1	Relationships Between Physical Activity Across Lifetime and Health Outcomes in Older
2	Adults: Results from the NuAge Study.
3	Katherine Boisvert-Vigneault, MSc ^{1,2} , Hélène Payette, PhD ^{2,3} , Mélisa Audet, MSc ^{1,2} , Mathieu
4	Bélanger, PhD ^{4,5,6} , Isabelle J. Dionne, PhD ^{1,2} .
5	¹ Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
6	² Research Centre on Aging, CIUSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
7	³ Faculty of Medicine & Health Sciences, University of Sherbrooke, Sherbrooke, Quebec,
8	Canada
9	⁴ Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
10	⁵ Centre de formation médicale du Nouveau-Brunswick, Moncton, New Brunswick, Canada.
11	⁶ Office of research services, Vitalité Health Network, Moncton, New Brunswick, Canada.
12	Corresponding Author:
13	Isabelle J. Dionne, Centre de recherche sur le vieillissement CIUSS de l'Estrie-CHUS, 1036
14	Belvédère sud Sherbrooke QC. CAN. J1H 4C4, Phone: (819)780-2220*45671, Fax: (819)829-
15	7141, Isabelle.Dionne@USherbrooke.ca
16	Alternate Corresponding Author:
17	Katherine Boisvert-Vigneault, Centre de recherche sur le vieillissement CIUSS de l'Estrie-
18	CHUS, 1036 Belvédère sud Sherbrooke QC. CAN. J1H 4C4, Phone: (819)780-2220*45370,
19	Fax: (819)829-7141, Katherine.Boisvert-Vigneault@USherbrooke.ca
20	Funding Sources:
21	This work was supported by the Canadian Institutes of Health Research (MOP-62842); and the
22	Quebec Network for Research on Aging.
23	Running Head:

24 Lifetime PA and health at older age.

25 <u>ABSTRACT</u>

OBJECTIVES: This study aims to (1) describe participation in four physical activity (PA)

domains across life and (2) examine the influence of PA during adolescence, early, mid-life, and

28 later adulthood on health variables at older age.

29 **DESIGN:** Retrospective, observational, population-based cohort.

30 SETTING: Longitudinal study Nutrition as a Determinant of Successful Aging study

PARTICIPANTS: 1 378 healthy older adults (667 men; 711 women; aged 67-84 yrs at

32 baseline)

33 **MEASUREMENTS:** Using a modified version of the interviewer-administered Lifetime Total

34 Physical Activity Questionnaire (LTPAQ) and life events calendar to facilitate the recall,

35 participants reported the frequency, duration, and intensity of occupational (OPA), commuting

36 (CPA), household (HPA), and leisure time (LTPA) they participated in at the ages of 15, 25, 45,

and 65 years and at the first follow-up (aged 68-85 yrs at follow-up). Fat mass, lean body mass,

body mass index, waist to hip ratio, fasting glucose, systolic and diastolic blood pressures, self-

39 reported chronic diseases, and socio-demographic were assessed at baseline.

40 **RESULTS:** Changes in PA differed across sex and PA domain. However, there was a general

41 decline in all PA domains among both sexes after the age of 65. In multiple regression analyses,

42 current LTPA was systematically associated with more favorable waist to hip ratio and fat mass

43 in both sexes, whereas CPA, OPA, and HPA across life were not consistently associated with

44 health variables.

45 CONCLUSION: PA domains during adolescence, early adulthood, and mid-life were not
46 directly related to health variables at older age, while current LTPA was, suggesting it is never
47 too late to start.

48 Key words: Leisure-time, Physical activity history, Body composition, Aging.

50 **INTRODUCTION**

51 Reducing the burden of cardiometabolic risk factors is a major public health challenge. Regular

52 physical activity (PA) has been shown highly effective to treat and prevent cardiometabolic

disease (1). Despite public health efforts to promote PA, only 15% of Canadian adults (2) reach

the weekly recommended minimum of 150 minutes of moderate-to-vigorous PA (3).

55 Although signs of cardiometabolic diseases generally manifest later in life, it is now understood

they can start developing during childhood (4), strengthening the importance of early adoption

57 and maintenance of physically active lifestyle. Nevertheless, PA declines throughout

adolescence, into adulthood, and during the transition toward older age (2,5). While leisure time

59 physical activity (LTPA) patterns over time have been well described (6–8), a very limited

60 number of studies has examined variations in other PA domains, such as commuting (CPA),

61 occupational (OPA), and household (HPA) (9) and this after the age of retirement (10). Given

62 determinants of PA are domain-specific (11) and susceptible to change over the life course (12),

63 decline in PA could take place at different critical periods for each domains. A more

64 comprehensive understanding of age- and domain-related changes in PA may help identify

strategies to tailor interventions to promote the maintenance of PA throughout life.

