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RÉSUMÉ 
 

Dans cette thèse, les diodes Schottky pour des applications en ondes millimétriques et aux 

fréquences térahertz sont étudiées. Une méthodologie de conception et d'optimisation est proposée 

pour améliorer la performance de telles diodes. La conception et les simulations sont effectuées à 

l'aide d'un programme basé sur un modèle analytique. Les différentes méthodes de calcul de la 

fréquence de coupure de la diode sont définies, étudiées et classifiées selon les applications 

potentielles. En utilisant un modèle de diode générique et général, une nouvelle approche pour 

calculer la fréquence de coupure est suggérée pour les applications de mélangeur / multiplicateur. 

Cette approche permet d'évaluer la tension seuil avec une précision beaucoup plus grande et proche 

de la réalité. En outre, la conception d’une diode Schottky en tenant compte dès le départ 

l’application visée (détecteur direct, mélangeur ou multiplicateur) est étudiée. Cette thèse montre 

que l'ingénierie de la structure épitaxiale a un impact important lorsque l’on utilise une conception 

de diode basée sur l’application finale comme proposée. Un procédé de microfabrication a été 

entièrement développé et caractérisé. Une méthode de planarisation unique est introduite pour 

permettre de connecter la diode par des ponts à air en minimisant les effets parasites. Afin d'éviter 

une coûteuse lithographie par faisceau électronique, une anode en forme de T est produite en 

utilisant une technique de photolithographie. Ce procédé est fiable et répétitif, est de faible coût et 

offre une grande souplesse en matière de conception en plus de répondre au besoin d‘une 

production de masse, pour laquelle la lithographie par faisceau d’électrons n’est guère possible. 

Le procédé final nécessite simplement deux étapes de métallisation, nombre minimal possible que 

nous avons atteint. En raison des exigences de recuit du contact ohmique, il est impossible d’avoir 

moins de deux étapes de métallisation. Le processus de planarisation proposé repose sur 

l'utilisation de différents taux de gravure plasma de deux résines couramment utilisées. Pour les 

travaux réalisés dans cette thèse, une épitaxie GaAs HBT disponible au sein du laboratoire a été 

utilisée. Les résultats de caractérisation de diodes réalisés dérivés des mesures DC et RF sont 

rapportés et comparés avec les résultats de la simulation. Les résultats de mesure montrent une 

réduction significative de la capacité parasite de la diode à moins de 20% de sa capacité totale. Par 

conséquent, le procédé de conception et de fabrication de ce travail peut fournir des diodes qui 
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peuvent fonctionner au-delà du térahertz avec des dimensions pour l’anode plus grandes que les 

diodes trouvées dans la littérature et qui peuvent donc être fabriquées uniquement par des 

techniques de photolithographie optique. 
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Abstract 
 

In this thesis, Schottky diodes for millimeter waves and terahertz application are scrutinized. A 

design and optimization methodology is proposed to improve the diode performance. Design and 

simulations are performed by using an analytical model based code. Diode cut-off frequency 

calculation methods are studied and classified for different applications. Considering general diode 

equivalent circuit model, a new approach for calculating the cut-off frequency is suggested for 

mixer/multiplier applications. This approach provides cut-off much closer to its practical value. 

Also, the diode design based on its application, direct detector and mixer/multiplier, is studied. It 

is shown that the epitaxial structure engineering has impact on diode application based design. For 

diode realization a microfabrication process is developed. Unique planarization method is 

introduced which provides necessary substruction for the airbridges. In order to avoid expensive 

e-beam lithography, a T-shaped anode is produced by employing photolithography technique. This 

process is repeatable, reliable, low cost, gives high flexibility in design terms, and suitable for 

mass production. The final process merely requires two metallization steps which is minimum 

possible number due to annealing requirement of ohmic contact. The proposed planarization 

process is based on using different plasma etching rates of two common resists. In the diode 

fabrication an available GaAs HBT epitaxial wafer is used. The realized diode characterization 

results derived from DC and RF measurements are reported and compared with the simulation 

results. The measurement results showed significant reduction in parasitic capacitance of the diode 

to under twenty percent of its total capacitance. Therefore, the design and fabrication method of 

this work can provide diodes to operate over one terahertz with larger anode area (that can be 

produced by photolithography techniques).  
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1 Introduction  
1.1 Terahertz gap 

Terahertz (THz) is an electromagnetic spectrum that lies between microwave and infrared 

frequencies. This frequency band does not have unique definition. However, many references are 

considering it as the spectrum between100 GHz (0.1 THz) and 30 THz. A variety of novel 

applications have been introduced within this spectrum, inspired by optical and microwave 

technologies, and advances in micro- and nano-fabrication techniques, [1].  

Due to existence of molecular resonances and other physical phenomena in THz band, many 

applications can leverage such properties. At the same time, it is the least explored part of the 

spectrum (hence a so-called “THz gap” [2]), due to the lack of efficient active and passive 

components. More precisely, there is currently no low-cost, compact and efficient sources and 

detectors [3], [4]. Nevertheless, thanks to the enormous research efforts, performed during the past 

decades, the size of the gap has been diminished. The first practical solution for using THz band 

was generating and detecting of pulsed THz waves by femtosecond-pulse lasers in the early 1990s 

[5]. Later in the 2000s by development of THz semiconductor devices a new chapter in this 

technology has been opened and fueled many interesting applications.   

1.2 Terahertz applications  

The THz range became a hot topic during the past decades due to several interesting potential 

applications, such as a high data rate short-range communication, spectroscopy, biology (disease 

detection, e.g. cancer), astronomy, imaging, security, terrain mapping, and environmental 

studies [6].  

Spectroscopy is one of the main applications of THz waves because of the spectral signature 

molecules, especially the organics and biologicals, in this region. THz radiation can transmit 

through opaque materials while it excites their molecular resonance and it is sensitive to bonding 

of atoms. Materials can be categorized into three categories according to their behaviors when they 

are exposed to THz radiation. Metals are highly reflective, polar materials (water) are highly 
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absorptive, and nonpolar and nonmetallic material such as plastic, wood, paper, and fabrics which 

are opaque to the optical frequencies, are transparent to the THz frequencies [2]. This make this 

region of spectrum ideal for imaging applications. Figure 1-1 shows an integrated circuit (IC) 

image with visible light and THz imaging.  The metal circuit and the semiconductor wafer inside 

the IC package are visible to THz waves [4]. Moreover, the THz gap is a free frequency band for 

high data rate communications. The demand for bandwidth in wireless communications has 

doubled every 18 months for the past 25 years [7]. Thus, moving to higher frequencies to have 

wider bandwidth is inevitable. A fully integrated THz system can facilitate the path toward the 

next generation of telecommunication systems.  

 

 
Figure 1-1 Image of an IC using (a) visible light and (b) with THz imaging. The IC black 
epoxy package [4].  

1.3 Terahertz devices 

THz circuits consists of different active (e.g. diodes and transistors) and passive (e.g. waveguides, 

antennas, and filters) elements. Many researches have been dedicated to provide a compact, 

efficient and low-cost materials and solutions to overcome the lack of THz components. For 

instance, considering waveguides, various structures made of either metallic or dielectric materials 

have been proposed in the literature [8]–[10]. Metallic waveguides suffer from metallic losses of 

metal parts while dielectric waveguides suffer from radiation and dielectric losses. Although planar 

structures are more lossy, they are more attractive since they are able to be integrated with other 

active components. 

(a) 

(b) 
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THz detection and generation is the most important and challenging part of THz systems. Detectors 

and sources could come from microwave-electronic devices, optical approaches or a combination 

of both [11]. However, for the THz region, RF detectors demonstrated superior performance 

compared to their optical counterparts [12]. THz detectors can be divided into incoherent (direct) 

and coherent (mixing) categories [13]. A simple schematic of both direct and mixing detection 

approaches is shown in Figure 1-2. Bolometers and pyroelectric crystals fall into the direct 

category, however, they are slow and perform only in low temperatures. Coherent detectors 

include nonlinear optical crystals, photoconductive antennas [14], hot electron bolometers (HEBs), 

superconducting tunnel junctions (STJs), superconductor-isolator-superconductor (SIS) tunnel 

junctions, tunneling quantum dot inter-sublevel photo-detectors (T-QDIPs), and Schottky diodes. 

STJs, SISs, HEBs, and T-QDIPs are cryogenic detectors while the others can function on room 

temperature.  

A bolometer is a thermal detector that includes a temperature-dependent resistance and two 

metallic contacts. The resistive element is made of a very low thermal capacity and high 

temperature coefficient material that can provide a large resistance variation according to the input 

signal [3].  High mobility semiconductors with temperature sensitivity or superconductor can be 

used for THz bolometers at cryogenic temperatures.  

The high electron mobility transistors (HEMTs) lately become very interesting in THz region 

especially for detection and generation. These structures naturally promoting emission and 

detection of THz waves, due to its two-dimensional (2D) Plasmon in hetero-structure 

semiconductor that provide a channel with high mobility and low resistivity [15]–[22]. 

Between all technologies used for THz detection and generation, the suitable technology should 

be chosen base on project requirements, application, budget, and available fabrication facilities.  

Some of the noted technologies are cryogenic and require a low temperature system; others are 

limited by the size of the device or designed just for pulse operation.  Schottky diodes are 

compatible with pulsed and continuous signals and can operate at room temperature. The GaAs 

Schottky diode provides high sensitivity, large instantaneous bandwidth, and large spectral 

resolution [23]. Hence, Schottky diode technology was selected for this thesis. 
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(a) (b) 

Figure 1-2 Schematic of different detector types. (a) Direct detection. (b) Mixing detection. 

 

1.4  Schottky diode for THz applications 

The Schottky diodes have been employed in different application in THz systems (e.g. sources, 

detectors, mixers, and phase-shifters) [24]–[27]. Different properties of diodes are leveraged 

according to the application that they are used for. In detection systems, diodes are used as a 

rectifier (direct detection) where the nonlinear resistive element of diode and its current value are 

the key elements. However, in the heterodyne detectors and sources where the diode is used as a 

mixer and multiplier, the key element is the diode nonlinear capacitance. Therefore, the diode 

application should be considered in design and performance study. Moreover, at design stage, 

considering application will result in better optimization of the diode. So far, several research 

dedicated to study the diodes in terms of equivalent circuit, design, structure, fabrication, 

frequency performance, efficiency, temperature noise, and parasitic effects [28]–[35]. 

Nevertheless, the application based study of the diode and its effect on the design and optimization 

is missed. In this work, an application based studies of diode and comparison of its performance 

in different applications is reported. The design and optimization of the diode by considering its 

application are proposed. Also, comprehensive studies of the diode frequency behavior for each 

application categories are presented. The diode frequency behavior is characterized by the cut-off 

frequency, which is defined by the power portion of the used nonlinear element of the diode. Since, 

in each category the used nonlinear element is different, the cut-off frequency and its formulation 
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should be defined based on the application. In the presented cut-off frequencies formulation, the 

effect of all circuit elements of the diode is considered. 

In this thesis, a THz Schottky diode is developed to be used in integrated circuits operating at room 

temperature and able to work with pulse or continuous signals. The developed diode in this work 

has a lower parasitic capacitance that improves the cut-off frequency. Also, the lack of effective 

fabrication process for the diode mass production encouraged us to develop a low-cost, reliable, 

repeatable and flexible fabrication process. GaAs is selected as the semiconductor host because it 

has high sensitivity, large bandwidth, and spectral resolution. GaAs is one of the best choices 

among the semiconductors for the THz frequency, due to the high saturated electron velocity and 

electron mobility. It has lower parasitic resistivity and lower noise. Moreover, GaAs devices are 

less sensitive to own heating due to their wide energy band-gap. On the other hand pure GaAs has 

high resistivity and high dielectric constant which provides very good isolation when it is used as 

a substrate at high frequencies.  

1.5  Thesis outline 

This thesis includes six chapters. In Chapter 2, the Schottky diode definition, structure, history, 

applications in THz frequencies, and the state of the art are discussed. The design process, 

simulation, and analytical studies of the diode are presented in chapter 3. Also in chapter 3, 

different approaches for studying the diode performance are discussed and a new, more accurate 

approach is suggested. The epitaxy structure engineering for the diode which depends on the diode 

application and the unique fabrication process that is developed for realization of the diodes is 

described in chapter 4. Moreover, the mask design, details of the fabrication process and challenges 

faced during the process development are described in chapter 4. In chapter 5, the characterization 

and measurement results, setups, procedures, and parameter extraction methods used for the 

characterization of diode are explained. The conclusion of this work and some suggestions for 

further research are provided in chapter 6. 
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2 Literature Review: Toward THz 
Schottky Diode 

 

2.1 Introduction  

In order to achieve practical THz systems at room temperature with reasonable size and cost to 

meet various application requirements, a versatile, flexible and compact integrated transceiver 

system is required  [36]. The Schottky diode is one of the most useful and popular device for 

millimetre-wave and THz detection. The planar structure of the diode  is very compact, integrable, 

mechanically stable, and low noise [37]. Therefore, the Schottky diode can be an essential and 

critical element of THz systems. The diode is based on the metal-semiconductor rectifying system. 

For the first time, in 1938, Walter Schottky presented a theory that, expresses the capability of 

raising potential across the semiconductor’s barrier, is so-called the Schottky barrier. Meantime, 

Mott presented another theoretical model for potential across the metal-semiconductor junction 

which is called the Mott operation [38]. Appendix A presents an overview of Schottky and metal-

semiconductor contacts.  

2.2  Schottky diode 

A Schottky diode is a metal-semiconductor contact in which the work function of the metal is 

higher than that of the semiconductor (𝜙𝑚 > 𝜙𝑠). In order for the device to be able to pass the 

current, it needs another connection as second port. Therefore, another metal-semiconductor 

contact but in Ohmic mode (Appendix A) is required. The device structure is shown in Figure 2-1. 

 



7 
 

 
Figure 2-1 The Schottky diode structure. 

 

A general explanation of the metal-semiconductor contacts is given in Appendix A. The heart of 

the diode is a Schottky mode metal-semiconductor contact. The interface of the semiconductor 

with metal is depleted due to the difference of the work functions. The depletion region width 𝑊𝐷 

depends on the junction build-in potential 𝜑𝑏𝑖, the Schottky layer doping level 𝑁𝐷, its permittivity 

𝜀𝑠, and the junction voltage bias 𝑉𝑗; 

The junction capacitance 𝐶𝑗 of this contact is a function of the depletion region width 𝑊𝐷: 

where A is the junction area. Therefore, the junction capacitance is a function of voltage bias.  

Since the main current transport mechanism of the Schottky diode is thermionic emission, when 

the positive voltage bias is applied (forward bias regime) the diode current is obtained by: 

𝑊𝐷(𝑉𝑗) = √
2 𝜀𝑠
𝑞 𝑁𝐷

(𝜑𝑏𝑖 − 𝑉𝑗) (2-1) 

𝐶𝑗(𝑉𝑗) =
𝐴 𝜀𝑠
𝑊𝐷(𝑉𝑗)

 (2-2) 
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where 𝑘𝐵 is Boltzmann’s constant, T is the temperature, and 𝐼𝑠 is saturation current. That is: 

where 𝑅∗ is Richardson’s constant. Since the diode also includes a series resistance 𝑅𝑠 due to the 

resistivity of contacts and the current path though the semiconductor (here GaAs), the applied 

voltage bias 𝑉𝑏 and the junction voltage 𝑉𝑗 relation is expressed as: 

In this work we developed an analytical model of Schottky diode based on expanded physical 

behavior analysis as briefly explained above. The diode behavior is simulated and studied by using 

this developed simulation environment to optimize and characterize the diode barrier, equivalent 

circuit, and parasitic elements. 

In order to develop the Schottky diode for THz applications some improvement (mainly in design 

process) are required. Modifications such as; using a high mobility semiconductor host, reducing 

the capacitance of the diode by reducing its anode size, minimizing the parasitic elements, and 

reducing the system noise. 

