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Sommaire

Dans le contexte de la théorie bayésienne et de théorie de la décision,

l’estimation d’une densité prédictive d’une variable aléatoire occupe

une place importante. Typiquement, dans un cadre paramétrique,

il y a présence d’information additionnelle pouvant être interprétée

sous forme d’une contrainte. Cette thèse porte sur des stratégies

et des améliorations, tenant compte de l’information additionnelle,

pour obtenir des densités prédictives efficaces et parfois plus per-

formantes que d’autres données dans la littérature. Les résultats

s’appliquent pour des modèles avec données gaussiennes avec ou

sans une variance connue. Nous décrivons des densités prédictives

bayésiennes pour les coûts Kullback-Leibler, Hellinger, Kullback-

Leibler inversé, ainsi que pour des coûts du type α−divergence et

établissons des liens avec les familles de lois de probabilité du type

skew–normal. Nous obtenons des résultats de dominance faisant in-

tervenir plusieurs techniques, dont l’expansion de la variance, les

fonctions de coût duaux en estimation ponctuelle, l’estimation sous

contraintes et l’estimation de Stein. Enfin, nous obtenons un résultat

général pour l’estimation bayésienne d’un rapport de deux densités

provenant de familles exponentielles.
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In the context of Bayesian theory and decision theory, the estimation

of a predictive density of a random variable represents an important

and challenging problem. Typically, in a parametric framework, usu-

ally there exists some additional information that can be interpreted

as constraints. This thesis deals with strategies and improvements

that take into account the additional information, in order to obtain

effective and sometimes better performing predictive densities than

others in the literature. The results apply to normal models with a

known or unknown variance. We describe Bayesian predictive densi-

ties for Kullback–Leibler, Hellinger, reverse Kullback-Leibler losses

as well as for α–divergence losses and establish links with skew–

normal densities. We obtain dominance results using several tech-

niques, including expansion of variance, dual loss functions in point

estimation, restricted parameter space estimation, and Stein estima-

tion. Finally, we obtain a general result for the Bayesian estimator

of a ratio of two exponential family densities.
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Introduction

Density estimation, where data from X is used to estimate the den-

sity of Y is one of the fundamental problems in statistics. Predictive

density estimation involves drawing data from X ∼ pθ to obtain an

estimate of the density qθ of Y for prediction purposes. Such a den-

sity is of interest as a surrogate and for generating either future or

missing values of Y .

To assess efficiency and to aid in selecting a predictive density esti-

mator q̂(·;X), we adopt Bayesian and decision theoretic perspectives,

thus introducing a loss function based on a divergence measure of the

distance between two densities. We will be particularly interested in

evaluating predictive density estimators in terms of frequentist risk,

as well as normal models with additional information available on θ,

as presented below in the Brief outline.

The developments in this thesis relate to statistical inference for

restricted parameters and here are some situations where such addi-

tional information arises.

Example I. (An application in psychology)

Researchers in the social and behavioral sciences often have clear

expectations and beliefs about the order and direction of the pa-

rameters in their statistical model. For example, a researcher might

expect that one regression coefficient β1 is larger than others β2 and

1
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β3. In such a case, one is interested in either adapting priors to

the restriction, or elaborating procedures that capitalize on the in-

formation potentially leading to lower frequentist risk. Vanbrabant

et al. [1] showed how such a constraint leads to gains in sample

size reduction in a hypothesis testing context, and they provided an

illustration on the impact of cognitive behavioral therapy to treat

depression.

Example II. (Relation between El Niño and hurricanes)

El Niño refers to unusually warm ocean currents in the Pacific that

appear around Christmas time. Monsoon rains in the central pacific

and droughts and forest fires in Indonesia and Australia have been

linked to El Niño. The following hypothesis appears in Kitchens [2]:

H :Warm phases of El Niño suppresses hurricanes, while cold weather fosters them

Information from 1950 to 1995 was used based on a simple one–

way classification, Xij = µi + eij by admitting that El Niño has 3

levels: cold (i = 1), neutral (i = 2) and warm (i = 3), with Xij

representing the number of hurricanes and µi its expectation. Note

that hypothesis H is equivalent to hypothesis H ′ : µ1 ≥ µ2 ≥ µ3.

If H ′ assumed to be plausible, then the prediction of future values

should exploit the precise information.