66 To our knowledge, there are no studies examining associations between domain-specific PA at

67 various ages and health outcomes in older adults. Since little is known about the long-term

68 effects of earlier PA on later health status, more studies are needed to improve primary

69 prevention strategies. Finally, the importance of addressing all domains, and not only LTPA, has

⁷⁰ been highlighted, as each domain may have different effects on health (13).

- 71 This study aims to (1) describe participation in four PA domains (LTPA, HPA, OPA, CPA)
- across life and (2) examine the influence of PA during adolescence, early, mid-life, and later
- 73 adulthood on health status at older age.

74 <u>METHODS</u>

75 **Participants**

76 Nutrition as a Determinant of Successful Aging (NuAge) is a 5-year observational study of 1 793

community-dwelling men and women recruited in three age groups (70y; 75y; 80y) from a

random sample of the Quebec Health Insurance database (RAMQ). Participants were in

apparently good health and were functionally independent at recruitment in 2003, as previously

80 published (14).

81 Participants were annually tested for biopsychosocial measurements by trained staff using

computer-assisted personal interview methodology (William^{MD}, ©Multispectra, 1997-2004)

83 following standardized procedures. All participants signed an informed consent form approved

by the Institutional Review Boards at the Institut universitaire de gériatrie de Sherbrooke and
Montréal.

For the purpose of this secondary study, data from 711 women and 667 men who completed the

87 Lifetime Total physical Activity Questionnaire (LTPAQ) were used.

88 Assessment of Physical Activity

B9 Daily PA levels at the ages of 15, 25, 45, and 65 years and at the first follow-up of the NuAge

study (75.2 ± 4.2 years; range from 68-85 yrs) was obtained through a modified version of the

91 LTPAQ, administered once during the regular clinical examination of the first follow-up. The 8-

92 week test-retest correlations have been reported for lifetime PA (0.74), OPA (0.87), HPA (0.77),

and LTPA-CPA (0.72) (15). A recall lifetime calendar focusing on major life events was used as

a memory aid.

95 For each domains (LTPA, HPA, OPA, CPA) and targeted ages, the LTPAQ assessed nature,

average time/week, duration, and frequency (52, 26, or 0 weeks) of the reported activity.

97 Examples for each domain were provided to participants. As regards OPA, the three main jobs were taken into account, and for each job, a maximum of two activities could be reported at each 98 age. When two activities were reported for one job, the main activity was estimated to account 99 100 for 75% of PA level related to this job, and the second, for 25%. As regards LTPA, six activities most frequently performed at each age were taken into account. Intensities of LTPA and OPA, 101 expressed in MET, were obtained from the Compendium of Physical Activities (16). HPA were 102 fixed at 5 METs and CPA (walking, running, biking) were respectively fixed at 4, 15, and 9 103 METs (16). 104

105 Average number of hours/week spent in each activity domain at each age (i) was calculated as follows: $\sum Frequency_i \times Duration_i]/52$, where *frequency* is the yearly average number of 106 weeks for this activity and *duration* its weekly average duration in hours. We then estimated the 107 average domain-specific PA volume in MET-hours/week, by multiplying the average number of 108 hours/week by the relevant MET value. PA volumes were standardized to a 16-hour waking day 109 to account for differences in reported active time. As such, participants reporting less than 16 110 hours of total PA per day were assigned a non-active behaviour score that is for every hours with 111 no information, we added 1.5 METs, corresponding to sedentary behaviours (17). All domain-112 113 specific volumes were summed into a 16-hour standardized score for each age period representing a whole year. 114

115 Sociodemographic and Clinical Variables

Sociodemographic information, household income, and lifestyle habits were evaluated at
baseline using a validated questionnaire developed from previously published questionnaires
(18).

119	Blood pressure and blood sample were obtained in the morning after a 12-hour fasting period.
120	Systolic and diastolic blood pressures were measured using an automatic Dinamap monitor
121	(Critikon, Johnson & Johnson, Tampa, FL). Participants had to be at rest for the previous five
122	minutes and not talking during the two measurements. Plasma glucose was analysed by the
123	clinical laboratory of the Sherbrooke University Hospital Center (Quebec, Canada).
124	Body weight and standing height were measured with participant wearing only light clothes (19).
125	Body mass index (BMI) was calculated [body weight (kg) / height ² (m)]. Waist and hip
126	circumferences were measured at the narrowest circumference of the trunk and the greater
127	trochanter, respectively.
128	Total fat mass (FM) and lean body mass were measured using DXA (Lunar Prodigy; GE
129	Medicals, Madison, WI) in a subset of participants living in Sherbrooke (367 men, 362 women).
130	Coefficients of variation for repeated measures (1 week apart) of FM and lean body mass in 10
131	adults are 5.7% and 1.1%, respectively.
132	Burden of disease was measured by assessing reported chronic conditions, using the OARS
133	Multidimensional Functional Assessment Questionnaire (20). Level of burden of seven self-
134	reported chronic conditions (polyarthritis, arthritis, emphysema, hypertension, cardiac problem,
135	circulation problem, diabetes) was summarized from a 3-point rating scale of each conditions;
136	higher score indicating greater burden of disease.
137	Participants' risk of cardiometabolic disease was represented by summing the presence (1) or
138	absence (0) of each of the following risk factors: BMI ≥ 25.0 kg/m ² (21); waist circumference
139	\geq 102.0 cm in men or \geq 88.0 cm in women (21); WHR \geq 90.0 in men or \geq 85.0 in women (21);
140	fasting glucose \geq 6.1 mmol/L (22); systolic and diastolic blood pressures \geq 140/90 mmHg (23).
141	Higher score indicates greater number of risk factors.

