or negative)
contribute more to the model. Peak numbers are provided for peaks to help identify compounds that
are likely to be influencing the model. Spectral characteristics that are definitive or potentially indicative
of various compounds are labelled accordingly. Chemical bonds typically associated with the varying
wavenumbers are also shown.

As the CH3 stretching vibrations at 2965 cm−1 are of a similar magnitude to the CH2 vibrations
at 2853 and 2922 cm−1, the OM seen as a negative correlation in PC1 probably represents a range of
organic materials with short alkyl chain lengths. A small band at 3060 cm−1 is characteristic of C=C–H
stretching and is seen in spectra of humic materials. Weak, positive relationships are observed between
PC2 and organic carbon, particularly C–H bonds shown by the peaks at 2850 and 2950 cm−1 [40,44,59].
In contrast to PC1, the stronger, positive peaks for CH2 vibrations at 2853 and 2922 cm−1 in PC2
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suggests that longer chained materials, such as lipids, are responsible. Although quartz peaks around
800, 1040, 1878, and 1990 cm−1 [40,44,59] are negatively related to both PCs, they exert a much stronger
influence on PC2 (Figure 5). Three small carbonate peaks are observed on the loading plot at 1470,
1810, and 2523 cm−1 [22,31,36], influencing both PC1 and PC2.

Given the significant relationship between MIRS-predicted and measured salinity in the spatial
calibration model, the model was applied to down-core samples from Tower Hill Lake. The resulting
MIRS-inferred salinity reconstruction (Figure 6) indicates that a sharp decrease in inferred salinity
values occurred between 1946 and 1955. This decrease was followed by a gradual, long-term increasing
trend that persisted until the late 1980s. Subsequent to this, the MIRS-inferred salinity levels fluctuated
from 5‰ to 6‰ but exhibited a greater degree of variability between samples than had previously been
observed. The MIRS-inferred values are within the lower range of salinity measured between 1983 and
1990 (Figure 6). However, the salinity data collected in the 1980s show a higher degree of variability
than that seen within the MIRS reconstruction, with the annual averages varying between 5.4‰ and
12.3‰. In contrast, the MIRS inferred values agree relatively well with salinity measurements reported
in the 1990s, where the annual averages ranged between 4.3‰ and 7.0‰. Climatic changes could
explain the differences in variance observed, however, part of these observed differences are likely to
be associated with the higher frequency of sampling during the 1980s as this would result in a greater
range of values being captured, as well as increasing the potential for extreme values to be recorded.
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diatom-inferred (◦) salinity, salinity measurements undertaken by various bodies (grey symbols),
in conjunction with the annual rainfall (

1 
 

 
 
▪ ) for the Tower Hill grid square (scale inverted; data from the

Australian Bureau of Meteorology). The inset highlights the relationship between the average annual
salinity measurements and annual precipitation (note that different scales are used for the axes).

The diatom-inferred values showed little resemblance to the MIRS-inferred values throughout
most of the core, although detailed comparisons are difficult given the lower sample frequency seen
in the diatom reconstructions. Prior to 1990s, the diatom model shows little variation whereas the
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MIRS-inferred values suggest an initial decline followed by a generally increasing trend up-core.
After 1990, the diatom-inferred values show some initial variability followed by an almost exponential
increase in salinity between 1995 and 2000. In contrast, the MIRS model suggests a period of relatively
stability occurred between 1990 and 2000, with fluctuations varying between 5‰ and 6‰. Thus,
there is a cross-over period between when the diatom model indicates lower salinity values than the
MIRS model, and when the diatom model shows higher variability than the MIRS model. There is
also a significant increase in error associated with diatom-inferred values above 3‰ and thus there
is a slight overlap between the two models from 1955 to 1970 and 1995 to 1998 when the associated
errors are included (Figure 6). The diatom-inferred salinity values are much lower than the measured
values during the 13 years for which the latter data is available. There is no overlap between any
of the measured values and the inferred salinity values, even when the error range of the diatom
model is considered. Finally, the highest diatom-inferred salinity values during the period for which
monitoring data is available, correspond to some of the lowest salinity values observed within the
monitoring data.

4. Discussion

This study demonstrates the potential to use MIRS to reconstruct lake salinity in Australia,
and potentially around the world. The inference model’s ability to infer salinity is predominantly linked
to changes in the mineralogy of the sediments with changes in the organic content also contributing
a small component. These results agree well with MIRS studies of Australian soils, where inference
models for EC were strongly influenced by kaolinite, smectite, gibbsite, and quartz [31]. Hence,
we would caution that this initial model is reflective of the environmental and geological conditions
found within the study region. As such, the model itself should not be applied to areas outside of this
region; however, the technique of using MIRS to develop a calibration model and subsequently infer
past salinity could be applied elsewhere. Similarly, the model presented here is only suitable for lakes
with a low salinity; it should not be assumed that the model can be extrapolated beyond the range of
salinities observed. Further research is required to determine whether higher salinities can be inferred
using MIRS, and if so, whether the relationships with mineralogy observed here are still maintained
for lakes with higher salinities.