2.3  Development of the diode structure and 

technologies 

THz Schottky diodes are presented in different configuration such as whisker contact, planar (with 

surface channels), quasi-vertical (anode and cathode are vertically mounted and has surface 

channel interconnection), and two dimensional electron gas Schottky layer structure.  

𝐼 = 𝐼𝑠(exp (
𝑞 𝑉𝑗

𝑘𝐵𝑇
) − 1) (2-3) 

𝐼𝑠 = 𝐴 𝑅
∗𝑇2  exp (−

𝑞 𝜑𝐵
𝑘𝐵𝑇

) (2-4) 

𝑉𝑗 = 𝑉𝑏 − 𝐼 𝑅𝑠 (2-5) 
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2.3.1 Whisker diode 
Young and Irvin (1965) proposed the first technique that is used for realization of sub-millimeter 

(sub-mm) waves and THz Schottky diodes, called a “whisker diode.” The technique was based on 

gently squeezing off a metallic whisker on GaAs epitaxy die which had a large Ohmic contact on 

the back side of the chip [39]. At the end of 1980 decade, T. Crowe and colleagues at the University 

of Virginia started working on sub-mm and THz  systems based on GaAs Schottky diodes [40]. 

They have used Young and Irvin’s fabrication technology of vertical structure diodes [39]. A cross-

sectional view of this diode is shown in Figure 2-2. In order to couple to this diode, they used 

whisker contact to minimize the diode’s additional coupling series resistance and shunt 

capacitance. The diode with the whisker contact is shown in Figure 2-3. After Young and Irvin, 

many research teams at the University of Virginia, Bell Labs

Chalmers, and Texas Instruments tried to improve and optimize design and fabrication technology 

of epitaxial GaAs Schottky diodes. They studied the effect of electron tunneling across the barrier 

of the diode current-voltage (I-V) curve [41]. Also, they investigated the diode series resistance 

behavior as a function of skin effect and plasma resonance [42]. Another researcher studied the 

source of  the noises, such as hot-electron noise, in the diode [43].  

  

 
Figure 2-2 Young and Irvin’s vertical structure Schottky diode cross-sectional view [40]. 
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Figure 2-3 SEM image of vertical structure Schottky diode with Whisker contact [44]. 

 

2.3.2  Planar structures 
In parallel with THz whisker diode development, improvement in micro-fabrication methods and 

technology enabled reaching new frontiers by:  

- reducing the size of the Anode 

- controlling doping concentration and thickness of each layer of the epitaxy structure  

- air-bridge techniques to reduce the parasitic elements 

which improved the diode performance and increased its cut-off frequency. Then, W. Bishop et 

al. (1990) presented the first planar Schottky diode which has attracted much  attention [37]. This 

planar diode was realized by making both contacts on one side of the chip, and employing bridges 

to connect the anode and cathode to the circuit. Figure 2-4 shows the schematic side view of the 

proposed diode in [37].The planar structure can work at THz frequencies by using air bridges, 

which have lower parasitic capacitance. The planar diode is preferred over the whisker design due 

to its compactness, ease of integration, and mechanical stability. However, due to the whisker 

diode’s vertical structure, the anode placed directly over the backside Ohmic contact has smaller 

parasitic capacitance and series resistance in comparison to planar structures. The advancement 

from whisker to a planar device gives freedom to develop integrated circuits based on Schottky 
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diodes suitable for many applications [27], [45]–[47]. The planar diodes have been realized with 

different materials and technologies such as CMOS [48], GaAs, and GaN [49]. Epitaxial GaAs 

Schottky barrier diodes are frequently used in THz heterodyne detectors, mixers, and solid state 

sources. After the introduction of the planar diodes in [13], many researches focused on improving 

the diode performances in terms of cut-off frequency, efficiency, responsivity, sensitivity, and 

device noises. Also, RF losses and thermal heating are discussed in the literature [11], [35]. In [11] 

the electro-thermal model of the Schottky diode is presented. This model can give the device hot 

spot temperatures which will be helpful for circuit reliability studies.  

 

 
Figure 2-4 Schematic of cross section view of surface channel diode [37]  

 

2.3.3  Quasi-vertical structures 
 The quasi-vertical is another reported structure, which is combination of the two above structures 

[50]–[53]. In this structure, the anode and cathode are placed vertically while the structure is 

planar. The quasi-vertical diode is achieved by making a large ohmic contact (cathode) from the 

back side below the anode contact while both anode and cathode have access from top side, as 

shown in Figure 2-5. This structure is easier to integrate than the whisker structure due to surface 

channel anode access, and also has vertical structure advantages. However, the vertical structure 

diode has some limitation due to its backside process requirement which add some complexity to 

the fabrication process.  
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A quasi-vertical Schottky diode [50] has recently been reported that can be integrated into planar 

millimeter and submillimeter-wave circuits. The diode structure is based on backside processing 

and bonding of the diode epitaxy to a host high-resistivity silicon substrate that supports both the 

vertical diode and its associated circuitry (Figure 2-5).  

 

Figure 2-5 Schematic of quasi-vertical diode [50].  

 

2.3.4  2D electron gas Schottky diode  
 In 1992, W. Peatman at Virginia University proposed a new two-dimensional electron gas (2DEG) 

based millimeter/sub-millimeter diode for multiplication applications [54]. The Schottky contact 

was placed along the edge of a 2DEG based on AlGaAs/InGaAs/GaAs heterostructure (geometry 

of the structure is shown in Figure 2-6). This geometry has the combination of low series resistance 

and high breakdown voltage. The high breakdown caused by the 2D electric field spreading in the 

depletion region and the low series resistance is due to the excellent transport properties of the 

2DEG. Meanwhile, the electron transit-time of this structure is lower than the conventional 

Schottky diode due to high electron velocity of the 2DEG. Also, a 2DEG Schottky diode by 

AlGaN/GaN heterostructure for THz detection is experimentally demonstrated in [49].  
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2.3.5 CMOS technology diode 
CMOS technology was also used for realization of the Schottky diode for high frequency 

applications. The first mmWave Schottky diode frequency doubler fabricated in CMOS was 

presented in [48]. An array of the diodes shunt connected were implemented in CMOS technology 

without any process modifications. Due to the shunt array, the series resistance was reduced, which 

increased the cut-off frequency. In the fabrication of diodes, CoSi2 is used in the interface of metal-

semiconductor contact which enhanced the barrier height. The CoSi2-Si diodes on the n- and p-

well substrates are fabricated without a guard ring in 130-nm foundry CMOS process. By using 

these techniques, they reached the highest cut-off frequencies for Schottky diodes fabricated with 

silicon. This work shows the CMOS technology potential for mmWave and far-infrared detection 

systems. The idea was used in [55] for an 8x8 parallel Schottky diode in CMOS technology. The 

proposed diode in [48] was also used in sub-millimeter CMOS integrated circuits and presented in 

[56] and [57]. A broadband detector for 0.6 to 1 THz using 65 nm CMOS technology and 

integrated silicon lens for imaging is presented in [58]. 

 

 

 

Figure 2-6- Geometry of the 2DEG structured Schottky diode [54].  
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According to this summary of the diode structures and technology, the diode has been realized in 

not integrable whisker contact or integrated planar structure although it sacrifices partly the diode 

performance due to the higher parasitic elements. However, by developing the 

micro/nano-fabrication techniques the parasitic problem has been significantly diminished. A 

mixed structure is called quasi-vertical is developed that has both structures benefits. Also, some 

other technologies such as 2D electron gas and CMOS are used in the diode design and realization. 

2.4 THz Schottky diode applications 

In previous sections, different THz Schottky diode technologies, which have been published in 

literature, are reviewed.  In this thesis, in order to achieve better integration capability, planar 

structures are considered. Planar configuration are more attractive since they are well-developed 

for different applications. Also, in most performed researches and investigations, studies were not 

considering diode’s application. Therefore, this thesis is focused on bringing a comprehensive 

study and generalized design methodology for different diode applications.  In the following 

subsections, multiple applications are discussed and comprehensive literature review is performed.  

2.4.1 Mixer diode-heterodyne receiver 
In [31], the planar diode, which was presented by the University of Virginia research team [37], is 

used around 800 GHz and it is shown in Figure 2-7 (a). Also, back-to-back diodes were presented 

as a mixer in a heterodyne receiver (see Figure 2-7 (b)). They studied the thermal noise and sources 

of the losses in the diode circuit. In this kind of receiver, diodes are the source of the noise, but 

most losses occur between the antenna and mixer. In another work [32], they studied physics of a 

diode with degenerately-doped GaAs and the effect of this heavily doped barrier for THz 

application of the device.   

Meanwhile, the JPL (Jet Propulsion Laboratory) group proposed a monolithic mixer based on the 

Schottky diode, which achieved 2.5 THz frequency at room-temperature [59]. The diode and 

circuit membrane were based on a GaAs substrate. The mixer is employed in a heterodyne THz 

detection system. The received signal is mixed with a signal generated by far-infrared laser 

oscillator and provides an RF signal at few GHz. In the diode fabrication, they employed a T-shape 

anode technique presented by Alien and Reddy from the University of California, Santa Barbara 
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[60], [61]. A thin GaAs membrane was used to prevent the bulk substrate skin-depth effect, which 

increased the diode resistance at high frequency as discussed in [40]. Figure 2-8 is a SEM image 

of the 2.5 THz monolithic mixer with the GaAs membrane. This membrane was created by making 

a wide and deep trench all around and under the circuit strip.  

 

  
(a) (b) 

Figure 2-7 The Planar Schottky diode which presented by the Crowe team in 1991 [31].  

 

  
(a) (b) 

Figure 2-8 SEM image of (a) the 2.5 THz Monolithic Schottky diode mixer with the thin GaAs 
membrane, (b) the diode zoom in image [59].  
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2.4.2 Multiplier diode- THz source  
Thereafter, a cryogenic all solid-state monolithic multiplier chain with 1.5 THz output signal is 

presented [46]. The multiplier chain provided the 1.5 THz signal by four steps doubling of a 

95 GHz input signal with a membrane diodes arrays chain. The block diagram of the complete 

multiplier source containing a cascade of four frequency doublers is shown in Figure 2-9. The 

applied diodes in the chain are separately designed and fabricated for their frequency range. The 

diodes’ fabrication was described in two categories, one for the frequencies below 1 THz and 

second for the frequencies above 1 THz. For instance, photolithography is employed in the first 

group to make the anode contact. However, since a much smaller anode contact area (~0.3 𝜇𝑚2) 

is required, in the second diodes group (over 1 THz), an electron-beam lithography process was 

used in the anode contact process. A summary of the THz sources based on GaAs Schottky diode 

multiplier is presented in [62].  

 

 
Figure 2-9 Schematic block diagram of the all-solid-state 1500-GHz multiplier source by using 
four-step multiplier chain [46]. 

 

A substrate-less Schottky diode-based multiplier at 200, 400 and 800GHz was presented by the 

JPL group [63]. The design reduced RF losses and improved system efficiency. Figure 2-10 shows 

how the 400GHz substrate-less doubler with a GaAs frame holder implemented which is excited 

by input rectangular waveguide. Then, a Schottky diode tripler at 1.9 THz was presented by 

developing the previous technology in [64].  
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Figure 2-11 is the 3D view of the 1.9 THz GaAs Schottky diode-based tripler. It shows the 

configuration of diodes in the circuit and how the ciruit excites the input and output rectangular 

waveguides.   

 A continuous wave coherent source at room temperature for 2.5 THz is presented in [65]. This 

source with unprecedented 270 GHz bandwidth, achieved by using three cascaded Schottky diode-

based frequency triplers, can be used in continuous wave, modulated or pulsed mode.  

2.4.3 All-solid-state heterodyne receiver 
A 1.2 THz receiver based on the Schottky diode mixer was presented in [66]. In this design, the 

mixer local oscillator (LO) signal was also provided by a Schottky diode-based multiplier chain 

[66]. It was the first all-solid-state heterodyne receiver in the 1.2 THz range which worked at room 

temperature. There was another diode-based mixing system with diode chain LO at 900 GHz 

presented in [67] that has a cryogenic system to cool the mixer to 120 K.  

 

 
 

Figure 2-10 400 GHz Substrate-less Schottky diode doubler [63]. 
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2.4.4  Rectifier diode- direct detection 
In the high frequency bands, direct detection is very attractive since there is no need for local 

oscillator. To do so, Schottky diodes have been used for direct detection in THz band. 

A broadband THz detector based on a zero-bias Schottky diode is introduced in [69]. The diode 

and on-chip lithographic antenna are bonded to a hemispherical silicon lens. Both the top and side 

views of this broadband THz detector are shown in Figure 2-12. The diode is mounted across the 

feed point of the sinuous antennas by using a flip-chip technique. In [25], a THz rectification 

system is presented which has the detector diode and the planar antenna fabricated together to 

improve performance by decreasing the diode size. Also, a tunable lens-coupled annular-slot 

antenna and a Schottky diode rectifier are reported in [70]. The resonance frequency of the slot 

antenna is tuned from 140 to 220 GHz by diode capacitance which is a bias dependent variable.  

 

 
 
Figure 2-11 The 1.9 THz tripler [68]. 
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Figure 2-12 Broadband THz detector based on direct detection, (a) the planar sinuous antenna with 
a flip-chip diode in the center, (b) the diode detector and antenna mounted on a hemispherical 
silicon substrate lens [69]. 

 

In this chapter the diode structural progress, technologies and application developments in the 

literature are summarized. In most reported works the focus have been on the method of using the 

diode in a specific application and circuit. The diode itself, design, and optimization is studied in 

a limited number of reports such as [28], [29], [42], [71]. And the diode characterization is studied 

in [25], [33], [72], [73]. So, there is a lack of comprehensive study on the diode based on its 

application and comparison of its performance in each application. Also, studies of application 

impact on the diode design are missing in the literature. Therefore in this thesis, the diode 

optimization and frequency behavior based on the application are categorized and compared. On 

the other hand, the fabrication processes presented in the literature [25], [30], [46], [74], [75] are 

not cost-effective, flexible, reliable, and repeatable enough to use for mass production and 

commercial application of the diode. In this thesis, a fabrication process for the diode mass 

production is presented which is low-cost, more flexible, and easy to repeat is presented.       
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3 Schottky Diode Application-based 
Study 

Submillimeter Wave GaAs Schottky Diode Application-

Based Study and Optimization for 0.1- 1.5 THz 

Here a design and optimization method for Schottky diodes is proposed. By employing the 

optimization method, parasitic capacitance of the diode is significantly reduced (under 20% of the 

total capacitance) to be able to operate up to 1.5 THz which is confirmed through DC and RF 

measurements presented in chapter 5. The diode responsivity and noise equivalent power (NEP) 

is also investigated. Moreover, limiting factors of the diode cut-off frequency in mixer/multiplier 

and detector mode applications are studied. It is shown that, in mixer/multiplier mode, the usable 

voltage bias range (with acceptable cut-off frequency) is limited by the exponential reduction of 

Rj. Therefore, a new approach for more practical cut-off frequency calculation is introduced which 

is valid for wide ranges of Rj values. Also, a detailed formula is presented for calculation of the 

diode cut-off frequency for the detector application mode.  

3.1 Introduction 

There is great interest in the submillimeter-wave spectrum due to its numerous applications in 

astronomy, spectroscopy, security, surveillance, disease detection, DNA identification and 

telecommunication [76], [77]. Lack of compact and efficient submillimeter-wave active and 

passive components slow down technological progress required for realization of the 

aforementioned applications. Neither design, simulation nor fabrication of these components are 

fully developed, with fabrication being the biggest challenge.  

Diodes are critical elements in submillimeter-wave circuits. During recent decades, GaAs Schottky 

barrier diodes have been the preferred choice and have had the most significant progress. They are 

presently used in several submillimeter and terahertz (THz) circuits such as mixers [40], [45], [46], 

[59], multipliers in solid state sources [46], phase shifters [27], and detectors [25]. For instance, in 
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[46], an all solid-state monolithic multiplier chain of membrane diodes is presented where the 

multiplier chain employs four doubling steps to reach 1.5 THz from 95 GHz input signal. This 

Schottky diode-based multiplier was developed to serve as a submillimeter-wave local oscillator 

for a heterodyne receiver. 