Example III. (An application in Biology)

The following example is presented in Liseo and Loperfido [3]. Sup-

pose we observe a random sample replications of a bivariate normal

density (X1, X2) with mean vector (µ1, µ2), where X1 is the length

of the right leg in an adult man while X2 is the corresponding length

of the left leg. Then it is reasonable to assume that |µ1−µ2| ≤ c for
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some constant c. Estimates of µ1 and µ2, based on additional infor-

mation seem more appropriate. The same can be said for obtaining

on density estimate of Y1 ∼ N(µ1, σ
2
Y ). This type of problem is at

the heart of the thesis.

B) Brief outline of thesis

Chapter 1 deals with definitions and preliminaries which are needed

throughout the thesis, as well as some underlying lemmas and the-

orems. We study the duality between point estimators and plug–in

predictive density estimators related to different loss functions, along

with determination of Bayesian predictive densities. We briefly dis-

cuss estimation for restricted parameters. Afterwards, some skew–

normal, skew–Student t, and skewed type distributions are presented.

In Chapter 2, based on the model

X =

(

X1

X2

)

∼ N2p

(

θ =

(

θ1
θ2

)

, Σ =
( σ2

1Ip 0

0 σ2
2Ip

)

)

, Y1 ∼ Np(θ1, σ
2
Y Ip) ,

with known σ21, σ
2
2, and σ

2
Y , we address the question of providing com-

petitive predictive density estimates for the density of Y1, in compar-

ison to other available predictive densities, such as plug-in densities,

and those obtained by the criteria of maximum likelihood or mini-

mum risk equivariance. Results relate to the class of α-divergence

losses. This developments exploit the presence of additional infor-

mation of the form θ1− θ2 ∈ A ⊂ R
p, with known A. We investigate

how to gain from the additional information in providing a predictive

density q̂(· ;X) as an estimate of the density qθ1(·) of Y1. Indeed, ad-
ditional information θ1 − θ2 ∈ A renders X2 useful in estimating the
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density of Y1 despite the independence and the otherwise unrelated

parameters. An ensemble of techniques are exploited, including vari-

ance expansion (for KL loss), point estimation duality, and concave

inequalities. Representations for Bayesian predictive densities, and

in particular for q̂πU,A
associated with a uniform prior for θ truncated

to {θ : θ1 − θ2 ∈ A}, are established and are used for the Bayesian

dominance findings. Finally and interestingly, these Bayesian pre-

dictive densities also relate to skew-normal distributions, as well as

new forms of such distributions.

Chapter 3 considers the topics in Chapter 2 in the normal set–up with

unknown variance. More specifically, for Xi ∼ Np(θi, σ
2Ip), i = 1, 2,

independent of S2 ∼ σ2 χ2
k, we study predictive density estimation

of the density of Y1 ∼ Np(θ1, σ
2Ip) for Kullback–Leibler and reverse

Kullback–Leibler losses and θ1 − θ2 ∈ A. Interesting posterior and

predictive density representation arise and we provide improvements

on plug–in densities.

Chapter 4 is a note on density ratio estimation. This topic is con-

nected to several problems such as machine learning and has at-

tracted much attention in the literature. We present a general repre-

sentation for Bayesian ratio estimators under squared–log error loss

in the context of exponential family densities. The class of Bayesian

estimators are seen to include in some cases ratios of plug–in den-

sity estimators. The result is general with respect to the family of

densities and choice of priors.





Chapter 1

Definitions and preliminaries

1.1 Introduction

In this thesis, we will focus on improving predictive density estima-

tors under additional parametric information and we present here

preliminary related results. Predictive density estimation is briefly

reviewed in Section 1.2 with a focus on the notable α–divergence class

of loss functions including Kullback–Leibler (KL), reverse Kullback–

Leibler (RKL), and Hellinger (H) losses as specific cases. We will

be studying the frequentist risk of plug–in type predictive density

estimators, and we will expand on duality connections with point

estimation, variance expansion improvements, and Bayesian proce-

dures. Section 1.3 deals with point estimation of a multivariate nor-

mal mean with additional information, while Section 1.4 looks at

point estimation and predictive density estimation for exponential

families. Finally, skew–normal, as well as other skewed distributions

will be presented in Section 1.5. A rich family of Bayesian predictive

density estimators arise in the presence of constraints on the param-

eters, and these include some of the skew–normal and skew–Student

t distributions of Section 1.5.