142 Statistical Analysis

Assumption of normality of variables was statistically verified with the Kolmogorov-Smirnov 143 test. Variables not normally distributed were transformed in R using the Box-Cox power 144 transformation. Since neither systolic nor diastolic blood pressures met the assumption of 145 normality after transformations, their product "systolic X diastolic" was used in analyses. Mann-146 Whitney U tests (continuous variable) and chi-square tests (categorical variable) were performed 147 to compare baseline characteristics. Two-way ANOVA with factors defined as "sex" and 148 "periods of life" were used to compare PA volumes and intensities between sexes and across life 149 150 periods, using Bonferroni post hoc test when significant. Further analysis examining PA in relation to health variables were sex-specific because of 151 significant interactions (p<0.05) between PA and sex. A two-block multiple linear regression 152 153 analysis was performed to identify domain and life period that were best associated with health variables at older age. Age was forced into the first block because current PA was measured over 154 a wide range of ages (68-85 years). In the second block, domain- and time-specific measures of 155 PA were entered in a stepwise procedure given the large number of potential correlates 156 considered. A thorough residual analysis was carried out and multi-collinearity issues were 157 addressed in the final model. Adjusting for marital status, household income, education, cigarette 158 smoking, and alcohol consumption did not change associations and thus, these results are not 159 shown. 160 161 Analyses were conducted using the SPSS statistical software package version 17.0 (Chicago, IL)

and *p*-values < 0.05 were considered statistically significant.

10

163 <u>RESULTS</u>

164 **Participant Characteristics**

Mean age of participants at baseline was 74.2±4.2 years with 51.6% as women. Men were

166 generally at higher risk with respect to cardiometabolic profile as compared to women (Table

- 167 1).Women reported a higher number of chronic diseases and more favorable health habits
- 168 regarding alcohol and tobacco consumption.

169 **Domains of Physical Activity Across Life**

170 Participation in all domains declined between 65 years and "present" for both sexes (Figures 1A

- and 1B). OPA was the highest contributor to overall PA at all-time points, except at "present"
- 172 where LTPA was (Supplementary Material). Women had lower levels of LTPA, HPA, and OPA

across all-time points, but similar CPA compared with men.

- 174 Mean LTPA and OPA intensities were higher in men than women. Intensity of LTPA decreased
- 175 with advancing age in both sexes. Intensity of OPA peaked at 25 years, and decreased after the
- age of 65 in women and after 45 years in men. The lack of variability in intensities of CPA, HPA
- and non-active-behaviours within participants did not allow the two-way ANOVA.

178 Physical Activity in Relation to Health Variables

179 In linear multiple regression models, OPA and non-active behaviours were generally positively

associated with health variables, whereas LTPA, HPA, and CPA tended to be negatively related

- to these variables (Table 2).
- 182 Although many PA domains at various ages were statistically significant correlates, the
- magnitude of these relationships was small. Final age-adjusted models explained less than 10%
- 184 of the variability of health variables, except for LBM in men, and metabolic health variables had

the smallest explained variance. Models also explained more variance among men than womenfor anthropomorphic variables.

187 LTPA at "present" was retained as a significant correlate of most health variables in both sexes.

188 In general, standardized regression coefficients of PA at "present" were among the highest of all

significant correlates. More specifically, higher LTPA was associated with higher BMI and

190 glucose and lower WHR and FM in men while in women higher LTPA was associated with

191 lower BMI, WHR, and FM. Linear multiple regression between PA at younger age and fasting

192 glucose or blood pressure at older age showed no consistent pattern.

193 **DISCUSSION**

194 This study provides the longest longitudinal description of domain-specific PA trajectories

documented to date. Results showed that PA declined after 65 years in all four domains,

196 although variations within periods of life are domain-specific.