Cut-off frequency is the main parameter in defining the behavior of a diode. It is estimated by 𝑓𝑐 =

1 2𝜋𝐶𝑗𝑅𝑠⁄  where 𝑅𝑠 and 𝐶𝑗 are series resistance and junction capacitance respectively [38], [48]. 

However, influence of other components of the diode equivalent circuit model and their bias 

dependency needs to be considered to achieve more accurate results. It is also of significant 

importance to provide an application-based study for the diode cut-off frequency since different 

sources of nonlinearity is targeted. 

In order to expand the diode cut-off frequency to submillimeter-wave region, reducing the junction 

capacitance by shrinking the anode size has been the main approach  [31], [47], [63]. However, 

aside from the junction capacitance, the parasitic elements such as parasitic capacitance, have high 

impact on the diode frequency performance and limits the cut-off frequency. For instance, in [73] 

the reported parasitic capacitance is 4-5 times larger than the junction capacitance. Therefore, the 

diode performance is mainly limited by its parasitic elements rather than the junction capacitance. 

In the present work, we review and compare four approaches to estimating the cut-off frequency 

of Schottky diodes. In particular, we extend these approaches by considering the bias dependence 

of all components, and discuss new limitations that arise.  

3.2 Design and Simulation 

The design process starts by specifying the frequency range of operation. It is first necessary to define 

the electron mobility and plasma frequency. These parameters are used to select the appropriate 

semiconductor and its doping density. Then, based on the wafer specifications, i.e., layers architecture 

and their properties including thickness, dopant and electron mobility, the performance of the diode 

can be simulated. A set of design parameters are assumed as the initial values and further optimizations 

are performed to achieve the desired characteristics. The input variables are semiconductor active 

layers (Schottky and n-well doped layers) doping, mobility, resistivity and their thicknesses, contact 
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areas, shapes and their distance, both contact barrier heights, specific contact resistivity (Ohmic), 

operating frequency, and temperature.  

The aforementioned calculations are accomplished by developing a code based on the analytical model 

of diode. The flowchart of the described design and optimization process is shown in Figure 3-1. 

Fabrication limitations, such as achievable UV-lithography alignment and precision and having access 

to high mobility GaAs epitaxy wafers should be taken into account. Initial value of some parameters 

may be extracted from literature at the beginning to estimate and optimize requirements of epitaxy 

structure. After determining the epitaxy structure, the parameters (such as contacts barrier heights, 

specific contact resistivity, layers resistivity and mobility) are replaced by measurement results from 

quick tests such as TLM, C-V and Van-der-Pauw. 
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Figure 3-1. Design and optimization process for Schottky diodes. 
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3.3 Optimization 

The cut-off frequency of diodes and related operating frequency ranges are generally linked to the 

series resistance and junction capacitance through the 𝑅𝑠 ∙ 𝐶𝑗 factor. Therefore, most of the 

literature focuses on decreasing the anode dimensions to reduce the junction capacitance, and 

thereby improve the cut-off frequency.  

Figure 3-2 (a) shows the Schottky diode equivalent circuit. The diode parasitic components are 

identified for various parts of the device, as explained in Figure 3-2 (b). The total series resistance 

is 𝑅𝑠 = 𝑅𝑠𝑙(𝑉) + 𝑅𝑠𝑢𝑏 + 𝑅𝑜ℎ + 𝑅𝑝1 + 𝑅𝑝2 in which only 𝑅𝑠𝑙 has dependency to voltage bias. 𝑅𝑠𝑙 

represents the part of the Schottky layer that is not depleted and therefore grows sub-linearly with 

the voltage bias across the junction. The junction capacitance 𝐶𝑗 and the resistance 𝑅𝑗 are the heart 

of the Schottky diode, which their voltage-dependency generates its nonlinear characteristic.  

The total capacitance is defined as 𝐶𝑇 = 𝐶𝑗(𝑉) + 𝐶𝑝 = 𝐶𝑗(𝑉) + 𝐶𝑓𝑝 + 𝐶𝑓𝑜ℎ + 𝐶𝑝𝑝, where 𝐶𝑝 is the 

sum of all parasitic capacitances. In this work, the impact of 𝐶𝑝 on the cut-off frequency is taken 

into account by considering the total capacitance 𝐶𝑇 instead of 𝐶𝑗. Although 𝐶𝑝 and 𝐶𝑗, as shown 

in Figure 3-2, are not exactly in parallel, 𝐶𝑇 gives a good estimation of the diode total capacitance 

and practical cut-off frequency. By reducing the junction capacitance, 𝐶𝑇 is dominated by parasitic 

term that becomes the main limitation of the device. In many cases the parasitic capacitance is 

shown to be several times larger than the junction 𝐶𝑗 itself. For example, in [78], diodes with anode 

areas of ~1 μm2 have a total capacitance (𝐶𝑇) of ~10 fF where the 𝐶𝑗 portion is only 1.5-2 fF. Also, 

in [73] diodes with a claimed cut-off frequency of ~20 THz have 𝐶𝑗0=1.3-1.8 fF (𝐶𝑗 at zero bias) 

and 𝐶𝑝= 5.5-8.5 fF. Therefore, practical cut-off frequencies for those diodes are in the range of 

3.9-3.4 THz. 

In this work, all parasitic capacitances are taken into account to accurately estimate the practically 

achievable cut-off frequency. A fabrication process is presented that decreases all parasitic 

capacitances. Therefore, for a given anode area, the total capacitance of the diode is smaller which 

leads to higher cut-off frequency. This is accomplished by: 
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 Increasing the gap between the mesa surface and the finger (h in Figure 3-2 (b)) which 

reduces the parasitic capacitance between finger and mesa (𝐶𝑓𝑝). 

 Increasing the distance between the anode finger and the Ohmic contact and its air-bridge. 

This reduces the parasitic capacitance between the finger and the Ohmic contact (𝐶𝑓𝑜ℎ). 

 Increasing the distance between the mesa and input/output transmission lines (here 15-

20 μm). Also, embeding a trench (as deep as 5-8 μm) around the mesa to deliver a lower 

pad-to-pad parasitic capacitance 𝐶𝑝𝑝. 

The Schottky layer also is of prime importance in optimizing the diode performance. In order to 

minimize 𝑅𝑠𝑙, the thickness and doping of the Schottky layer should be chosen so that it is fully 

depleted at a bias voltage (𝑉𝑀𝑜𝑡𝑡) just below the desired operating bias. Below 𝑉𝑀𝑜𝑡𝑡 the diode 

operates in the Mott condition [71], [79] and has a quasi-constant capacitance value, providing low 

non-linear component. At the operating bias, almost all the Schottky layer is depleted, thus 

minimizing 𝑅𝑠𝑙, and the capacitance 𝐶𝑗 varies with bias and can provide the required non-linear 

behavior. These conditions are achieved for Schottky layer thicknesses between 70-130 nm, 

doping levels between 1016 to 1018, and by managing the diode operating bias to put the diode in 

the optimal situation. Using a thin epilayer around 100 nm and less improves the drift velocity and 

effective scattering frequency of the Schottky layer [40]. By further increasing the voltage bias 

above 𝑉𝑀𝑜𝑡𝑡, both 𝐶𝑗 and 𝑅𝑠 start to increase and this reduces the cut-off frequency. 
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(a) 

(b) 

Figure 3-2. (a) Diode equivalent circuit model. 𝐶𝑝𝑝 is the pad-to-pad parasitic capacitance, 𝐶𝑓𝑝 is 
the capacitance between finger and mesa, and 𝐶𝑓𝑜ℎ is the capacitance between finger and the 
Ohmic contact; (b) Schematic of diode side view and equivalent circuit components. Parasitics 
𝑅𝑝1, 𝑅𝑝2, 𝑅𝑜ℎ, 𝑅𝑠𝑢𝑏 and 𝑅𝑠𝑙 are anode finger, Ohmic air-bridge, Ohmic contact, n-well doped 
channel and the un-depleted Schottky layer resistance, respectively. 
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3.4 Cut-off Frequency 

In this section, five approaches to calculate the cut-off frequency are discussed. The first three 

apply to mixers and multipliers that usually make use of the diode capacitance which is the 

dominant non-linear term at low forward or reverse bias. The fourth and fifth approaches are 

mainly used in direct detection and rectification through the diode’s non-linear resistance which is 

more dominant in higher forward bias regime. The third approach is developed and improved for 

more accuracy by considering a detailed model and dependency of its components to the voltage 

bias for mixer/multipliers applications. Also, the fifth approach is developed that gives better 

understanding of the diode performance. 

Approach 1:  

In reverse or at low forward biases at radio frequencies, where the junction resistance 𝑅𝑗 is much 

larger than junction reactance (𝑋𝑗 = 1 𝑗𝜔𝐶𝑗⁄ ), the equivalent circuit of Figure 3-2 (a) can be 

simplified to a series RC circuit (𝑅𝑠 , 𝐶𝑗). Eq. (3-1) is the most common formula to calculate the 

cut-off frequency of a diode.  

where 𝑅𝑠 = 𝑅𝑠0 and 𝐶𝑗 = 𝐶𝑗0 are the series resistance and the junction capacitance of diode at zero 

bias, respectively.  

Approach 2:  

The bias voltage dependency of the diode’s parameters was not considered in approach 1. 

Therefore, in the second approach, Eq. (3-1) is applied while considering the bias dependence of 

the series resistance (𝑅𝑠) and the junction capacitance (𝐶𝑗). In the first and second approaches, the 

frequency at which, the power wasted in 𝑅𝑠 is equal to half of the input power, is defined as the 

cut-off frequency. 

𝑓𝐶 =
1

2𝜋𝑅𝑠𝐶𝑗
 (3-1) 
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Approach 3:  

In the forward regime, the junction resistance 𝑅𝑗 decreases and becomes comparable to the junction 

reactance 𝑋𝑗 and cannot be ignored. Here, all bias voltage dependences, the junction resistance 

(𝑅𝑗) and the effect of parasitic capacitances are considered in the calculation of the cut-off 

frequency. 

In this approach the cut-off frequency definition is the same as in the second approach, where the 

parasitic series resistance absorbs half of the input power or: 

𝑃𝑗

𝑃𝑖𝑛
~
|𝑉𝑗|

2

|𝑉𝑖𝑛|2
=

𝑅𝑗
2 + (𝜔𝐶𝑇𝑅𝑗

2)
2

(𝑅𝑠 (1 + (𝜔𝐶𝑇𝑅𝑗
2)
2
) + 𝑅𝑗)

2

+ (𝜔𝐶𝑇𝑅𝑗
2)
2
=
1

2
   
𝑦𝑖𝑒𝑙𝑑𝑠
→       𝑓𝐶𝑟𝑗 (3-2) 

where the junction resistance at forward bias (𝑅𝑗) is given by:  

𝑅𝑗 =
1

(𝜕𝐼 𝜕𝑉𝑗
⁄ )

≡
1

𝐺
 (3-3) 

In this last equation  𝑉𝑗 is the voltage over the junction and is related to the forward bias voltage 

(𝑉𝐹) as: 

𝑉𝑗 = 𝑉𝐹 − 𝐼𝑅𝑠 (3-4) 

 

Approach 4:  

For direct detection and rectification applications, the non-linear junction resistance is the only 

element of the diode equivalent circuit that plays role. Here, the absorbed power in junction 

resistance 𝑅𝑗 is the key parameter to define the cut-off frequency. It is defined as the frequency for 

which the absorbed power in 𝑅𝑗 is reduced to half of its maximum value [80]. Eq. (3-5) gives the 

ratio of absorbed power in the junction resistance 𝑃𝑅𝑗 to the total absorbed RF power 𝑃𝑅𝐹: 
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𝑃𝑅𝑗

𝑃𝑅𝐹
=

𝑅𝑗

𝑅𝑠(1 + 𝜔2𝐶𝑇
2𝑅𝑗

2) + 𝑅𝑗
 (3-5) 

 

 

Figure 3-3. Ratio of the absorbed power in the junction resistance Rj to the total absorbed RF 
power. The maximum ratio value at each bias point occurrs at ω = 0 and is equal to Rj (Rs + Rj)⁄ . 
The cut-off frequency is defined as the frequency for which this ratio reduces to half of the 
maximum value. 

 

In the fourth approach, the effect of parasitic capacitances through the total capacitance (𝐶𝑇) 

approximation, is considered like the third approach. Figure 3-3 shows the power ratio of Eq. (3-5) 

as a function of frequency for a fixed voltage bias (+0.83 V) for our diode with 1 µm anode radius 

(𝑟𝑎=1 µm). The cut-off frequency is extracted by that procedure for each bias value: 
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𝑓𝑅𝑗 =

(1 +
𝑅𝑠
𝑅𝑗
)

1
2⁄

2𝜋𝐶𝑇(𝑅𝑠𝑅𝑗)
1
2⁄
 

(3-6) 

 

 

 

Figure 3-4. Junction resistance power ratio 𝑃𝑅𝑗 𝑃𝑅𝐹⁄  as a function of voltage bias and frequency. 

 

The maximum value for the absorbed power ratio in the junction resistance 𝑅𝑗, which happens at 

DC, is shown in Figure 3-4 (DC labeled). This max-ratio starts to decrease at higher biases where 

𝑅𝑗 is reduced enough to be comparable with the series resistance 𝑅𝑠. Also, the junction resistance 

power ratio 𝑃𝑅𝑗 𝑃𝑅𝐹⁄  is shown in Figure 3-4 as a function of the bias voltage changes for 

frequencies going from DC to 1 THz. For each frequency, the peak power ratio occurs at a bias 

voltage for which 𝑅𝑗 and 𝐶𝑇 reactance (𝑋𝐶𝑇) are in balance (𝑋𝐶𝑇 = √Rj(Rj||Rs)). As the frequency 
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increases, the decrease of the maximum power absorbed in 𝑅𝑗 is indicative of the reduction of the 

detection/rectification efficiency. Using half of the total power definition for the cut-off frequency, 

that has been used in the previous approaches, would result in limiting the diode below ~100 GHz 

despite the fact that the diode can still function above that frequency, but with a reduced efficiency 

as will be shown in section section 3.5. 

The four approaches are illustrated in Figure 3-5 at forward biases for the 1 μm anode radius diode. 

The cut-off frequency reduction of the third approach (𝑓𝐶𝑟𝑗) with respect to the second approach 

(𝑓𝐶) comes from the parasitic capacitances (𝐶𝑝) impact. The behavior difference in higher voltage 

range is due to the rapidly decreasing 𝑅𝑗 with bias. This 𝑅𝑗 reduction dramatically reduces the 

“mixer/multiplier” mode cut-off frequency and limits this mode voltage bias operational range. 

One can observe that, the mixer/multiplier mode (𝑓𝐶  and 𝑓𝐶𝑟𝑗) and the direct-detection/rectification 

mode (𝑓𝑅𝑗) have very different voltage bias dependencies, as shown in Figure 3-5. This is because 

the two applications make use of the non-linearity of different components in the diode equivalent 

circuit model. 
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Figure 3-5. Comparison between different methods for cut-off frequency calculation. The 𝑓𝐶  is the 
second approach and 𝑓𝐶𝑟𝑗 is the third approach (mixer and multiplier applications). The 𝑓𝑅𝑗 is the 
fourth approach, for direct detection applications. 
 

The fabricated diodes, due to the employed hetero-structure and Schottky layer doping level and 

its thickness, are in Mott-operation mode (for voltage biases up to 0.4 V). While the whole 

Schottky layer thickness is depleted, both series resistance and junction capacitance are at the 

minimum values and steady which result in a constant cut-off frequency for this bias range (see 

Figure 3-5). Also, the vertical shift between 𝑓𝐶  and 𝑓𝐶𝑟𝑗 is due to considering the parasitic 

capacitance in calculation of 𝑓𝐶𝑟𝑗. This shift is much smaller than reported diodes in references 

[33], [73], [78], because of the small parasitic capacitance of the proposed diodes. 