6
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1.2 Predictive density estimation

Predictive analysis is about extracting information from historical

and current data to predict future trends. The statistical prediction

of future values of a random variable, based on an observed learn-

ing sample, appears in a variety of problems. It has been argued in

the literature that prediction, as opposed to parameter estimation,

is the proper activity of statisticians, because prediction is often the

scientific question of interest and partly because the ability of statis-

ticians to predict can actually be checked. The sampling distribution

of Y (possibly a vector with dimension, p > 1) given X = x and (a)

known parameter(s) would be an obvious predictive distribution, but

without knowledge of the underlying parameter, it cannot be used.

(see for instance Nayak [4] and the references below.)

Consider the conditionally independent random variables with Lebesgue

densities

X|θ ∼ pθ(x), Y |θ ∼ qθ(y), x, y ∈ R
p, (1.1)

and θ ∈ Θ ⊆ R
p. The goal is to estimate the future density Y based

on X. Given a prior density π for θ with cdf G, the conditional or

posterior distribution of Y is given by

q(y|x) = pθ(y, x)

p(x)

=

∫

Θ

p(y, x, θ)

p(x)
dG(θ)

=

∫

Θ

pθ(y|x)
π(θ) pθ(x)

p(x)
dG(θ)

=

∫

Θ

pθ(y)π(θ|x) dG(θ), (1.2)

given the conditional independence. This induces the Bayesian pre-

dictive density estimator as the posterior expectation of pθ(y), or a
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mixture of the pθ(y)’s. In much of the statistical literature, q(y|x) is
referred to the posterior predictive distribution for Y .

Given a predictive density estimate q̂(·; x), x ∈ R
p, several loss func-

tions are at our disposal for measuring the proximity of q̂ to qθ. These

include Kullback-Leibler (KL) loss given by

LKL(θ, q̂(·; x)) =
∫

Rp

qθ(y) log
qθ(y)

q̂(y; x)
dy, (1.3)

as well as reverse Kullback–Leibler (RKL) loss,

LRKL(θ, q̂(·; x)) =
∫

Rp

q̂(y; x) log
q̂(y; x)

qθ(y)
dy, (1.4)

The loss functions in (1.3) and (1.4) belong to the class of α−divergence

loss functions (e.g., Csiszàr, [5]) given by

Lα(θ, q̂) =

∫

Rp

hα

(

q̂(y; x)

qθ(y)

)

qθ(y) dy , (1.5)

with

hα(z) =















4
1−α2 (1− z(1+α)/2) for |α| < 1

z log(z) for α = 1

− log(z) for α = −1.

(1.6)

The KL and RKL losses correspond to α = −1 and 1 respectively,

while Hellinger loss is associated with α = 0. The performance of

predictive densities q̂(·;X) related to Lα in (1.5) may be measured

by the frequentist risk

Rα(θ, q̂) =

∫

Rp

Lα (θ, q̂(·; x)) pθ(x) dx . (1.7)

Predictive density (1.2) is the Bayes estimate for KL loss. The fol-

lowing result provides the Bayes predictive density estimate for the

α−divergence loss with −1 ≤ α < 1, while the case of RKL loss is
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presented in the Appendix of Chapter 2.

Lemma 1.2.1. In model (1.1), given a prior density π with respect

to the σ–finite measure ν with cdf G, the Bayes predictive density

estimator q̂π(·;X) of the density of qθ(·) under loss function Lα in

(1.5) for α 6= 1, is given by

q̂π(y; x) ∝
{∫

Rp

qθ(y)
1−α
2 π(θ|x) dν(θ)

} 2
1−α

.

Proof. The expected posterior risk of q̂(·) under α−divergence loss

in (1.5) is equal to

4

1− α2

(

1−
∫

Rp

∫

Rp

q̂(y; x)
1+α
2 qθ(y)

1−α
2 π(θ|x) dν(θ) dy

)

=
4

1− α2

(

1−
∫

Rp

q̂(y; x)
1+α
2 k(y; x) dy

)

, (1.8)

where k(y; x) =
∫

Rp qθ(y)
1−α
2 π(θ|x) dν(θ). Minimizing (1.8) in q̂(·)

is equivalent to maximizing
∫

Rp q̂
1+α
2 k(y; x) dy. An application of

Hölder’s inequality
∫

f g ≤ (
∫

fa)1/a (
∫

gb)1/b, with f = k(y; x),

g = q̂
1+α
2 (y; x), a = 2

1−α and b = 2
1+α ( 1

a +
1
b = 1), and with equality

iff q̂(y; x) ∝ k
2

1−α (y; x), yields the result.