197 Our study is also the first to investigate associations between all four domains at multiple periods

198 of life and health at older age. We found the strongest evidence for beneficial effects of PA on

199 health in the relationship between LTPA at "present" and WHR and FM in both sexes. A recent

200 meta-analysis investigating associations between various domains and all-cause mortality

201 reported that, compared to CPA and OPA, LTPA showed the strongest associations with

202 mortality (24), suggesting dissimilar impact on health. There is evidence that higher PA intensity

is more effective in enhancing cardioprotection, and its association to health is stronger than PA

volume (25,26). In our study, despite lower PA volume, we generally found LTPA to be of

higher intensity than other domains, except HPA intensity because assigned MET values may

206 have been too high (27). PA recommendations should thus focus more on LTPA than any other

207 domains in order to achieve sufficient intensity to impact health status.

208 To our knowledge, there is a very limited number of studies assessing past PA in relation to

209 current health status. However, a 27-y follow-up study showed no relationship between past or

current LTPA and health in adults aged 40, but found the latter moderately associated with

cardiorespiratory fitness at age 13 (28). Since PA appears to be one of the most important

contributor to cardiorespiratory fitness (29), physical fitness may mediate the relationship

between PA and health (25). Whilst fitness is measured objectively, PA is often self-reported and

thus, inevitably leads to misclassification and attenuated associations with health (30). Further

13

215 prospective studies using objective measures of PA and cardiorespiratory fitness through life course will produce more accurate estimates of PA potential benefits in older adults. 216 The lack of strong associations within past PA mainly suggests an absence of direct relationship 217 with current health. For instance, PA at younger ages is related to health status during young age 218 219 (31) which is an important predictor for health status in adulthood (4). Moreover, being physically active during adulthood helps maintaining high PA levels at older age (32), which 220 appears to be strongly associated with better health at older age. Therefore, PA levels across the 221 life course seem all important because of substantial benefits through indirect pathways. Future 222 223 studies should investigate repeated assessments of domains and health outcomes across life in order to determine direct relationships and relative contributions of PA across life on later health. 224 Noteworthy, our results suggest OPA might be unfavorable for long-term health. Since 225 physically demanding jobs are often associated with health problems (33), we examined if higher 226 OPA at age 25 was related to lower "current" PA levels and found no association. Thus, work-227 related environmental factors such as unhealthy lifestyle (34) and underprivileged life 228 circumstances (12) could potentially explain disadvantageous health outcomes and should be 229 further investigated. 230 231 The lack of association between PA and blood pressure in our study is in agreement with previous observational studies (28,35), but contradicts randomized controlled trials (36). 232 Differences in methods of PA assessment and confounding factors such as nutrition (37) or stress 233 234 (38) could partially explain these ambiguous results. Several limitations must be considered. Our PA measures relied on participants' recall, 235 potentially affected by social desirability. Recall of current participation in PA may be more 236 237 accurate than past activities, thus assessing less distortion in current PA participation and

up, PA measures were assessed within a year after health variables. Lack of changes in 239 anthropomorphic variables between baseline and second follow-up (data not shown) allowed us 240 241 to assume health variables did not change at first follow-up as well. Despite the above limitations, our study has several strengths. PA was assessed over one-year 242 periods, accounting for seasonal variations in PA choices (39). PA measures were in all four 243 domains, which is important for gaining insights into general patterns of PA throughout life. 244 Even though recall periods are a limitation, habitual PA patterns are more accurately reported 245 246 than irregular ones (40), allowing us to identify regular behaviours, unlike accelerometers or questionnaires that may capture more punctual behaviors. 247 In conclusion, PA levels were higher among men at all-time points, and declined for both sexes 248 249 after the age of 65 in all domains. Moreover, health-PA relationships are domain-specific. Among past and present PA domains, LTPA at older age may represent the most effective 250 domain to improve anthropomorphic variables at older age. 251 Taken together, these results suggest that sustained PA levels should be maintained across life. 252 More importantly, it seems that significant health benefits could be achieved by practicing LTPA 253 at older age, irrespective of past inactivity. From a public health perspective, older adults aged 254 around 65, especially women, should be encouraged to engage in LTPA, regardless of their 255 history. 256

explaining stronger associations with outcomes. Finally, given PA was measured at first follow-

238

257 <u>ACKNOWLEDGMENTS</u>

- 258 The authors gratefully acknowledge the commitment of participants enrolled in the NuAge study
- and the contribution of Modou Sene in data analyses. We also acknowledge grants from the
- 260 Canadian Institutes of Health Research (MOP-62842) and the Quebec Network for Research on
- Aging. IJD holds the Canada Research Chair on Exercise recommendations for a Healthy Aging.
- KBV and MA hold doctorate awards from the Fonds de la Recherche en Santé du Québec and
- the Canadian Institutes of Health Research, respectively.