Approach 5:  

In direct detection applications, the non-linearity of the junction resistance (𝑅𝑗) is used to generate 

a DC current response. In the literature, the cut-off frequency is defined when the absorbed power 
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in 𝑅𝑗 reaches half of its maximum value, as is described in approach 4. However, this maximum 

absorbed power in 𝑅𝑗 (which occurs at DC) is drastically reduces by increasing the voltage bias. 

In other words, the diode maximum achievable efficiency decreases as its bias increases. Also, 𝑓𝑅𝑗 

is rising, as is shown in Figure 3-6, but it doesn’t represent the same efficiency for the diode along 

the bias axis. Therefore, a new approach for calculating the diode cut-off frequency is required. In 

this paper, a new approach is presented which is based on the constant efficiency of the diode 

according to the absorbed power in 𝑅𝑗. The results for the fabricated diode is illustrated in 

Figure 3-6 when the absorbed power in 𝑅𝑗 reaches to 10, 20, and 40 percent of input power. 

Therefore, according to the sensitivity of the next block in the receiver chain the minimum 

efficiency of absorbed power in 𝑅𝑗  will determine cut-off frequency of the diode. On the other 

hand, by increasing the diode DC bias the noise level increases which leads to lower sensitivity. 

Accordingly, although the cut-off frequency increases as the bias increase, the minimum required 

efficiency grows which means higher efficiency curve may be required as is shown in Figure 3-6. 
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Figure 3-6. Cut-off frequency of diode for direct detection/ rectification applications (it is assumed 
that the circular diode contact has 1 µm radius). 𝑓𝑅𝑗 is calculated by Eq. (2) and 𝑓𝑃𝑟𝑗 is the new 
approach with 10, 20, and 40 percent minimum efficiency of absorbed power in 𝑅𝑗. The results are 
presented for two channel thicknesses of less than 350 nm and 1.2 μm. In the cut-off calculation 
the impact of parasitic capacitance of diode is taken into account by using CT=Cj+Cp. 
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3.5  Responsivity and NEP 

In direct detection/rectification applications, the real cut-off frequency is dependent on the 

sensitivity of the next block in the receiver chain. The rectified current for an input voltage signal 

𝑉 =   𝑉0 + 𝑣0 𝑐𝑜𝑠 (𝜔𝑡) is calculated by taking the Taylor series expansion [81] for small signals 

resulting in,  

𝐼 = 𝐼(𝑉) +
𝑣0
2𝐺′

4
+ 𝑣0𝐺 cos(𝜔𝑡) +

𝑣0
2𝐺′

4
cos(2𝜔𝑡) (3-7) 

where 𝐺 is defined in Eq. 3 and 𝐺′ = 𝜕𝐺 𝜕𝑣⁄ . The DC rectified current due to the input RF signal 

is 𝑣02𝐺′ 4⁄ . This current for a 1 μm anode radius diode is shown in Figure 3-7 for an input voltage 

of 5 mV. 

 

 

Figure 3-7. The simulation result of rectified current for 1 µm anode radius of this work design 
when the input signal amplitude is 5 mV. 
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The important characteristic of the diode for direct detection is current sensitivity 𝛽𝑖 defined as the 

DC rectified current over the RF power to the junction. Using Eq. (3-7) we get: 

𝛽𝑖 =
∆𝐼𝑑𝑐
𝑃𝑅𝑗

=
𝐺′

2𝐺
       𝐴/𝑊 (3-8) 

Also, the voltage sensitivity (𝛽𝑣) which is the DC voltage change across the junction due to 

received RF signal: 

𝛽𝑣 =
∆𝑉𝑑𝑐
𝑃𝑅𝑗

= 𝛽𝑖 . 𝑅𝑗     𝑉/𝑊 (3-9) 

At low frequencies and low voltage biases, 𝑅𝑗 and 𝐶𝑗 are normally much larger than 𝑅𝑠. At high 

frequencies, however, 𝑅𝑠 and the junction impedance become comparable. Therefore, effects of 

𝑅𝑠 and 𝐶𝑗 on voltage sensitivity due to junction resistance  𝑅𝑗 absorbed power ratio is, 

𝛽𝑣1 =
∆𝑉𝑑𝑐
𝑃𝑅𝐹

=
∆𝑉𝑑𝑐
𝑃𝑗

∙
𝑃𝑅𝑗

𝑃𝑅𝐹
= 𝛽𝑖𝑅𝑗 ∙

𝑅𝑗

𝑅𝑠(1 + 𝜔2𝐶𝑗
2𝑅𝑗

2) + 𝑅𝑗
= 𝛽𝑖1 .  𝑅𝑗 (3-10) 

where the power ratio 𝑃𝑅𝑗 𝑃𝑅𝐹⁄  is taken from Eq.(3-5). The load resistance (𝑅𝑙) also reduces the 

voltage sensitivity by, 

𝛽𝑣2 = 𝛽𝑣1  ∙
𝑅𝑙

𝑅𝑙 + 𝑅𝑗
 (3-11) 

If the diode is connected to a system with impedance Z0, the 𝛽𝑣 will be affected by the reflection 

coefficient (𝜌) as,  

𝛽𝑣3 = 𝛽𝑣2(1 − 𝜌
2) (3-12) 
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Figure 3-8. The estimated current responsivity βi1 as a function bias voltage for 300, 600 and 1000 
GHz. 

 

Figure 3-8 and Figure 3-9 illustrate the expected current (𝛽𝑖1) and voltage (𝛽𝑣1) responsivity of 

our 1 μm radius diode at 300, 600 and 1000 GHz as a function of voltage bias. 

Another evaluation scale for diode detectors is Noise Equivalent Power (NEP). The (NEP)0, the 

frequency independent part of NEP and the diode NEP, are estimated by using the theory presented 

in [80] and the fitted diode model using measurement results. Figure 3-10 and Figure 3-11 show 

the results of estimated (NEP)0 and NEP for the fabricated diode with 1 µm anode radius. In 

Figure 3-11, the diode NEP for 0.2, 0.5, 0.7 and 0.82 V bias voltages is presented as a function of 

frequency. The diode NEP for 0.82 V bias voltage at 300, 500 and 600 GHz is 1.5, 2.8  and 3.7 

𝑝𝑊 √𝐻𝑧⁄ , respectively. 
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Figure 3-9. The estimated voltage responsivity βv1, as a function bias voltage for 300, 600 and 
1000 GHz. 

 
 

Figure 3-10. The frequency independent part of Noise Equivalent Power (NEP)0 as a function of 
voltage bias for the designed diode with 1 µm anode radius. 
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Figure 3-11. Noise Equivalent Power (NEP) as a function of frequency for the designed diode with 
1 µm anode radius at 0.82 V voltage bias. 

 

In this chapter the limiting factors of the cut-off frequency both in detector/rectifier and 

mixer/multiplier modes have been studied. For the mixer/multiplier applications, the conventional 

method for calculation of the cut-off frequency is advanced and improved. It is shown that the 

proposed method is able to provide a more accurate and more practical results. It is also 

demonstrated that, since the diode performance is mainly limited to its parasitic components, the 

sole reduction of the anode diameter cannot deliver higher cut-off frequencies. Therefore, an 

optimization method to minimize the parasitic elements of diode, chiefly the 𝐶𝑝 is devised. In order 

to decrease the parasitic capacitance, the air-bridge and connection pads structures are modified. 

Using this design method, it is shown that the need for very small contacts can be mitigated, and 

for frequencies below 1.5 THz, the expensive electron-beam lithography step can be avoided, as 

it is discussed in chapter 4.  
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4 The Epitaxial structure engineering 
and Fabrication  

A Low-Cost Fabrication Method for Sub-Millimeter Wave 

GaAs Schottky Diode   

We present a modified process for the fabrication of terahertz (THz) and sub-millimeter wave 

diodes. Based solely on photolithography, this process gives more flexibility in design parameters 

and allows a significant reduction in the device parasitic capacitances. A key feature of the process 

is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single 

lift-off step. The process relies on a planarization method that is suitable for trenches 1 to 10 µm 

deep and is tolerant to end-point variations. The process is compatible with a large range of anode 

sizes depending on the frequency target. This process is also compatible, without any changes, 

with electron-beam lithography to produce very small anode areas. We also present an analysis of 

the effect of the Schottky layer thickness on cut-off frequency. The measurement and 

characterization results show an excellent agreement with the simulations. 

4.1 Introduction 

One of the obstacles to the development of sub-millimeter wave devices is lack of low-cost, 

reliable and efficient fabrication techniques. Schottky diodes are key elements in electronic circuits 

which their fabrication becomes more and more challenging in high frequencies due to the small 

size of the device and high sensitivity to parasitic elements. 

As is discussed applications of Schottky diodes can be classified in two main categories: direct 

detection/rectification [72], [82], in which the non-linearity of the junction resistance is used; and 

mixer and multipliers [45], [46], [59], [66], [77] that exploit the non-linearity of the junction 

capacitance. The relation between the diode’s cut-off frequency and its application is discussed in 

chapter 3. One of these specifications is the Schottky layer thickness, for which the impact on the 

diode performance, for different applications, is studied in this chapter.  
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In the fabrication of the diode a low cost, reliable, flexible, and repeatable process is required if 

THz technology is to be commercialized and used for mass production. The so far reported 

fabrication methods in order to realize a sub-millimeter Schottky diode are summarized here, for 

comparison. Although the overall processes have similarity since all resulted alike structure, their 

approaches are different. 

In [84] a fabrication process presented by using a planarization method based on pouring a 

polymeric resist to fill the trenches and make a flat surface by cap the wet resist with a polished 

superstrate glass and let the resist dry and remove the glass. Then, etch back the polymeric resist. 

This process is extremely sensitive to the etch-back stop point. Also, since the glass layer shapes 

the planarization resist, its thickness cannot be accurate. Therefore, etch back time would be a 

challenge.  

A research group which have had effectual progress in fabrication of sub-mm/THz wave diodes is 

Jet Propulsion Laboratory (JPL). They reported two fabrication processes for their diodes. This 

paper proposed a process for diodes under 800 GHz which used reshaping resist to build air-bridge 

without trench underneath. The second process was for diodes above 800 GHz which includes 

planarization. Acetone spray etch-back technique was employed in the planarization (as we 

discussed it in our manuscript). These processes are used at JPL for THz diodes for several projects 

such as their room temperature receiver [66].  

The other method that was employed for the diode realization is to build the bridge then wet etch 

the isolation trench in the presence of the finger contact bridge such as in [83] and [85]. 

Comparing above listed processes with this work fabrication process presented in this chapter 

shows the novelty of our approaches in many aspects. 

In [47], two processes for fabrication of sub-millimeter wave Schottky diodes have presented. 

First, for frequencies below 1 THz, a patterned resist reflow technique was used to provide 

air-bridge support. Second, for frequencies above 1 THz, an acetone spray etching back technique 

of PMMA was employed for planarization and to make the air-bridges supports. These processes 

require several metallization steps for diodes and their required interconnections. Another process 

based on an e-beam lithography has presented in [83]. In this process, a trench is wetly etched 

under the fabricated bridge to reduce the parasitic capacitance. 
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These fabrication processes are currently used to produce THz diodes primarily for research 

purposes and few other expensive products. Thus, low-cost, reliable, flexible microfabrication 

methods are needed if THz technology is to be commercialized and used for mass production. 

Here we proposed two fabrication strategies for the same design of THz GaAs diodes: 1- 

Multi-Step Metallization (Multi-SM); 2- Double-Step Metallization (Double-SM).  Although, both 

methods produce diodes with almost the same geometry, the Double-SM method is less 

complicated and has several advantages.  

These processes include a new planarization method that gives more flexibility in fabrication and 

some of the design parameters. It can also be used in the fabrication of other THz integrated circuits 

in order to reduce parasitic capacitances. In the final process, the T-shaped anode is fabricated 

using photolithography. Smaller contact size (in order to increase the diode cut-off frequency) is 

achievable with this process, with only one added step E-beam lithography for anode openings, 

without any changes in other steps of the process (with the same planarization). 

 In the final process, the UV-lithography based T-shaped contact using multiple steps of UV and 

deep-UV is used with three layers resist. The diode and its integrated waveguides are fabricated 

by using only two metallization steps. First step is Ohmic contact which has to be annealed, and 

therefore its metallization should be done separately. The second metallization step is used to 

create the anode, air-bridges (interconnecting bridges) and waveguides (or other passive circuit 

elements). Therefore, two metallization steps are the minimum number possible in fabrication of 

Schottky diodes. The methods presented here are reliable, low-cost, and offer more flexibility for 

the device and the circuit designers.   

  

4.2 Epitaxial structure engineering  

One of the pivotal parameters in the diode design is the thickness of Schottky layer, especially 

when its doping is in lower range. The diode performance as function of the Schottky layer 

thickness for different applications are studied here. The Schottky layer is considered to be n-

doped GaAs with doping level of 4× 1016𝑐𝑚−3 and thickness variation from 5 to 300 nm. The n-
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well doped channel with 5× 1018𝑐𝑚−3 doping level and thicknesses (D) of less than 350 nm and 

1.2 μm is presumed. In the fabricated diode a 110 nm Schottky layer is selected and the channel 

layer is <350nm. Although, thicker channel is more desired, it is selected based on the availability 

of the wafer. 

For the design of our diodes, we have developed a model based on the detailed geometry and 

material properties of the diodes. In studying the diode performance over the frequency spectrum, 

the relevant application should be taken into account as is discussed in chapter 3. Since diodes 

have two nonlinear elements in parallel (𝑅𝑗 and 𝐶𝑗 as is shown in Figure 3-2), the application will 

specify which one is dominant. The diode-equivalent model is shown in Figure 3-2. 

The effect of some diode design parameters, such as anode contact size and Schottky layer dopant, 

have already been studied e.g. in [40]. Here we focus on effect of the Schottky layer thickness on 

the diode’s frequency behavior as a function of voltage bias. 

 In the case of direct detection applications, Figure 4-1 shows the cut-off frequency (𝑓𝑅𝑗) (Chapter 

3-approach 4) and the new approach cut-off (𝑓𝑃𝑟𝑗– Chapter 3-approach 5 with minimum efficiency 

of 20%, as function of the Schottky layer thickness and voltage bias. In the low voltage biases, 𝑅𝑗 

is so large that it is almost an open circuit. Also, as bias increases (for the fabricated diode in this 

work, 1 Volt and higher) the diode is in high level injection and Ohmic effect region of current-

voltage (I-V) curve. Therefore, these two regions are not suitable for direct detection/rectification 

applications. In this application and with the abovementioned Schottky layer dopant, thicknesses 

between 30 to 150 nm is suggested. According to Figure 4-1, outside the suggested range, the 

diode cut-off frequency is much lower than its optimum point. 
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Figure 4-1. Cut-off frequency of a diode for direct detection applications as a function of the 
Schottky layer thickness for different voltage biases. The diode has a 1 µm radius circular anode 
contact and a 4× 1016 𝑐𝑚−3 doped Schottky layer and channel thickness D=1.2 μm. The results 
are compered at Vb=0.85 V with 𝑓𝑅𝑗 (Eq. 2) and the new approach for channel thickness (D) 
<350 nm (as it is in the fabricated diode in this work). 

 

Figure 4-2 shows the cut-off frequency of a multiplier diode (𝑓𝐶) for different bias points as a 

function of Schottky layer thickness. The Mott mode border shows the point that the diode goes to 

Mott-operation, where the 𝐶𝑗 is constant and therefore there is no multiplication due to nonlinearity 

of 𝐶𝑗. Thus, the proper voltage bias area for a multiplier diode is after Mott mode border and before 

the diode is turned ON. When it is ON, the resistance 𝑅𝑗 is small enough to take a considerable 

portion of the signal power. In mixer and multiplier application, diodes with 4× 1016𝑐𝑚−3 

Schottky layer doping and more than 80 nm thickness is suggested. According to Figure 4-2 the 

proper bias range becomes very narrow or disappears for 80 nm or thinner Schottky layers. 