Within the model presented here, the relationships observed between sediment composition
and salinity probably reflect a combination of weathering and depositional influences, with a minor
contribution from in-lake processes. For example, clay minerals are common weathering products
that generally do not require intense chemical weathering and can therefore be formed by physical
weathering during low rainfall dry phases [60,61]. In contrast, a high degree of chemical weathering,
typically associated with intense leaching and high rainfall, is required to produce silica from mafic
igneous rocks [60], such as those found in the study area. Furthermore, high stream flow is generally
required for aqueous transport of quartz into lake sediments, whereas lighter clay minerals are
more easily transported by lower streamflow. Thus, high levels of quartz are likely to indicate high
precipitation that, in turn, would be likely to lower the salinity levels of lakes within the affected area.
It is possible for both clay minerals and quartz to be transported into lakes by wind, although as is
the case for stream flow, less energy is required to transport clay minerals. This could also contribute
to the observation that high salinity values were associated with a greater amount of clay minerals.
For example, if in dry conditions, clay minerals from soils were preferentially transported by wind [62],
this would increase the amount of clay minerals present within the lake sediments. Thus, differences in
the weight of minerals and preferential transport by either wind or water could act in conjunction with
different weathering regimes to produce the observed relationships between the mineral composition
of lake sediments and the salinity present at the time of sediment deposition.

Despite the predictive power of the MIRS salinity model, the reconstruction from the Tower
Hill Lake sediments did not fully capture the variability observed within the measured values
(Figure 5). This is probably attributable to the smoothing influence of sedimentary processes in lakes,
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including sediment mixing. Given that a number of the properties inferred from MIRS are related to
increased rates of weathering and delivery of materials from lake catchments, it may be that the model
is less well suited to inferring subdecadal changes in lake salinity. However, this is a characteristic of
most lake-based salinity reconstructions, as other biological proxies are also often affected by catchment
processes. These processes can affect variables such as light availability, nutrient supply, or pH and thus
subsequently influence the community composition of a range of proxies. As an example, the diatom
reconstruction used herein captured even less of the variability in the monitoring data.

The MIRS-inferred reconstruction shows some trends that broadly correspond to regional rainfall.
During the first half of the 20th century, the southwest region of Victoria experienced approximately
50 years of relatively low precipitation, with the eastern side of Tower Hill Lake drying out in 1942 [9].
This was followed by a very wet period commencing in the 1950s [56] that led to flooding of several
lakes, including Lake Corangamite and Lake Colac. This timing correlates well with the decrease in
salinity observed between ~1946 and ~1955 in the MIRS reconstruction. The long-term increase in
salinity values is consistent with a long-term decrease in precipitation. Despite this, the MIRS-inferred
values do not reflect the quasi-decadal variability seen within the precipitation records (Figure 6).
From the 1980s on, the rainfall shows less variability and more coherence is apparent between the
MIRS-inferred salinity reconstruction and the historic rainfall data from this point on.

The diatom-based salinity reconstruction shows little variation before 1990, with inferred values
ranging between 1.0‰ and 1.6‰ (Figure 6). During the next five years, inferred values are slightly
higher (~2‰), however, it is not until ~1996 that values increase markedly with the three uppermost
samples rising sharply. This marked increase in diatom-inferred salinity levels during the latter
part of the 1990s corresponds to lower-than-average precipitation, including a drought in 1997 [63].
Unfortunately, no measured salinity data are available for 1995–2000, thus the latter relationship
cannot be verified. It is worth noting, in the 2007–2008 austral summer, after 12 years of prolonged
drought within the region (including pronounced drought conditions during 2002, 2006, and 2008) [63],
measured salinity values within Tower Hill Lake varied between 5.0‰ in November and 9.6‰ in
April [56]. Consequently, the high salinity level indicated by the diatom-inferred reconstruction for the
late 1990s appears unrealistic.

Given the lack of agreement throughout the record between the measured salinity data and
the diatom-inferred reconstructions, MIRS should be considered as an alternative method for
reconstructing past salinity levels in Australian lakes. Whilst the MIRS reconstruction does not
capture variability on the subdecadal scale, it reflects the long-term trends and infers values that more
accurately reflect the measured data. Consideration should, therefore, be given to expanding the
number of lakes incorporated within the model to improve the reliability and statistical performance
as well as expanding the range of lake water salinities covered.

Finally, it is noted that the diatom model is intended to capture a biological response to salinity
while the MIRS calibration model appears to be more related to catchment process (weathering
and erosion) than in-lake conditions. One implication of this is that the MIRS model is primarily
responding to climatic changes on a local, or possibly regional, scale rather than salinity per se.
Consequently, MIRS calibration models may potentially provide information pertaining to drought
history as indicated by the mineralogy. Although similar information may be obtained through more
traditional chemical analyses or X-ray fluorescence, MIRS offers a cheaper, faster alternative to these
methods [35,36]. As such, it represents an intriguing possibility for a cost-effective means for examining
past climatic change in an area that is predicted to become more prone to drought in the future.
Given that recent increases in salinity have been observed in many waterbodies within Australia,
this method could also prove an invaluable tool for ongoing management of these water bodies;
for example, by providing the baseline data required to set realistic targets for remediation work.



Water 2016, 8, 479 14 of 17

5. Conclusions

This study demonstrates the feasibility of using MIRS for reconstructing lake salinity. However,
the number of lakes used in this study is small, with all lakes located in the same geographical region.
Consequently, additional region-specific calibration models would need to be developed before the
method could be applied elsewhere. Further research would also be required to develop a salinity
model that is applicable for lakes with higher salinity values. Despite this caveat, our study indicates
that MIRS could be a valuable technique for reconstructing lake salinity (including drought history) in
south-eastern Australia.
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