264 **Conflict of Interest**

265 None.

266 Authors' Contributions

- HP, IJD: study concept and design, acquisition of data. HP: recruitment of subjects. MA, MB,
- KBV: analysis and interpretation of data; KBV: preparation of the manuscript. All authors
- revised the manuscript for the important intellectual content and read and approved the final
- 270 manuscript.
- 271 Sponsors' Role
- 272 None.

REFERENCES

- 1. Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 2010;7:1–16.
- Colley RC, Garriguet D, Janssen I et al. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep Stat Can Can Cent Health Inf 2011;22:7–14.
- Health Canada and Canadian Society for Exercise Physiology. Canada's Physical Activity Guide to Healthy Active Living. Ottawa (ON): Health Canada, 2011.
- Juhola J, Oikonen M, Magnussen CG et al. Childhood physical, environmental, and genetic predictors of adult hypertension: the cardiovascular risk in young Finns study. Circulation 2012;126:402–409.
- Raudsepp L, Neissaar I, Kull M. Longitudinal stability of sedentary behaviors and physical activity during early adolescence. Pediatr Exerc Sci 2008;20:251–262.
- 6. Nguyen HQ, Herting JR, Kohen R et al. Recreational physical activity in postmenopausal women is stable over 8 years of follow-up. J Phys Act Health 2013;10:656–668.
- Pan L-Y, Hsu H-C, Chang W-C et al. Trajectories of physical activity and risk factors among Taiwanese older adults. Int J Behav Med 2015;22:62–69.
- Xue Q-L, Bandeen-Roche K, Mielenz TJ et al. Patterns of 12-year change in physical activity levels in community-dwelling older women: can modest levels of physical activity help older women live longer? Am J Epidemiol 2012;176:534–543.

- Knuth AG, Hallal PC. Temporal trends in physical activity: a systematic review. J Phys Act Health 2009;6:548–559.
- Barnett I, Van Sluijs EM, Ogilvie D. Physical activity and transitioning to retirement: a systematic review. Am J Prev Med 2012;43:329–336.
- 11. Rovniak LS, Sallis JF, Saelens BE et al. Adults' physical activity patterns across life domains: cluster analysis with replication. Health Psychol 2010;29:496–505.
- 12. Bauman AE, Reis RS, Sallis JF et al. Correlates of physical activity: why are some people physically active and others not? Lancet 2012;380:258–271.
- 13. Wanner M, Tarnutzer S, Martin BW et al. Impact of different domains of physical activity on cause-specific mortality: a longitudinal study. Prev Med 2014;62:89–95.
- Gaudreau P, Morais JA, Shatenstein B et al. Nutrition as a determinant of successful aging: description of the Quebec longitudinal study Nuage and results from cross-sectional pilot studies. Rejuvenation Res 2007;10:377–386.
- 15. Friedenreich CM, Courneya KS, Bryant HE. The lifetime total physical activity questionnaire: development and reliability. Med Sci Sports Exerc 1998;30:266–274.
- 16. Ainsworth BE, Emplaincourt PO, Jacobs J D R. et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000;32:S498.
- 17. Sedentary Behaviour Research Network. Letter to the Editor: Standardized use of the terms 'sedentary' and 'sedentary behaviours'. Appl Physiol Nutr Metab 2012;37:540–542.

- Levasseur M. Sources et justifications des questions utilisées dans l'enquête Santé Québec.
 Cahier technique, 87-03. Québec (QC): Ministère de la santé et des services sociaux,
 Gouvernement du Québec, 1987.
- Lohman TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics, 1988.
- 20. Fillenbaum GG, Smyer MA. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J Gerontol 1981;36:428–434.
- 21. World Health Organization. Waist circumference and waist-hip ratio, report of a WHO expert consultation. Geneva, Switzerland: World Health Organization, 2008.
- Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Goldenberg R, Punthakee Z. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 2013;37 Suppl 1:S8–S11.
- 23. Go AS, Bauman MA, Coleman King SM et al. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. Hypertension 2014;63:878– 885.
- 24. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol 2011;40:1382–1400.

- 25. Sassen B, Cornelissen VA, Kiers H et al. Physical fitness matters more than physical activity in controlling cardiovascular disease risk factors. Eur J Cardiovasc Prev Rehabil 2009;16:677–683.
- Lee I-M, Sesso HD, Oguma Y et al. Relative intensity of physical activity and risk of coronary heart disease. Circulation 2003;107:1110–1116.
- 27. Knaggs JD, Larkin KA, Manini TM. Metabolic cost of daily activities and effect of mobility impairment in older adults. J Am Geriatr Soc 2011;59:2118–2123.
- 28. Kvaavik E, Klepp KI, Tell GS et al. Physical fitness and physical activity at age 13 years as predictors of cardiovascular disease risk factors at ages 15, 25, 33, and 40 years: extended follow-up of the Oslo Youth Study. Pediatrics 2009;123:e80–e86.
- 29. Carrick-Ranson G, Hastings JL, Bhella PS et al. The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol 2014;116:736–745.
- 30. Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc 2001;33:S379–S399; discussion S419–S420.
- Ekelund U, Luan J, Sherar LB et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. J Am Med Assoc 2012;307:704–712.
- 32. Hirvensalo M, Lintunen T, Rantanen T. The continuity of physical activity--a retrospective and prospective study among older people. Scand J Med Sci Sports 2000;10:37–41.