 



45 
 

 
Figure 4-2. The multiplier application cut-off frequency of the diode, with 1 µm radius circular 
anode contact and 4× 1016𝑐𝑚−3 doped Schottky layer, as a function of Schottky layer thickness 
for different bias points. The results are compared for two channel thickness (D) <350 nm (as it 
is in the fabricated diode in this work) and 1.2 μm. In the cut-off calculation the impact of 
parasitic capacitance of diode is taken into account by using CT=Cj+Cp. 

 

From the strict cut-off frequency point of view, it is possible to design a diode that can be used for 

both applications. For instance, with a 110 nm thick Schottky layer and 4× 1016 𝑐𝑚−3 dopants, 

diode can operate at biases between 0.43 V and 0.65 V as a multiplier, and at biases between 0.7 

and 0.9 V as direct detector. 

Engineering of the Schottky layer, which includes its doping level and thickness, have significant 

impact on diode frequency performance. An optimized combination for the voltage bias, the 

Schottky layer thickness, and its doping level can be achieved for certain application through 

studies demonstrated in Figure 4-1 and Figure 4-2. By adjusting the voltage bias, we are able to 

optimize the diode for a certain application, or have a multi-purpose diode. The fabricated diode 

in this work is a multi-purpose diode. 
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4.3 Fabrication 

Two microfabrication processes are developed which are based on photolithography and avoid 

expensive e-beam lithography. The two processes provide a T-shaped Schottky contact and air-

bridge through planarization over deep etched trenches. Both points are critical to lower the 

parasitic capacitance of the diode. The Multi-SM method is more accessible because it does not 

require deep-UV technology. However the Multi-SM method is more complicated due to its 

multiple metallization steps in comparison to the Double-SM method. 

4.3.1 Overview  
In the realization of the diode, an available HBT GaAs wafer with a low n-doped (4× 1016/𝑐𝑚3) 

as Schottky layer and highly doped (𝑛+) contact layer (5× 1018/𝑐𝑚3- less than 350 nm thickness) 

has been used, due to budget constraints. The highly doped layer we are working with is very thin 

in comparison to the one in other work, which are normally ~1.5 𝜇𝑚 thick to decrease the series 

resistance of diode. In this work the impact of the optimization method on the diode capacitance 

is considered, and the thin channel does not have influence on it.  

Some of the techniques developed for these processes, such as planarization, T-shape contact and 

air-bridge over the trench, can be used for fabricating other sub-millimeters devices as well. Since 

there is an increasing need for commercialization of sub-millimeters and THz technologies, it is 

necessary to find a reliable, low-cost and flexible microfabrication method that can be used for 

mass production. The presented methods in this work provide more flexibility in design of the 

device and circuits, low-cost, and highly reliable. It is based on the facts that in the final presented 

method (double-SM): 

 Number of metal deposition which mainly include thick Gold (Au) deposition is reduced 

to two which one of them (ohmic contact) does not include thick metal layers. Moreover, 

the thermal evaporation is a costly process.  

 This process avoid time and cost consuming e-beam lithography for the anode and air-

bridge by reducing the parasitic capacitance of the diode structure and improve the diode 

performance. Even in the case that very small contact is required, only the anode opening 

which is a fraction of micro-meter square will require e-beam process. 
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 All resists and chemicals used in this process are the common, available and low cost 

products. Especially in the case of planarization method, which is normally a complicated, 

time and cost consuming process, our reported process is flexible, simple, and repeatable, 

with high error tolerance, time and cost efficient. For example in compare to planarization 

method presented in [84], which is the last presented process by VDI group. That is based 

on pouring a polymeric resist to fill the trenches and make its surface flat by cap the wet 

resist with a polished superstrate glass and let the resist dry and remove the glass. Then, 

etch back the polymeric resist. 

Moreover, presented process in this work can provide higher reliability and yield according to: 

 Simplified process 

 Flexibility and easier repeatability 

 High error toleration of the planarization process 

 The fact that the air-bridge is built in the last step so there is no damage risk due to next 

step, unlike so far reported processes. 

 Failure probability of other steps, which are in common with the other reported processes, 

such as mesa etching, ohmic contact and lift-off process can be assumed the same. Note, 

number of lift-off process is only two in Double-SM process which is the minimum 

number. 

The primary method, although it is more complicated and included additional limitations in 

comparison to the final method, is nevertheless easier to achieve because it does not require Deep-

UV technology. These two fabrication strategies are called Multi-Step Metallization (Multi-SM) 

for the primary process and Double-Step Metallization (Double-SM) for the final process. In both 

processes a unique method is introduced for planarization and air-bridges which are placed over 

the trenches. The air-bridge process includes a T-shaped contact fabricated using only photo-

lithography. However, in the case of the smaller size Schottky contact, which is considered for 

increasing the diode functional frequency, E-beam lithography can be used. The air-bridge process 

that includes the E-beam step is completely compatible with the proposed planarization method. 

It merely substitutes one UV-lithography step with E-beam for the Schottky contact openings. 
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4.4 Mask design 

Before the fabrication starts, the process needs to be designed in order to draw the masks. In the 

designed masks, six diodes with different anode contact areas are designed from 3 to 28 𝜇𝑚2. 

These diodes include four design with circular shape anode (radiuses: 1, 1.25, 1.5, 2 μm) and two 

design with elliptical shape anode (axis: 2;3, and 4;6 μm). The designed mask set also contains a 

back-to-back diodes mixer configuration with the above mentioned diodes. The single diodes are 

employed in three kinds of connection formations. One configuration is for DC measurement, with 

two connection pads for anode and cathode as is shown in Figure 4-3 (a). The other two 

configurations are designed for RF measurement by using coplanar waveguide (CPW). In the 

second configuration, the diodes are in series with CPW at the middle of line with two probe 

measurement setup. In the third configuration, the diode is in parallel and ground ended with one 

probe measurement setup. The RF characterization configurations are shown in Figure 4-3 (b-c). 

The CPW lines are designed for 0-40 GHz band which is the frequency band of our available VNA 

that is used for the diodes characterization. Also, an on-board TRL calibration kit (Figure 4-3 (d)) 

is used for calibration of the VNA. For the projected fabrication process, eight mask layers were 

required. The two presented processes have some common steps and each process has its own 

advantages.  

The masks were designed for a 1.2 × 1.2 cm sample size. For each layer, an opening frame was 

designed around the mask layer. The opening frame is wide to ensure we can easily see the sample 

through it without requiring a microscope. The frame is used to find the small sample under the 

five inch dark-field glass mask. It is more useful when the opening patterns of the layer are very 

small. This frame saves time in alignment process and makes it easier. The size of the inner frame 

is the same as the sample. Therefore, aligning the sample edges with this frame is the first step of 

alignment that accelerates this process significantly.  
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Figure 4-3 The designed structures and diodes on the mask, (a) the single diodes configuration 
for CD measurement, (b) the series configuration of the single diode for two probe RF 
measurement, (c) the shunt configuration of the single diode for one probe RF measurement, (d) 
the RTL on-board calibration kit. 

 

(a) 

(b) 
(c) 

(d) 

50 μm 

50 μm 
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Before staring the diode fabrication process, we needed to dice the wafer to 1.2 × 1.2 cm samples. 

Also, the selected wafer is double-side polished, making it impossible to recognize without 

electrical measurement the top side of wafer after dicing it. It is very important since just one side 

of the wafer has the epitaxy structure on. Consequently, before dicing the wafer, we labeled and 

numbered each sample by a brief wet-etch on the backside of the wafer. This also makes the 

samples easy to distinguish from each other. For that, we first coat a thick resist on the top side of 

the wafer for protection. Then, we laminate a dry-film resist on the both sides of the wafer. The 

dry film is considered because we do not want to risk the top side to be scratched by coating resist 

upside-down on the backside of the wafer. Also, the dry film is much thicker than normal liquid 

resists so it can protect the top side (the epitaxy structure) during the photolithography and etching 

process on the backside of the wafer.  

4.5  Multi-SM process (primary) 

The diode fabrication starts with wet etching the mesa with 𝐻2𝑂2: 𝐻3𝑃𝑂4: 𝐻2𝑜 (10:10:400) 𝑚𝑙 

solution, to reach the un-doped substrate (Figure 4-4 (1)). Since, the solution contains hydrogen 

peroxide (𝐻2𝑂2), the etch rate is not constant over time after making the solution. Therefore, for 

more accurate and repeatable results, we considered the time between making the solvent and 

starting the etching process. The Ohmic contact (𝐺𝑒: 𝐴𝑢:𝑁𝑖: 𝐴𝑢) is thermally evaporated and 

patterned by a lift-off process (Figure 4-4 (2)). When the Ohmic contacts are patterned, and before 

the metal deposition, a brief wet etching of GaAs is required to remove the lower doped Schottky 

layer over the Ohmic contact area. After the metal is deposited, in order to change the contact 

mode from rectifier to Ohmic, it is annealed at 435˚C by using rapid thermal annealing (RTA). An 

isolation layer of silicon oxide (𝑆𝑖𝑂2) by plasma-enhanced chemical vapor deposition (PECVD) 

is deposited. This dielectric layer isolates the metallic contact pads and transmission lines from the 

substrate GaAs and prevents the leakage through the bulk substrate (Figure 4-4 (3)). The Schottky 

contact, with a pre-surface treatment, is thermally evaporated and patterned by the lift-off process 

(Figure 4-4 (4)). The treatment is made to avoid Fermi level pinning. For the cathode bridge, an 

access pad mounted over the ohmic contact is created by (𝑇𝑖: 𝐴𝑢) thermal evaporation and a lift-

off process (Figure 4-4 (5)). The ohmic access height is leveled with Schottky contact height. All 

around the mesa a wide trench is etched with 𝐻2𝑂2: 𝐻3𝑃𝑂4: 𝐻2𝑜 solution with 4-8 μm for isolating 
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the diode (Figure 4-4 (6)). The diodes are connected to the circuit by two air-bridges. In order to 

build the bridges over the trenches first they need to be planarized to support the bridges during 

the process. The planarization process is explained in chapter 4 in detail. The presented process is 

done by using multi layers of PMMA resist and thick SHIPLY as cover layer which has partly 

planarization feature (Figure 4-4 (7)). The SHIPLY is patterned to cover just the mesa and trenches 

areas. Then, the stacked-up resist is etched back by plasma oxygen until the surface of Schottky 

contact, ohmic access and connection lines appear (Figure 4-4 (8)). The air-bridges are built over 

the planarized trenches by a (𝑇𝑖: 𝐴𝑢) thermal evaporation and lift-off process (Figure 4-4 (9)). 

Finally, the connection lines are thermally evaporated and patterned by a lift-off process 

(Figure 4-4 (10)). The process is schematically demonstrated in Figure 4-4. Also, the SEM image 

is shown in Figure 4-3 of the fabricated diode by using this process. 
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Figure 4-4 Schematic explanation of the diode primary fabrication process. 
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(a) 

 
(b) 

 
Figure 4-5 SEM image of the fabricated diode by the Multi-SM process, (a) The diode view, (b) 
Anode finger zoom in. 

 

Anode (2 μm radius) Cathode 
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4.6 Double-SM process (final) 

The presented Multi-SM process was modified to a more reliable, repeatable, flexible, cost 

effective, and easier process. The number of thick Gold (Au) metallization steps is reduced from 

four in the Multi-SM to only one in the Double-SM. The total number of metallization steps in the 

modified method is two, one for the Ohmic contact that needs to be annealed, and a second one 

for the all other metallic parts (including the anode contact, air-bridges, Ohmic access pad, and 

transmission lines). Reducing the number of steps also reduces the complexity of the process and 

amount of required lithography and alignment. The stand-off height of the bridges from the mesa 

level (ℎ), which is an important parameter in this work, in the Multi-SM depends on the etch-back 

stop point of the planarization process, which makes it very critical with the identical height being 

hard to replicate every time. In the Double-SM, the stand-off height is completely independent of 

the planarization process. It is as easy as coating a resist with the desired thickness.  

The first difference is the trench etching which needed to be done prior to the Schottky metal 

deposit. The trench is planarized with a polymer and with a single lift-off step the anode Schottky 

metal, the air bridges and the transmission lines are formed. In the following sub-sections the key 

elements of this process is described and discussed.  

4.6.1 Planarization method 
The idea is to fill the trenches with one resist (so-called filling resist), but not necessarily resulting 

in a planarizing feature. Then, a second resist with a partially planarized capability (which exist in 

most resists) is applied on top (so-called cover resist). The filling resist should not be affected by 

the cover resist developer and the filling resist should have higher temperature tolerance. Also, the 

filling resist should have a higher etch rate than the cover resist for the etch-back.  
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Figure 4-6. Trench filled by coating several layer of PMMA and covered by thick photoresist. 
The green lines illustrate the multiple layers of PMMA gradually filling and partially planarizing 
the trench. 

 

Initially, the trench is filled with multiple layers of PMMA. It is found that it is beneficial to use 

lower PMMA-to-solvent density layers initially and gradually move to higher density PMMA 

afterwards. The number of layers depends on the depth of the trenches and the PMMA densities. 

This step is completed when the level of PMMA at the center of the trench (A) is higher than the 

mesa (M) as shown in Figure 4-6. The gradually filling and partially planarization of the trench is 

also illustrated in Figure 4-6. 

A thick resist is then spun over the PMMA and patterned to remain only over the trench, as shown 

in Figure 4-7 (1). This “cover resist” should be thick enough, depending on the trench depth, to be 

able to obtain a sufficiently flat top surface, as is shown in Figure 4-7. In this work, a positive 

resist SHIPLEY-series 18 and a negative one AZ-nLOF 2020 are successfully tested.  

The planarization process continues by etching back the resist in an oxygen plasma. Figure 4-7 

illustrates the process considering that the cover resist etch rate is lower than the filling PMMA 

resist (e.g. SHIPLEY etch rate is 3-4 times slower). During the etching process points, B1 and B2 

are reaching the PMMA faster than point A (Figure 4-7(3)). Since the etch rate of PMMA is much 

faster than cover resist, the level of points B1 and B2 are reduced faster than point A. So the 

combination of the cover resist thickness distribution, and its etching rate difference with the 

underneath resist forms the arch as is displayed in Figure 4-7 (6). The etch-back is completed when 

all surfaces of the sample, except the trench area, are cleaned of resist and the trench is only filled 
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with PMMA. Unlike the Multi-SM, this process is much less sensitive on the etching stop point 

since another resist will be spun over to form and support the air bridges and T-shaped anode as is 

described in Figure 4-9. The final profile of PMMA over the trench can be controlled by changing 

the cover-resist thickness and soft or hard baking it. The planarization method has tested positively 

for 1 to 8 µm deep trenches, which demonstrates the high degree of flexibility of the method. 

 

  

  



58 
 

  

Figure 4-7. Planarization process: trench filled by coating several layer of PMMA and cover 
resist is patterned to remain just over the trenches. The resist surface transforms during the 
etching back process. 

 

The difference between etch-back stop points (end points) in the two presented processes is 

illustrated in Figure 4-8. Ideal stop point in Multi-SM is achieved when the anode, ohmic-access, 

and SiO2 surfaces are cleaned as is shown in Figure 4-8 (a). This process can tolerate over-etching 

error for the stop point. However, it cannot bear leftovers on the surface. Over etching height (𝛥ℎ) 

defines the real anode contact stand-off height is, 

ℎ = ℎ𝑎 − 𝛥ℎ (4-1) 

where ℎ𝑎  is the contact stand-off height in the design, as is explained in Figure 4-8 (a). This can 

affect the diode parasitic capacitance and subsequently the diode performance.    
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(a) 

 

 
(b) 

 

Figure 4-8 The planarization etch-back stop point: (a) The Multi-SM process etch stop point 
effect on the diode structure, (b) The Double-SM process etch stop point effect is vanished by 
using a second resist (PMGI)  on the planarized PMMA to support the air bridges. 
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The Double-SM etch-back stop point is reached when the mesa and oxide surfaces appear, as is 

shown in Figure 4-8 (b). This process can tolerate leftovers of planarization resist (PMMA) and 

its over etch from the stop point in the etch-back process. This is due to the fact that the 

planarization resist (PMMA) is only used to fill the trenches. Thereafter, another resist (PMGI) is 

coated over it to support the bridge and provide the stand-off (Figure 4-8 (b)). Therefore, the etch 

stop error toleration is as high as several hundred nanometers. Even if PMMA slightly remain over 

contacts or oxide surface, the leftover PMMA can be cleaned during the air-bridge process. On the 

other side, the over etch step will be smoothed out by coating PMGI over it. 