- 33. Haukka E, Ojajärvi A, Takala E-P et al. Physical workload, leisure-time physical activity, obesity and smoking as predictors of multisite musculoskeletal pain. A 2-year prospective study of kitchen workers. Occup Environ Med 2012;69:485–492.
- 34. Camões M, Lopes C. Dietary intake and different types of physical activity: full-day energy expenditure, occupational and leisure-time. Public Health Nutr 2008;11:841–848.
- 35. Ekblom-Bak E, Hellénius M-L, Ekblom O et al. Independent associations of physical activity and cardiovascular fitness with cardiovascular risk in adults. Eur J Cardiovasc Prev Rehabil 2010;17:175–180.
- Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2013;2:e004473.
- 37. Whelton PK, Appel LJ, Sacco RL et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012;126:2880–2889.
- Player MS, Peterson LE. Anxiety disorders, hypertension, and cardiovascular risk: a review. Int J Psychiatry Med 2011;41:365–377.
- 39. Hagströmer M, Rizzo NS, Sjöström M. Associations of season and region on objectively assessed physical activity and sedentary behaviour. J Sports Sci 2014;32:629–634.
- 40. Jobe JB, Tourangeau R, Smith AF. Contributions of survey research to the understanding of memory. Appl Cogn Psychol 1993;7:567–584.

TABLES

Table 1. Baseline Characteristics of the NuAge Cohort Subset Participants (N=1378)

* p-value from Mann-Whitney U test, unless stated otherwise.

[†] p-value from Chi-square test.

	Men (n=667)	Women (n=711)	Sex differences
	Mean±SD	Mean±SD	p-value*
Sociodemographic status			
Age, yrs	74.0±4.1	74.4±4.2	0.055
Married, %	76.8	44.3	< 0.001 [†]
Education, yrs	12.0±5.1	11.4±3.9	0.368
Household income, k\$	45.1±23.6	34.6±20.3	< 0.001
Anthropomorphic measures			
Body weight, kg	79.6±12.9	66.8±12.2	< 0.001
Fat mass, <i>kg</i>	22.1±8.6	26.0±8.8	< 0.001
Lean body mass, kg	53.9±7.1	37.5±4.3	< 0.001
BMI, kg/m^2	28.1±4.0	27.7±4.9	0.012
Waist circumference, cm	101.7±11.4	89.9±11.8	< 0.001
Waist to hip ratio	0.97±0.06	0.84±0.05	< 0.001
Metabolic profil			
SBP, <i>mmHg</i>	133.3±16.6	131.8±17.1	0.111
DBP, mmHg	70.1±9.6	68.9±9.0	0.048
Fasting glucose, mmol/L	5.7±1.3	5.4±1.3	< 0.001
Burden of disease score (/21)	1.9±1.6	2.2±1.7	< 0.001

Sum of risk factors (/6)	2.7±1.3	2.2±1.4	< 0.001
Health habits			
Current smoker, $\%(n)$	7.8 (52)	4.2 (30)	$<\!\!0.001^{\dagger}$
Past smoker, %(<i>n</i>)	58.6 (391)	27.6 (196)	
Never smoked, $\%(n)$	33.6 (224)	68.2 (485)	
Occasional drinker	12.4 (83)	23.9 (170)	$< 0.001^{\dagger}$
(<1 alcoholic drink/day),			
%(n)			
Moderate drinker	13.8 (92)	29.3 (208)	
(1 alcoholic drink/day), %(n)			
Regular drinker	73.8 (492)	46.8 (333)	
(≥2 alcoholic drink/day),			
%(n)			

BMI, Body mass index; DBP, Diastolic blood pressure; SBP, Systolic blood pressure.

Table 2. Beta Estimates of the Relationship Between Levels of LTPA, OPA, HPA, and CPA atDifferent Periods of Life and Health Variables in Older Adults Obtained from StepwiseLinear Regressions, Age-adjusted Models.

* p<0.05

 $^{\dagger}p \leq 0.01$

[‡]p≤0.001

Men correlates	Standardized-β	Women correlates	Standardized-β
Body mass index	F: 7.32 [‡]	Body mass index	F: 9.58 [‡]
$(BMI^{-1/2})$	Adj. R ² : 0.071	(Log[BMI])	Adj. R ² : 0.046
Non-active bhv, 65 yrs	0.268	LTPA, present	-0.188
OPA, 65 yrs	0.182	HPA, present	-0.078
LTPA, present	0.150	CPA, present	-0.076
HPA, present	0.149		
Non-active bhv, 45 yrs	-0.125		
OPA, 25 yrs	-0.124		
OPA, 15 yrs	-0.091		
Waist to hip ratio	F: 6.38 [‡]	Waist to hip ratio	F: 4.76 [†]
	Adj. R ² : 0.052		Adj. R ² :0.012
OPA, 15 yrs	0.159	LTPA, present	-0.116
Non-active bhv, 65 yrs	-0.125		
LTPA, present	-0.100		
Non-active bhv, 15 yrs	0.090		
Non-active bhv, 45 yrs	0.086		

Fat mass	F: 11.50 [‡]	Fat mass	F: 7.42 [‡]
(FM% ²)	Adj. R ² : 0.083	$(FM^{1/2})$	Adj. R ² :0.035
LTPA, present	-0.243	LTPA, present	-0.204
HPA, present	-0.145		
Lean body mass	F: 20.75 [‡]	Lean body mass	F: 7.26 [*]
	Adj. R ² :0.101	(LBM ^{-1/2})	Adj. R ² :0.018
OPA, 15 yrs	0.113	CPA, 15 yrs	0.106
Fasting glucose	F: 4.48 [†]	Fasting glucose	F: 5.99 [‡]
(Glucose ⁻²)	Adj. R ² :0.016	(Glucose ⁻²)	Adj. R ² :0.028
LTPA, present	0.101	HPA, 15 yrs	-0.105
HPA, 25 yrs	-0.077	Non-active bhv, 25 yrs	-0.089
		HPA, 45 yrs	-0.075
Blood pressure	F: 3.24*	Blood pressure	F: 3.405 [†]
$([SBP \bullet DBP]^{-1/2})$	Adj. R ² :0.010	$([SBP \bullet DBP]^{-1/2})$	Adj. R ² :0.014
CPA, 45 yrs	0.091	OPA, 45 yrs	0.189
CPA, 15 yrs	-0.083	Non-active bhv, 45 yrs	0.157
		LTPA, 45 yrs	0.091

β, Standardized beta coefficient; Bhv, Behaviors; BMI, Body mass index; CPA, Commuting physical activity; DBP, Diastolic blood pressure; FM, Fat mass; FM%, Fat mass percentage [Fat mass (kg)/body weight (kg)]; HPA, Household physical activity; LBM, Lean body mass; LTPA, Leisure time physical activity; OPA, occupational physical activity; SBP, Systolic blood pressure.

FIGURE LEGENDS

Leisure time Household ––– Commuting –– Occupational

--- 16-h standardized score

- · - Non-active

Figure 1. A) Physical activity domain-specific volumes in men across lifespan. B) Physical activity domain-specific volumes in women across lifespan. * denotes significant within-domain changes from the preceding time period. See Supplementary material for more details about physical activity components.

A)

B)

Supplementary T	Fable S1. Physical a	activity components for	r each period of life in	men and women (N	=1378)			
^a Significantly different from present; ^b 65 years old; ^c 45 years old; ^d 25 years old; ^e 15 years old.								
* p-value from t-te	est for independent s	amples, unless stated ot	herwise.					
[†] p-value for a "Ti	me*Sex" interaction	n from two-way ANOV.	Α.					
			XX /		Sex	Sex		
	Men		Women		difference in	difference		
(n=667)			(n=711)		volume	in intensity		
	Volume (MET-		Volume (MET-	Intensity				
Physical	hours/week)	Intensity (MEI)	hours/week)	(MET)	p-value*	p-value*		
activity domain	Mean \pm SD	Mean \pm SD	Mean \pm SD	Mean \pm SD				
16-hour								
standardized					$<\!\!0.001^{\dagger}$	$< 0.001^{\dagger}$		
score								
Present	198.4 ± 35.3^{bcde}	$2.12\pm0.68^{\ bcde}$	184.7 ± 20.8^{bcde}	$1.83 \pm 0.40^{\text{bcde}}$	< 0.001	< 0.001		
65 years old	$218.1\pm48.7^{\text{acde}}$	$2.41 \pm 0.77^{\text{ acde}}$	200.1 ± 33.8^{acde}	2.08 ± 0.54^{acde}	< 0.001	< 0.001		