4.6.2 T-shape contact and Air-bridge 
After planarizing the trench, the T-shaped anode and air bridges are fabricated together in one step.  

Three layers stack of resists is used as described in Figure 4-9 to obtain the stand-off of the T-

shape anode and the deep undercut required for the lift-off of a thick metal layer. First, the poly-

methyl-glutar-imide (PMGI) is spun as the bottom layer. Its thickness determines the gap between 

air bridge and mesa surface (h in Figure 4-10). Since the PMGI exposure time is quite long, the 

height h can be controlled by partially flood exposing (without mask) of the PMGI layer. This 

enables spinning thicker resist over the planarized PMMA which decreases the process sensitivity 

to the etch-back stop point. Using the above method, the thickness of PMGI is reduced to 1 m 

(from initial value of 1.5-2 m). Afterward, it is patterned by using deep-UV for the anode, the 

Ohmic contact and transmission lines. Alternatively, electron-beam lithography could be used to 

pattern very small anodes (smaller than 1µm anode dimension) in PMGI, and deep-UV lithography 

used for the Ohmic contact and transmission lines. The undercut (middle) layer and top SHIPLEY 

resist are spun over the PMGI and patterned to form the air bridges and transmission lines. The 

important point about the choice of undercut layers is that its developer should not affect the 

bottom PMGI layer. 
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Figure 4-9. Three layers resist process to make a T-shaped contact bridge. 

 

Before metalizing the anode and bridges, surface cleaning and passivation is required to avoid 

Fermi level pinning. To do so, a Ti/Au is deposited to reach a total thickness of larger than the 

PMGI layer. Then, the lift-off reveals the Schottky contact (anode), air bridges, transmission lines 

and other part of circuit simultaneously.  

The SEM image of the final device is shown in Figure 4-10. The trenches depth in this case is 6 

µm, the anode air bridge is 30 µm long, and mesa area is 24µm × 27µm. The T-shaped anode gap 

(h in Figure 4-10) is 1 µm. The double-SM process has less metallization steps and fewer 

lithography and alignment steps. The multi-SM process has 8 lithography and 5 metallization steps 

while the double-SM has 5 lithography and 2 metallization steps.  

The use of PMGI allows fabrication of tall neck T-shaped anodes as illustrated in Figure 4-10. The 

height of neck is taller than the previously reported results. In most other works this gap is less 

than 300 nm and sometimes partially or completely filled with a dielectric. Our approach reduces 

significantly the parasitic capacitance. Also, series resistance and inductance decrease due to the 

air-bridge cross section area. The proposed fabrication method therefore allows fabrication of 

larger anode areas with the same cut-off frequency. Moreover, by using electron-beam lithography 

to reduce the anode size, these devices could efficiently reach higher cut-off frequencies since the 

PMGI resist that is used for opening the contacts is also sensitive to E-beam. To do so, in the mask 

design the anode opening should be on a separate mask which is design for E-beam lithography. 
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a) 

 

b) 

 
Figure 4-10 SEM images of diodes fabricated with the double-SM method. a) Global view of 
the mesa, Schottky and Ohmic contacts. b) Anode region with the stand-off height indicated. 

 

 

 

 1 µm 
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4.7 Challenges 

4.7.1 Ohmic contact annealing  
One of our challenges was in the ohmic contact process, because the process of annealing the 

Ohmic metal, the contact shape (especially in the corners and curves edges) deformed due to the 

spread of the melted metal. This issue is shown in Figure 4-11 where (a) and (b) are the metallized 

Ohmic contact before and after annealing, respectively. In order to solve this problem, the order 

of evaporated metals were modified from  𝑁𝑖/𝐺𝑒/𝐴𝑢/𝑁𝑖/𝐴𝑢 to 𝐺𝑒/𝐴𝑢/𝑁𝑖/𝐴𝑢.  

 

  
(a) (b) 

Figure 4-11 The ohmic contact annealing issue, The contact metals  𝑁𝑖/𝐺𝑒/𝐴𝑢/𝑁𝑖/𝐴𝑢  are 
thermally evaporated, (a) before annealing (b) after annealing. 

This deformation issue was due to the fact that nickel impose a delay on germanium diffusion into 

GaAs, and this delay makes the top gold layer melt and deform. Therefore, we removed the bottom 

layer nickel from the metal evaporation order that facilitate the diffusion of germanium into the 

GaAs wafer. Removing the bottom nickel also caused more and deeper metal diffusion that provide 

less contact resistance.  Also, the top gold layer thickness was reduced to avoid the deformation. 

The annealed contact after process modification is shown in Figure 4-12. 

 



64 
 

 
Figure 4-12 The modified ohmic contact after annealing. The contact metals  𝐺𝑒/𝐴𝑢/𝑁𝑖/𝐴𝑢  
are thermally evaporated. 

 

4.7.2 Trenches etching 
In the masks design, the distance between the opening border of the trench and ohmic contact is 

designed around 5 µm. This margin enabled us to use wet etching instead of dry etching which 

had been considered at initial process design. Wet etching is easier, faster and more cost effective 

than dry etching of GaAs, because the isotropic nature of GaAs wet etching makes an undercut as 

is shown in Figure 4-13. The 5 µm margin will be partly added to the trench size, depend on the 

trench etching depth. Moreover, in the GaAs dry etch, the resist is bombarded and partially etched. 

Therefore, thicker resist is needed that also depends on the trench depth, imposing very tight 

limitations on the trench depth which are not tolerable. Also, the remaining resist becomes very 

firm, which makes the dry etching less favorable. The high energy plasma ions collision with the 

resist surface makes the resist harder to remove.  
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Figure 4-13 The wet etching process of the trenches. 

 

4.7.3 Planarization challenges  

Resist selection  

In order to develop the planarization process, several resist methods have been tested. First, an 

available planarization resist PC3-1500 was considered to fill the trench and make the surface 

planar, then etch it back and do the lithography at the presence of PC3 to build the bridge over it. 

Then a second resist which should be compatible with PC3 resist underneath was required. The 

problem with the PC3 was that it is washed away during the second resist coating. Several resist 

have tested, including LOR, PMGI, Shipley, Az9242, Az4903, PMMA, Durimide, KMPR, and 

NR4-8000. Thus, the PC3 was dropped and we tried to find another resist to fill up the trenches. 

For that, several resists were tested, including: Durimide and thick-PMMA which did not have 

planarization feature; KMPR which is hard to remove at the end and also cannot be put in plasma 

etcher; NR4-8000 and AZ(9245, 4903) which are also washed away by second layer coating; and 

the AZ series which also do not have the planarization feature. 
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Why PMMA? 

The Polymeric PMMA got our attention because: 

 It is available in a large variety of thicknesses 

 The possibility of having multilayers of this resist without the hard-baking requirement of 

previous layers 

 The possibility of coating other resists over it, without any changes on the underneath 

PMMA.  

 It is not affected by the MF-319 developer that we normally use for developing other 

resists in this process. 

 It has higher temperature tolerance in comparison to the normal resists which may be use 

in the presence of PMMA underneath. 

In the primary test we used a thick layer PMMA. The issue was that the viscose PMMA showed 

tensions by facing the sharp edges of deep patterns. As is shown in Figure 4-14 (a), the high viscose 

PMMA, caused bumps of resist around the sharp edges. Testing the more diluted PMMA showed 

that by reducing the viscosity of the resist, patterns edge tension is reduced. Therefore, we started 

with diluted PMMA which provided a thin layer, and continued coating several layers by 

increasing the viscosity of PMMA gradually as is shown in Figure 4-14 (b). This method solved 

the tension at the edge of deep trenches, and we were able to fill the trenches with PMMA layers. 

Although it wasn’t completely planar, it reduced around 50% of the trench depth. The trenches are 

filled with PMMA when the downhill of the PMMA surface level is higher than the top of mesa 

level.  
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(a) 

 
(b) 

Figure 4-14 Spreading of PMMA over a trench (a) One thick layer that get extreme tension at 
the trench edges, (b) The multi layers start from thin to thicker layers. 

 

Cover resist challenges 

Now the trenches are filled but still we need to make it planar. Therefore, a second resist that has 

more a planarizing feature is required. Since the PMMA is not affected by developer MF319, we 

can do lithography on the top resist while there is PMMA underneath. So, a thick SHIPLEY 

(S1818) is coated over and patterned to cover only the mesa and the trenches area. As is shown in 

Figure 4-15, because the PMMA thickness on the flat area of the sample is thicker than on the 
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motif area (diode area), the SHIPLEY patterning is necessary.  Figure 4-15 shows the surface 

profile of a cross section of a diode mesa in between two trenches measured by a Dektak 

profilometer. Therefore, if the cover SHIPLEY is not patterned, there is some left over PMMA on 

the flat surface at the desired etch stop point. This issue is shown in Figure 4-16. It shows a test 

sample after etch-back, namely that the cover SHIPLEY had not patterned before the etch-back 

process. 

 

 
Figure 4-15 A cross section surface profile of the diode, when the trenches are filled by PMMA. 
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Etch-back process 
The resist dry etch is a combination of two different actions. The first one is due to the chemical 

etching by the oxygen, which happens in all direction, and the second is due to the collision of the 

high energy plasma ions and resist surface which is directional in the plasma direction. The effect 

of these two actions, is more important when the ICP etching system is considered. While 

developing the etch-back process with ICP etcher, we saw that when the plasma energy is high, 

the edges of the patterned resist are hardened by plasma-like walls remaining around the diode. 

Even by over etching the trenches, the resist walls still remain partly as shown in Figure 4-17. This 

issue is solved and the desired result achieved when the chemical etching in the chamber is 

dominant. The chemical etching dominancy, can be achieved by increasing the oxygen percentage 

and pressure in the chamber and at the same time by applying low plasma power and decreasing 

its horizontal directionality by tuning its parameters. 

 
Figure 4-16 Optical microscope image of the test sample that planarized without patterning the 
cover SHIPLEY. The PMMA around the motifs (trenches) is cleaned by Plasma Oxygen 
etching, but there is left over PMMA on the flat areas.   
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Figure 4-17. The stubborn resist walls at the edges of the resist pattern. 

 

 The PMMA etching tests shows that its etching rate by plasma-oxygen is significantly higher than 

the other resists like SHIPLEY that we have tested. By using this feature of PMMA, the 

planarization is completed as is explained in Figure 4-18 and chapter 4 in detail. Figure 4-18 shows 

the surface profile of the diode cross section before filling the trenches (a) when it is ready for 

etching-back (b), during the etch-back, (c) and after completing the etch-back (d). The profiles are 

measured by using a Dektak profilometer. 
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(a) 

 

(b) 
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(c) 

 

(d) 

 
Figure 4-18. The diode cross section surface profile, measured by Dektak profilometer. (a) the 
empty trenches, (b) filled by PMMA, covered by SHPLEY 1818 and patterned (ready for 
etch-back), (c)in the half way of the etch-back process, and (d) after completed etch-back. 
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4.7.4  Air-bridges with T-shape contact  

The UV based T-shape contact method 

In Double-SM, the incorporated UV-lithography based T-shape contact and airbridge processes 

allow us to build all metallic parts in one lift-off process, except the Ohmic contact. For the T-

shape contact a stack of three different resists is required. The bottom resist patterns the contacts, 

the second resist (middle one) provides an undercut gap for the lift-off process, and the top resist 

shapes the bridges. The selected resist for bottom layer, PMGI, is Deep-UV sensitive. Since in our 

lab we have a flood exposure Deep-UV system, a thin SHIPLEY employed as a hard mask to 

pattern the PMGI layer. The hard mask is removed during developing PMGI. Then the middle and 

top resists, PMMA and SHIPLEY respectively, are coated and patterned. The connection pads and 

transmission lines are on both contact and bridges masks to be fabricated in the same metallization 

step.  

Developing the method and Challenges 

First we tested the PMGI as the bottom layer, LOR as the middle layer, and SHIPLEY as the top 

layer. However, the problem was that LOR solvent affects the PMGI. Although the PMGI etching 

rate is much lower, it changes the opening size and thickness of PMGI. Since the bottom layer 

(PMGI) contains the anode opening, we cannot tolerate this change on the anode size and its finger 

stand-off. The SEM image of the sample that we used for this resists combination is shown in 

Figure 4-19. The anode contact size got larger and the stand-off was reduced significantly. 

Therefore, we changed the middle resist to PMMA, which has a different developer that does not 

affect the underneath PMGI. The SEM image of the fabricated diode by using the final process is 

shown in Figure 4-10, showing that the issue is perfectly solved. 
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Figure 4-19. The SEM image of the sample that in the T-shape contact and air-bridge process, 
the LOR resist is used as the middle resist layer to provide the undercut. 

4.8 Flip-chip diode  

In order to use the developed diodes in different circuits, the easiest and best way is the flip-chip 

method. This means fabricating the diodes so that the cut will be to the individual diode. Then we 

can flip-chip the diodes on any circuit. In most circuits that we may consider for these diodes, the 

diode is the most critical part in the fabrication. By this method we don’t need to provide a set of 

high precision expensive masks for each set up and circuit. Also by this method, we can fabricate 

circuits which are normally much larger in comparison to the diode size, on any desired substrate 

without wasting a large area of the expensive epitaxial structure GaAs wafer. 

For that, we redesigned the mask set to include: 

 Proper size contact pads 

 Enough space for the dicing process 

 The backside etching process for thinning the substrate 

 The diodes can be all UV process and be able to substitute the anode opening with an 

E-beam process in order that a smaller anode area is needed 
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 Support for the additional steps for cutting the diodes  

4.9  Conclusion  

In this chapter, first the effect of Schottky layer thickness on the cut-off frequency of a diode, for 

direct detection and mixing applications, is studied and discussed. A submillimeter/THz diode is 

designed and simulated. Then, a novel microfabrication process is proposed and implemented.  

This process, in comparison with other reported researches, is less complicated and therefore is 

more cost effective and reliable. Most importantly, it provides more flexibility in the design and 

significantly decreases the parasitics of the diode. The tall neck T-shaped anode is fabricated by 

photolithography. Apart from the Ohmic contact that needs to be annealed, all other conductors, 

including the Schottky contact, are made by one lift-off step. A key part of the fabrication process 

is the planarization of the trench. We believe that the developed method is more reliable due to its 

high tolerance to process etch back end point. The measured DC and RF characteristics of the 

diode and extracted parameters are presented in chapter 5.  
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5 Characterization and measurement 
With the goal of minimizing the parasitic capacitance, we have presented a new microfabrication 

process that allows more flexibility in choosing the design parameters. Here we present 

measurement results that confirm the new fabrication method’s benefits, and conclude by 

estimating the cut-off frequency of our diodes and various performances indicators. 

The most important parameters in the diode characterization, used to model and describe the diode 

behavior, are as follows; 

• Saturation Current (𝐼𝑠) 

• Ideality factor (η) 

• Barrier height (𝜑𝐵) 

• Series resistance (𝑅𝑠) 

• Junction resistance (𝑅𝑗) 

• Junction capacitance (𝐶𝑗) / Total capacitance (𝐶𝑇) 

These parameters define the diode and are required to calculate the diode cut-off frequency, 

responsivity, and noise equivalent power (NEP). They can also be used to describe diode frequency 

behavior depending on the application. In order to achieve to these parameters, we did some DC 

and RF measurements.  

The design and fabrication process of the diode using an HBT GaAs wafer and with anode radius 

of 1 to 2 μm was presented in previous chapters. The measurement results, setups, characterization 

methods, and parameters extraction methods are described in this chapter. In the fabricated diodes, 

the trenches width (𝑑𝑝𝑝) is 17-20 μm, the anode and cathode distance (b) is 5 μm, and the anode 

finger stand-off (h) is 0.9-1 μm, which are the parameters shown in Figure 3-2. 
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5.1 DC setup, current-voltage (I-V) measurement 

The most important and common characteristic of a diode is the DC current-voltage curve (I-V). 