45 years old	242.0 ± 69.4^{abd}	2.67 ± 1.02^{abde}	222.7 ± 38.1^{be}	$2.31\pm0.54^{\ ab}$	< 0.001	< 0.001
25 years old	249.9 ± 76.7^{abc}	2.82 ± 1.25^{abc}	222.2 ± 36.9^{abe}	$2.30\pm0.57^{\ ab}$	< 0.001	< 0.001
15 years old	244.6 ± 65.7^{ab}	2.87 ± 1.05 ^{abc}	212.6 ± 38.5^{abcd}	2.36 ± 0.69^{ab}	< 0.001	< 0.001
Leisure time					0.376^{\dagger}	0.155 [†]
Present	23.1 ± 25.5^{bcde}	4.10 ± 1.28^{bcde}	15.7 ± 17.9^{bde}	3.89 ± 1.12^{bcde}	< 0.001	0.004
65 years old	27.2 ± 29.0^{acd}	$4.49 \pm 1.41^{\ acde}$	20.3 ± 21.9^{acd}	$4.31 \pm 1.36^{\text{ acde}}$	< 0.001	0.032
45 years old	18.9 ± 25.5^{abe}	5.25 ± 1.60^{abde}	14.4 ± 20.2^{bde}	$4.74 \pm 1.56^{\text{ abe}}$	< 0.001	< 0.001
25 years old	17.7 ± 29.5^{abe}	$6.68 \pm 1.70^{\text{ abce}}$	12.0 ± 19.9^{abce}	5.02 ± 1.69^{abe}	< 0.001	< 0.001
15 years old	30.4 ± 38.3^{acd}	6.53 ± 1.33 ^{abcd}	23.5 ± 32.7^{acd}	6.15 ± 1.62^{abcd}	< 0.001	< 0.001
Household					$< 0.001^{+}$	
Present	11.6 ± 28.1^{bde}	5.0	3.8 ± 14.7^{bc}	5.0	< 0.001	
65 years old	$16.8 \pm 33.9^{\text{ade}}$	5.0	$5.9 \pm 17.8^{\text{ade}}$	5.0	< 0.001	
45 years old	13.3 ± 24.4^{de}	5.0	6.5 ± 19.3^{ade}	5.0	< 0.001	
25 years old	5.9±19.3 ^{abce}	5.0	2.3 ± 9.7^{bc}	5.0	< 0.001	
15 years old	2.5 ± 10.9^{abcd}	5.0	2.1 ± 11.3^{bc}	5.0	0.443	
Occupational					$< 0.001^{\dagger}$	0.006^{\dagger}

Present	16.9 ± 36.3^{bcde}	2.58 ± 1.46	12.3 ± 27.1^{bcde}	$2.17\pm0.75^{\ bcde}$	0.009	< 0.001
65 years old	46.1 ± 60.0^{acde}	2.63 ± 1.38	36.2 ± 48.0^{acde}	$2.39\pm0.84^{\text{ ade}}$	0.001	0.002
45 years old	112.5 ± 71.3^{abd}	2.67 ± 1.39^{d}	98.5 ± 44.1^{abe}	$2.49\pm0.75^{\ ae}$	< 0.001	0.004
25 years old	124.1 ± 78.0^{abce}	3.02 ± 1.69^{ce}	102.4 ± 45.4^{abe}	$2.55\pm0.80^{\ abe}$	< 0.001	< 0.001
15 years old	110.1 ± 69.7^{abd}	2.59 ± 1.46^d	80.4 ± 42.9^{abcd}	$2.01\pm0.75~^{abcd}$	< 0.001	< 0.001
Commuting					0.295^{+}	
Present	0.1 ± 0.8^{bcde}	4.08 ± 0.36	$0.2 \pm 0.9^{\text{bcde}}$	4.21 ± 1.02	0.135	0.577
65 years old	0.35 ± 2.0^{acde}	4.81 ± 2.31	0.6 ± 2.6^{acde}	4.15 ± 0.96	0.034	0.112
45 years old	1.7 ± 6.8^{abde}	4.26 ± 1.08	1.5 ± 4.1^{abde}	4.17 ± 0.91	0.496	0.521
25 years old	3.6 ± 8.0^{abce}	4.41 ± 1.50	3.0 ± 7.3^{abce}	4.26 ± 1.09	0.214	0.278
15 years old	8.5 ± 10.9^{abcd}	4.48 ± 1.54	7.8 ± 10.2^{abcd}	4.18 ± 0.99	0.282	< 0.001
Non-active						
behaviour					0.010^{\dagger}	
score						
Present	146.8 ± 20.0^{bcde}	1.5	152.8 ± 17.9^{bcde}	1.5	< 0.001	
65 years old	127.6 ± 29.8^{acde}	1.5	137.2 ± 26.8^{acde}	1.5	< 0.001	

45 years old	95.7 ± 17.6^{abd}	1.5	101.8 ± 21.0^{ab}	1.5	< 0.001	
25 years old	98.6 ± 19.4^{abce}	1.5	102.5 ± 20.1^{abe}	1.5	< 0.001	
15 years old	93.0 ± 23.7^{abd}	1.5	98.8 ± 22.6^{abd}	1.5	<0.001	