Several parameters of the diode can be extracted from this curve. For this measurement, our setup 

includes a Keithley 4200 semiconductor characterization system, a four probe station, and the 

diode with two connection pads as is shown in Figure 5-1. The four probe configuration is 

considered as a consequence of subtracting the cable and connector resistance. The measurement 

results are presented in chapter 3.  

 

 
Figure 5-1. Four probe I-V measurement setup. 

 

5.1.1 Saturation current 
The saturation current 𝐼𝑠 of the diode can be extracted directly from the measured I-V curve. It is 

defined as the intersection of the diode current line extrapolation in logarithmic scale, when it is 

in the diffusion current range. The 𝐼𝑠 extraction of the fabricated diode is shown in Figure 5-2. 
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Figure 5-2. The extraction of the saturation current from the measured I-V curve. 

 

5.1.2 Ideality factor 
The diode current, when 𝑉 ≫  𝑉𝑇 and it is far from the linear part of current (𝑉 ≫ 𝐼𝑅𝑠), is due to 

the diffusion process: 

𝐼 = 𝐼𝑠(𝑒𝑥𝑝(𝑞𝑉 ƞ𝑘𝑇⁄ ) − 1) (5-1) 

where 𝐼𝑠 is the saturation current, ƞ is the ideality factor, and 𝑉 is the voltage bias of the diode. So 

the ideality factor is determined by: 

ƞ =
𝑉

𝑉𝑇 l𝑛
𝐼
𝐼𝑠

 (5-2) 
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By using the measured current and Eq. (5-2) we can extract the ideality factor of the fabricated 

diode. The result for the fabricated diode is shown in Figure 5-3. 

 

 
Figure 5-3. The extracted ideality factor from the measured current of the fabricated diode by 
using Eq. (5-2). 

 

5.1.3 Barrier height  
The Barrier height can be obtained by having the diode I-V curve and saturation current since: 

𝐼𝑠 = 𝐴𝑅
∗𝑇2𝑒𝑥𝑝(−𝑞𝜑𝐵𝑁 𝑘𝑇⁄ ) (5-3) 

where A is the anode contact area, 𝑅∗ is the Richardson constant, and 𝜑𝐵𝑁 is the Barrier height. 

Therefore, the barrier height is obtained by: 

𝜑𝐵 = −𝑉𝑇 ln
𝐼𝑠

𝐴𝑅∗𝑇2
 (5-4) 
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The initial amount of the Richardson constant 𝑅∗ can be extracted from literature. The extracted 

saturation current 𝐼𝑠, and ideality factor ƞ from measurement are applied in the  developed 

analytical model in this work to obtain the diode Richardson constant 𝑅∗ and subsequently the 

Barrier height  𝜑𝐵, by fitting the I-V curve of the model with the measured I-V curve. 

5.1.4 Junction resistance  
The diode junction resistance 𝑅𝑗 is defined as:   

𝑅𝑗 =
1

(𝜕𝐼 𝜕𝑉𝑗
⁄ )

 (5-5) 

In Figure 5-4 the extracted junction resistance is shown for one of the fabricated diodes by using 

Eq. (5-5) and the measured I-V curve. As it is apparent in Figure 5-4, the 𝑅𝑗 reduction is limited 

at high current regime due to effect of series resistance increase. 

 
Figure 5-4 The junction resistance 𝑅𝑗 of the fabricated diode extracted from measured I-V curve.  
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5.1.5 Series resistance 
In order to extract the series resistance 𝑅𝑠 two methods are employed.  

I-V curve slope 

In this method, the series resistance 𝑅𝑠 is directly extracted from the measured I-V curve. At the 

high forward bias current, where 𝑅𝑗  gets significantly low and most part of the voltage bias is 

higher than the series resistance, the I-V curve slope can give us the approximate series resistance 

of the diode. Figure 5-5 explains the extraction of series resistance by using the measured I-V 

curve slope for a diode with 2 µm radius anode. 

 

 
Figure 5-5 Measured I-V curve of a 2 µm radius anode diode and the series resistance extraction 
from the slope of the curve at its high current regime which is almost resistive.  
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Current deviation 

In this method, the series resistance 𝑅𝑠 of the diode is obtained by considering its effect on the 

current slope by increasing the bias voltage at forward bias regime. By increasing the bias and 

subsequently the current of the diode the voltage drop on the series resistance increase. It makes a 

deviation on the current curve from the ideal diode and its current is obtained from Eq. (5-1). This 

current deviation from the ideal diode current is shown in Figure 5-2. This deviation obtains by 

finding the voltage difference (∆𝑉) for each current value (𝐼𝑚=𝐼𝑖). The dropped voltage (∆𝑉) is 

due to the series resistance as shown in Figure 5-6.  

For (𝐼𝑚 = 𝐼𝑖): 𝑙𝑜𝑔 𝐼𝑖 = 𝑎𝑉𝑖 + 𝑏 = 𝑙𝑜𝑔 𝐼𝑚  →  𝑉𝑖 =
𝑙𝑜𝑔 𝐼𝑚−𝑏

𝑎
 

∆𝑉 = 𝑉𝑚 − 𝑉𝑖 = 𝑉𝑚 −
log 𝐼𝑚 − 𝑏

𝑎
 

(5-6) 

  

 
Figure 5-6 The current deviation method for extraction of the diode series resistance 𝑅𝑠. 

 

Figure 5-6 explains the extraction method of series resistance by using the high forward bias 

current-deviation from the ideal current line of the diode. The result for a 2 µm radius anode diode 

is presented in Figure 5-7. The series resistance of the diode with 2 µm radius anode is 30 Ω by 
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using the measured I-V and deviation-current method. This method is more accurate than the 

previous method, which is the I-V curve slope. 

 

 
Figure 5-7 The diagram of voltage delta ∆𝑉 as function of measured current for the 
fabricated diode with 2 µm radius anode. 

 

5.1.6 DC Measurement results 
The fabricated diodes have 𝑑𝑝𝑝 of 17-20 μm, b of 5 μm and h of 0.9 μm (parameters are shown in 

Figure 3-2 (b)). The most important and common characteristic of a diode is its DC current-voltage 

(I-V) curve. Several parameters of the diode can be extracted from this measurement. In Figure 5-8 

the simulated and measured I-V curves of a 2 µm anode radius diode are compared.  Some of the 

parameters derived from current-voltage measurement are shown in Table 1. It is worth to note 

that, the barrier height for Ti and GaAs Schottky contacts are reported around 0.82-0.83 eV [86], 

[87] and for the realized GaAs diodes, with different metal configuration contacts, between 0.5-1 

eV [25], [30], [72], [88].  Table 2 compares other parameters of the presented diode with some 

other reported diodes. 
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Figure 5-8. Measured and simulated I-V curve of 2 µm radius circular anode diodes. 

 

The lumped element values of the diode equivalent circuit (Figure 3-2 (a)), as a function of the 

voltage bias for the 1 μm anode radius diodes are presented in Figure 5-9. Due to the 

Mott-operation mode of diode, below 0.4 V bias, the series resistance 𝑅𝑠 is constant. The junction 

resistance 𝑅𝑗 simulation and measurement results are compared in Figure 5-9. 
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Figure 5-9. Equivalent circuit model components for 1µm anode radius diode. The junction and 
series resistance, 𝑅𝑗 and 𝑅𝑠, simulated and measured results. The measured 𝑅𝑠 at 0.9 V bias is ~48 
Ω as it is marked by red cross sign.   

 

Saturation current (Is) 9×10-16 A 

Barrier height (φB) 0.817 eV 

Ideality factor (η) 1.13 

Series resistance (Rs)-close to 10 mA 30 Ω 

 

Table 2-1. Fabricated diode parameters (with 2 µm anode radius) extracted from I-V measurement. 

 

5.2 TLM method 

The TLM method is a well-known method for characterizing the Ohmic-contact. It is based on 

measurement of the resistance between two Ohmic-contact pads, which is repeated for pads with 

different distance. The structure that is used in this work is shown in Figure 5-10.  
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Figure 5-10 The TLM structure that is used in this work. 

 

The 4-probe method is employed for this measurement to exclude the probes and cables resistance. 

The measured resistances are plotted in Figure 5-11. The Ohmic contact resistance 𝑅𝑐, the n-well 

doped layer sheet resistance 𝑅𝑠ℎ𝑒𝑒𝑡, and the transfer length 𝐿𝑇 can be obtained from this plot. The 

specific contact resistance 𝜌𝑐 is obtained from the contact resistance 𝑅𝑐: 

𝑅𝑐 =
𝜌𝑐
𝐴𝑐

 (5-7) 

where 𝐴𝑐 is the contact area. The planar structure that is used in this work the current distribution 

is not homogenous on the contact area as it is in vertical structure. This difference of the current 

distribution between planar structure and vertical structure is shown in Figure 5-12. 
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Figure 5-11 Schematic of the TLM measurement results plotting and explanation of parameters 
extraction from the plot. 

 

The non-uniform current flow into the contact, as is shown in Figure 5-12 (b), causes an effective 

contact length from the edge of the contact that is called transfer length 𝐿𝑇. So, the contact effective 

area and subsequently the Ohmic contact resistivity 𝜌𝑐 is: 

𝐴𝑒𝑓𝑓 = 𝐿𝑇 ×𝑊 ⟹ 𝜌𝑐 = 𝑅𝑐 × 𝐴𝑒𝑓𝑓 (5-8) 

  
(a) (b) 

Figure 5-12 The side view of current flow between an ohmic contact and (a) a backside contact, 
(b) another contact in planar structure. 
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The TLM method results show that the Ohmic contact optimization, which is presented in chapter 

4, can reduce the Ohmic contact resistivity 𝜌𝑐 from 3.5 × 10−6 Ω. cm2 to 1 × 10−6 Ω. cm2. The 

channel sheet resistance 𝑅𝑠ℎ𝑒𝑒𝑡 is obtained 16.3 Ω/𝑚2. These parameters are used in the analytical 

model simulation. 

5.3 RF measurements 

The device characterization is completed with its frequency behavior characterization. 

5.3.1 S-parameters measurement 
The S-parameters measurement of the diode is very important in characterizing the device. The S-

parameter measurement shows the device frequency behavior, and we can also extract the diode 

capacitance from the results. The S-parameters and impedance of the device are required in order 

to use it in a circuit. 

The measurement setup includes a Vector Network Analyzer (Anritsu-VNA37369C) 0-40 GHz, a 

probe station with two GSG probes, and onboard CPW transmission line that leads the signal from 

probes to the diode. The measurement setup is illustrated in Figure 5-13. The onboard CPW with 

the diode is shown in Figure 4-3(b) for two probe measurement and Figure 4-3(c) for the one probe 

measurement.  
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Figure 5-13 RF measurement setup. 

 

 
Figure 5-14 The equivalent circuit of the diode + CPW lines that is simulated by ADS to fit the 
S-parameters with the measurement result and extract the diode capacitance. 
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5.3.2 RF Measurement results 
The fabricated diode has been measured using a CPW transmission line where the diode is placed 

in series in the middle of the line. The measurement results are then compared to the Advanced 

Design System (ADS) simulations of the equivalent circuit model as shown in Figure 5-15. The 

components values of the equivalent circuit model, shown in Figure 3-2 (a) are tuned to fit the 

measurement results. 

 

Figure 5-15. The measured S21 parameter for a 1 µm anode radius diode and the fitted ADS model. 
The diode is in series between the two VNA ports. 

 

The zero bias total capacitance for diodes with different anode areas are extracted from the 

measured S-parameters. The result is summarized in Figure 5-16 which shows the total capacitance 

of diode at zero bias as function of the anode radius (𝑟𝑎). One can observe that, the measured total 

capacitance of the diode, at zero bias and for 1 µm anode radius is 3.3 fF. 
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Figure 5-16. The measured and simulated total capacitance 𝐶𝑇 at zero bias for the diodes with 
anode radius between 0.8 to 2 µm. 

 

The measured S21 parameters of the 1.25 µm anode diode for different forward bias voltages are 

plotted in Figure 5-17. It can be observed that the S21 parameter is a function of the voltage bias. 

This is due to the dependency of the junction capacitance and resistance to this voltage. At very 

low frequencies, because the impedance of 𝐶𝑇 is comparable to 𝑅𝑗, the S21 parameter is strongly 

dependent on the changes of 𝑅𝑗. At the higher frequency, the 𝑅𝑗 power ratio is reduced (Figure 3-4) 

and therefore the S21 becomes mostly dependent on 𝐶𝑇, especially at the diode off-state when the 

𝑅𝑗 is very large. Figure 5-18 shows the extracted total capacitances from S-parameter 

measurements when the diode is biased from 0 to 1 V. The results are compared with simulations 

for diodes with 1, 1.25, 1.5 and 2 µm anode radiuses. 
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Figure 5-17. The measured S21 parameter of the 1.25 µm radius diode at various voltage biases. 
The diode is in series between the two VNA ports. 

 

Figure 5-9 to Figure 5-18 are demonstrating the extracted diode parameters and equivalent circuit 

components using both measurements and simulations. The presented results are also confirming 

the success of the design and fabrication method which significantly reduced the diode’s parasitic 

capacitance. This will considerably enhance the diode’s practical cut-off frequency. The parasitic 

capacitance 𝐶𝑝 for this diode is only 0.6 to 1.1 𝑓𝐹 depending on the anode dimension, which is 

significantly smaller than the other reported diodes. 
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(a) 

(b) 
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Figure 5-18. Total capacitance 𝐶𝑇 that was extracted from measured S-parameters of the biased 
diodes from 0 V to 1 V and with (a) 1 µm, (b) 1.25 µm, (c) 1.5 µm and (d) 2 µm anode radius, is 
compared with the simulation results. 

 

(c) 

(d) 
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Table 2 is comparing the parameters of the proposed and recently reported diodes. This table shows 

significant progress in reducing the parasitic capacitance (𝐶𝑝). However, the proposed diode has 

not been designed and optimized for minimum series resistance due to the epitaxy structure that is 

used in this project. The structure was selected due to its availability and it is not designed for 

application as is explained in chapter 4. 

Therefore, using the reported design method, it is shown that the need for very small contacts can 

be mitigated, and for frequencies below 1.5 THz, the expensive electron-beam lithography step 

can be avoided. Moreover, very small contacts make more fragile devices and reduces their 

mechanical stability. Using the available GaAs hetero-structure, diodes with various anode 

diameters with optimized geometry are fabricated. The measured total capacitance 𝐶𝑇 for a 1 µm 

anode radius diode is shown to be 3.9 fF that includes only 0.6 fF of parasitic capacitance. This 

diode can be used for up to 1.4 THz in mixer mode. 

It is worth to mention that in submillimeter and THz diode researches, it is common to characterize 

the diode at lower frequencies such as [55], [57], [71]. The 1.4 THz cut-off is obtained from the 

measured parameters of the diode. In most reported diodes, junction capacitance without taking 

into account the parasitic capacitance has been considered in cut-off frequency calculation. 

However, as it is mentioned before, here the total capacitance of diode, including the parasitic 

capacitance, is considered in calculation of cut-off frequency. Also in this calculation the extended 

method presented in this work which is more accurate have used. It is a conventional method to 

introduce a diode individually based on this cut-off frequency as it is used in [48], [50], [89]. 
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Ref.-year 
𝐀 𝐧 𝐨 𝐝 𝐞  
𝐚 𝐫 𝐞 𝐚  
μ𝐦𝟐 

𝐈𝐬 (𝐀) 𝛈 𝐑𝐬 (Ω) 𝐂𝐣𝟎 (𝐟𝐅) 𝐂𝐩 (𝐟𝐅) 𝐟𝐂𝐣𝟎 

(𝐓𝐇𝐳)

(∗)

 𝐟𝐂𝐓𝟎 
(𝐓𝐇𝐳)

(∗∗)

 
𝐟

  (𝐓𝐇𝐳)

(∗∗∗)

 
𝐍𝐄𝐏 

(𝐩𝐖/√𝐇𝐳) 

[50]-2015 4.5 4 × 10−13 1.28 4.5 7 4 5 3.2 - - 

[33]-2013 10 - - 8 10 5 2 1.3 - - 

[82]-2013 0.95 0.98 × 10−15 1.18 13.67 1.42 - 8 - 0.26-0.4 60 

[89]-2012 - 1.75 × 10−14 1.21 4 5.8 9.5 6.8 2.6 0.22 - 

[83]-2011 2 1.6 × 10−12 1.47 16 5 - 2 - 0.22 - 

[90]-2011 0.4 × 1.4 - - 35 1.5 - 3 - 0.3 - 

[91]-2009 - 11 × 10−6 1.13 19 - - - - 0.2 20 

This work 3.1 9 × 10−16 1.13 26 3.3 0.6 1.85 1.5 0.6 3.7 

(∗) First approach of cut-off frequency calculation, at zero bias and without considering parasitic capacitance. 
(∗∗) Cut-off frequency at zero bias with considering parasitic capacitance. 
(∗∗∗) The frequency that the diode is used and/or the NEP is reported in this frequency. 

 

Table 2.  Parameters of THz diodes presented in the recent literature compared to the diode proposed in this work. [33], [50], [82], [83], 
[89]–[91] 
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5.4 Mixer anti-parallel diodes 

Another configuration we designed has back-to-back diodes as is shown in Figure 5-19. This 

configuration is a good choice for multiplication application. The back-to-back structure needs to 

be at zero bias since it is a symmetric configuration as is shown in Figure 5-19, and applying a DC 

bias take one of the diodes out-range. The fabricated diode, in this work, is in the Mott-operation 

below +0.4 V bias, due to the Schottky layer specifications, doping level and thickness. The 

junction capacitance 𝐶𝑗 is constant when the diode is in the Mott-operation, as is discussed in 

chapter 3. Therefore, part of the signal power consumed to raise the diode to 0.4 V has no 

multiplication output. Thus, the signal power part that is applied to the diode after 0.4 V merely 

provides other harmonics. The measurement result for the back-to-back diodes with 2 µm radius 

anodes and Figure 5-19 setup is shown in Figure 5-20. The input signal is 6 GHz with +14dBm 

power. The output as is shown in Figure 5-20 includes harmonics of the input signal.  

 

 
Figure 5-19 The back-to-back diodes structure with the connection onboard transmission line 
and measurement setup. 
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Figure 5-20 The back-to-back diodes multiplication measurement result for 6 GHz input signal 
with +14 dBm power. 
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6 Conclusion and future works 
6.1 Conclusion 

In this work, we redesigned the GaAs planar Schottky diode for mm Waves and THz applications. 

The objective was to maximize the performance of the diode by reducing the parasitic elements of 

the diode. To do so, an optimization methodology is proposed. The optimization is applied by 

using a code which is developed, based on the analytical formulation, for design and simulation of 

the diode. The simulation results are presented and discussed. Accordingly, for realization of the 

optimized diode, a reliable, repeatable and cost effective fabrication process is developed. The 

process includes fabrication of T-shaped contact and air-bridges over the deep trenches. The T-

shaped anode process provides larger stand-off in comparison to other works and its values are 

controllable, according to the design. The air-bridge is built as the same time as the T-shaped anode 

when the trenches are planarized. In the design process, application of the diode is also taken into 

account. By using this strategy the diode can be designed either specifically for direct detection, 

mixing/multiplication, or even as a multipurpose diode that can be used for different applications 

by adjusting its voltage bias. The diode behavior is also classified by considering the application. 

The result is presented for diodes operating between 0.1-1.5 THz by using the available HBT GaAs 

wafer used for fabrication of the diodes. The main contributions of this work are the following: 

 A design method is reported that is based on analytical model by taking into account the 

device application. For the first time, the Schottky diode engineering is studied by 

considering its application.  

 Comparison is made between the existing approaches for calculating the diode cut-off 

frequency and a new approach proposed in this work. The new approach is based on 

considering all diode-equivalent circuit elements and also the application of the diode. The 

result for the fabricated diode in this work are shown. 

 A unique, reliable, low-cost and flexible fabrication process for the diode that can be a 

good candidate for high volume production is developed and presented here. 

 The fabrication process includes air bridges over the deep trenches, T-shaped contact, and 

a new adaptive planarization method. The T-shaped contact process is developed based on 
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all photolithography for anode contacts larger than 2 µm2. Also, for anodes smaller than 2 

µm2, the process merely substitutes one photolithography step with an electron-beam 

lithography and without any other change.  

 The total capacitance of the diode is significantly reduced in comparison to reported diodes 

with the same anode area size. The measurement results prove the design successful for 

reducing the parasitic elements of the diode and improving diode performance.  

6.2 Future work 

We have some suggestion for next steps in pursuing this work as follows: 

 Developing a backside process (back side of the sample) in order to thin the diode 

substrate. The thick bulk GaAs substrate at mm-Waves and higher frequencies increases 

the parasitic elements of diode.  

 Using the epitaxial structure that supports optimized design performance. The epitaxial 

structure that is used in this work was the available HBT GaAs which is not designed and 

optimized for this diode structure, as is explained in chapter 3 and 4. Although we had 

very good results, the diode performance can be improved significantly, especially for 

series resistance, by using an epitaxy structure that is designed for this application. Also, 

repeatability of the fabrication process and its precision will greatly increase. Since the 

current HBT structure requires a wet etch process to reduce the n-doped layer thickness 

that have used as Schottky layer, some uncertainty is added to the process results since the 

wet etch process is not accurate enough for the Schottky layer thickness that has large 

impact on the diode performance. The Schottky layer doping can be optimized as is 

explained in chapter 4. On the other hand, the n-well doped (ohmic-contact) layer in our 

HBT structure was very thin, and its doping level is better higher. By optimizing the n-

well doped layer we can reduce the parasitic series resistance significantly. 

 In order to increase the device cut-off frequency, fabrication of diodes by using the 

developed E-beam substituted step for anode opening as is mentioned in chapter 4, is 

suggested.  

 In order to make characterization of the diode more precise, measurement at higher 

frequency (over 100 GHz) is required. For this high frequency measurement, monolithic 
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waveguides fabrication and the network analyzer (VNA) or extension heads for that 

frequency range is required. 

 The next important step is using the developed diode in a circuit. That can be achieved by 

two different methods: 

o First, a monolithic circuit that the circuit is fabricated on in the same substrate 

(GaAs) as the diode is. That would necessitate a new mask set to support the 

required space for the designed circuit around the diode for fabricating the circuit. 

o The second method is using the flip-chip diode as explained in chapter 4. In this 

method we can use the diced individual diode or the back-to-back mixers in the 

any arbitrary circuit on any substrate.   

 In order to commercialize the diode, developing a packaging process is required.  
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7 Conclusion (en français) 
Dans ce travail, nous avons revu en profondeur la conception de la diode Schottky planaire sur un 

substrat GaAs pour des applications en ondes millimétriques et térahertz. L'objectif était de 

maximiser les performances de la diode en réduisant les ses éléments parasites. Pour ce faire, une 

méthodologie d'optimisation est proposée. L'optimisation est appliquée en utilisant un programme 

qui a été développé, sur la base de la formulation analytique, pour la conception et la simulation 

de la diode. Les résultats de la simulation sont présentés et une discussion a été présentée. Pour 

réaliser la diode dont la conception a été optimisée, un procédé de fabrication fiable, reproductible 

et à coûts faibles est développé. Le procédé comprend la fabrication de d’une anode en forme de 

T et de ponts à air jetés sur des tranchées profondes. Le procédé pour développer une anode en 

forme de T offre une plus grande résistance à la rupture par rapport à d'autres travaux et ses valeurs 

sont contrôlables, selon la conception. Le pont à air est construit en même temps que l'anode une 

fois les tranchées planarisées. Le processus de conception proposé tient compte de l'application de 

la diode dès le début de la conception. En utilisant cette stratégie, la diode peut être conçue 

spécifiquement pour l’application souhaitée, c’est à dire soit une détection directe soit une fonction 

de mélange, soit une fonction multiplicatrice, ou même soit dans un objectif de multifonction, les 

fonctions étant alors sélectionnées par la polarisation de la diode pour la rendre la plus efficace 

possible. Le comportement de la diode et plus particulièrement sa fréquence de coupure, peut 

également être classé en considérant l'application. Tous les résultats présentés dans cette thèse le 

sont pour des diodes fonctionnant entre 0,1 et 1,5 THz en utilisant une épitaxie GaAs HBT 

disponible au laboratoire utilisée pour la fabrication des diodes.  

 

Les principales contributions de ce travail sont les suivantes: 

• une méthode de conception basée sur un modèle analytique et tenant compte de l'application 

souhaitée. À notre connaissance, c’est la première fois que l'ingénierie des diodes Schottky est 

étudiée en considérant en premier l’application à laquelle eslle est dédiée. 

• une comparaison entre les approches existantes pour le calcul de la fréquence de coupure des 

diodes est présentée et une nouvelle approche pour ce calcul est proposée. Cette nouvelle approche 
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se base d’une part sur tous les éléments du circuit équivalent de la diode ainsi que sur l'application 

visée.  

• un nouveau procédé de fabrication unique, fiable, peu coûteux et flexible pour les diodes 

permettant d’envisager une production à grand volume élevé. 

• une extension possible de ce procédé pour des diodes à fréquences encore plus élevée. 

Effectivement le processus de fabrication comprend des ponts à airs sur des tranchées profondes, 

un contact en forme de T et une nouvelle méthode de planarisation adaptative. Le contact en forme 

de T est développé à l’aide de photolithographies optiques permettant une taille minimale 2 μm2.  

Ainsi, si l’on veut monter en fréquence, seule l’étape de fabrication de l’anode (inférieure à 2 μm2) 

doit être substituée par une lithographie par faisceau d’électrons. 

• une réduction significative de la capacité totale de la diode en comparaison avec les diodes 

rapportées dans la littérature pour une dimension d'anode équivalente. Les résultats de mesure 

prouvent que la conception et le procédé de fabrication proposé permettent de réduire les éléments 

parasites et donc l’améliorer de la performance des diodes. 
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Appendix A 
Metal-semiconductor contacts  

The metal-semiconductor (M-S) contacts providing access from semiconductors to the rest of the 

circuit. They are dividing into two categories a) rectifying contact and b) non-rectifying (Ohmic) 

contact. The energy bands for the metal and the semiconductor (n-type) before having contact are 

shown in Figure A-0-1 (a). The difference of metal and semiconductor work functions affects the 

thermal equilibrium energy band and cause the potential barrier at the contact interface [92]. Figure 

A-0-1 (b) is shown the metal-semiconductor junction in the thermal equilibrium situation.  

 

 
Figure A-0-1 Metal and n-type semiconductor energy band diagrams, (a) before instance of 
contact, and (b) after contact is built, at thermal equilibrium. 
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In Figure A-0-1: 

𝐸𝐹𝑀 : Metal Fermi level 

𝐸𝐹𝑆 :  Semiconductor Fermi level 

𝐸𝐶 :  Semiconductor conduction band edge 

Ф𝑀 : Work-function of metal in vacuum 

Ф𝑆 : Work-function of semiconductor in vacuum 

𝜒 : Electron affinity 

𝑣0 : Equilibrium contact potential  

q : Electron charge 

 

The electron affinity energy (𝜒) of a semiconductor is difference of energy between the vacuum 

energy to the conduction band edge. It is the material fundamental property and not a function of 

the semiconductor doping. However, the semiconductor work function Ф𝑠 depends on the doping 

level, since the fermi level 𝐸𝐹𝑆 is a function of doping type and concentration.  

In the connection interface of the metal and semiconductor, there is a barrier for an electron in the 

metal, with energy equal to 𝐸𝐹𝑀, to flow toward the semiconductor. Height of this barrier is equal 

to the difference between Ф𝑀 and 𝜒.  

The contact potential (𝑣0) control the amount of passing net electron from the semiconductor to 

the metal. This potential equals to difference of the metal and semiconductor work-functions.  

 

 

Ф𝐵 = Ф𝑀 − 𝜒 (A-1) 

𝑣0 = Ф𝑀 −Ф𝑆 (A-2) 
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The metal-semiconductor contacts are classified into 4 types as explained in Figure A-0-2: 

1. Rectifying contact of n-type semiconductor with metal (Ф𝑚 > Ф𝑠) 

The Schottky diodes are mainly are in this category. 

 

2. Rectifying contact of p-type semiconductor with metal (Ф𝑚 < Ф𝑠) 

 

3. Ohmic contact of n-type semiconductor with metal (Ф𝑚 < Ф𝑠) 

It is used for interconnecting the n-type semiconductors 

 

4. Ohmic contact of p-type semiconductor with metal (Ф𝑚 > Ф𝑠) 

It is used for interconnecting the p-type semiconductors 
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Figure A-0-2 Metal-Semiconductor contact types energy band diagrams. Rectifying contacts: 
(a)Ф𝑚 > Ф𝑠 for an n-type semiconductor (a1) before joining (a2) the junction equilibrium 
energy diagram, (b)Ф𝑚 < Ф𝑠 for an p-type semiconductor (b1) before joining (b2) the junction 
equilibrium energy diagram. Ohmic contact: (c) Ф𝑚 < Ф𝑠 for an n-type semiconductor (c1) 
before joining (c2) the junction equilibrium energy diagram, (d) Ф𝑚 > Ф𝑠 for an p-type 
semiconductor (d1) before joining (d2) the junction equilibrium energy diagram [93]. 
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In the diode structure two metal-semiconductor contacts are exist, one is rectifying contact and the 

other one is an ohmic contact as interconnection of the diode into the circuit. 

Schottky contact – rectifying contact 
The metal-semiconductor contact with nonlinear current is called Schottky or rectifying contact, 

due to its current flow directional properties. It means this contact has much higher current flow 

in one direction than the other one. In this contact depletion layer is formed just in semiconductor 

side, the thickness of this depletion layer (W) is shown in Figure A-0-1. The current nonlinearity 

of this contact is similar to p-n junction: 

where 𝐼0 is reverse saturation current. 

Figure A-0-1 (b) is shown the ideal Schottky contact with n-type semiconductor. Figure A-0-3 is 

shown the real contact energy band diagram when the applied voltage across the junction is either 

zero (V=0), forward bias (V>0), or backward bias (V<0). The barrier height difference from its 

ideal value, Ф𝐵 is ∆Ф as is shown in Figure A-0-3, which is given by: 

where 𝜉𝑚 is the maximum value of electric field at the junction interface. 

𝐼 = 𝐼0(𝑒
𝑞𝑉 𝑘𝑇⁄ − 1) (A-3) 

𝛥Ф = √
𝑞𝜉𝑚
4𝜋𝜀𝑠

 (A-4) 

𝜉𝑚 = √
2𝑞𝑁𝐷|𝜓𝑠|

𝜀𝑠
 (A-5) 

|𝜓𝑠| = Ф𝐵 −Ф𝑛 + 𝑉𝑅 (A-6) 
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where 𝑁𝐷 is the semiconductor doping concentration, 𝑉𝑅 is the contact reverse bias voltage, and 

Ф𝑛 is energy difference between contact fermi level and the semiconductor conductive bang 

energy level as is shown in Figure A-0-1. 

 

 
Figure A-0-3 Energy diagram of the practical Schottky diode in forward, zero and reverse biases. 
qΔФ is the Schottky effect reduction of barrier height due to the thermal equilibrium. 

 

The thickness of depletion region, W and the energy band diagram of the contact as a function of 

voltage bias is shown in Figure A-0-4. 

 

 
Figure A-0-4 The Schottky contact energy diagram in forward, zero and reverse biases.   
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Ohmic contact – non-rectifying contact 
The Ohmic contact is normally built by thermal annealing the M-S contact with heavily doped 

semiconductor. The contact annealing cause metal diffusion into the semiconductor at the contact 

area. The Ohmic contact have linear I-V characteristic and it does not have depletion layer in 

contact interference. In this type of metal-semiconductor contact the majority carriers are flowing 

from metal into the semiconductor.  
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