Next, we consider conditional independently distributed

X ∼ Np(θ, σ
2
X Ip) , Y ∼ Np(θ, σ

2
Y Ip) , (1.9)

with common unknown mean θ and known variances σ2X and σ2Y .

The next example provides the Bayes predictive density estimator

associated with α–divergence loss and a normal prior distribution.

Example 1.2.1. Consider model (1.9) and the normal prior π0(θ) ∼
Np

(

µ, τ 2Ip
)

under α–divergence loss in (1.5) with −1 ≤ α < 1.
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Then, the Bayes predictive density q̂π0 is given by

q̂π0(·; x) ∼ Np

(

γ x+ (1− γ)µ,

(

(1− α) τ 2σ2X
2 (τ 2 + σ2X)

+ σ2Y

)

Ip

)

,

where γ = τ2

σ2
X+τ2

.

Proof. According to Lemma 1.2.1, the Bayes predictive density esti-

mate of qθ1(y) is given by

q̂π0(y; x) ∝
{∫

Rp

φ(1−α)/2
(

θ − y

σY

)

π0(θ|x) dθ
}2/1−α

∝











∫

Rp

φ







y − θ
√

2
1−ασY






φ

(

θ − x

σX

)

φ

(

θ − µ

τ

)

dθ











2/1−α

,

given that φm(z) ∝ φ(m1/2z). By making use of decomposition

‖t− a1‖2
b21

+
‖t− a2‖2

b22
=

‖a1 − a2‖2
b21 + b22

+
‖t− c‖2
d2

,

where, c = a1b
2
2+a2b

2
1

b21+b
2
2

, d2 = b21b
2
2

b21+b
2
2
, we can write

φ

(

θ − x

σX

)

φ

(

θ − µ

τ

)

∝ φ

(

θ − w

σW

)

φ

(

x− µ
√

σ2X + τ 2

)

,

φ







θ − y
√

2
1−α σY






φ

(

θ − w

σW

)

∝ φ







y − u
√

2
1−α σ

2
Y + σ2U






φ

(

θ − u

σU

)

,

with w =
xτ2+µσ2

X

σ2
X+τ2

, u =
yσ2

W+ 2w
1−α

σ2
Y

σ2
W+ w

1−α
σ2
Y

, σ2W = τ21 σ
2
1

τ21+σ
2
1
and σ2U =

2σ2
Y /(1−α)σ2

W

2σ2
Y /(1−α)+σ2

W

.

Since q̂π0(y; x) ∝ (φ( y−u√
2

1−α
σ2
Y +σ

2
U

))
2

1−α , the result follows.

Remark 1.2.2. In Example 1.2.1, setting τ 2 → ∞, yields the Bayes

predictive density with respect to the uniform prior π0(θ) = 1, or the

minimum risk equivariant (MRE) predictive density estimator. It is
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given by

q̂mre(·, x) ∼ Np

(

x,

(

(1− α)σ2X
2

+ σ2Y

)

Ip

)

, (1.10)

as obtained by Ghosh et al. [6]. For Kullback–Leibler loss (i.e. α =

−1) we obtain

q̂mre(·, x) ∼ Np

(

x, (σ2X + σ2Y )Ip
)

, (1.11)

such as given by Aitchison [7].

Definition 1.2.3 (Dominance). Let q̂1 and q̂2 be two predictive

density estimators in estimating qθ. Then q̂1 dominates q̂2 if we have

R(θ, q̂1) ≤ R(θ, q̂2) for all θ ∈ Θ, with strictly inequality for some θ.

A plausible approach to find a predictive density estimator is ob-

tained by replacing θ by an estimator θ̂(X) in the true density qθ(·),
yielding qθ̂(X)(·), which is called a plug–in predictive density estima-

tor. There are methods available to improve on plug–in predictive

density estimators such as variance expansion. See for instance Four-

drinier et al. [8] as well as Section 1.2.1.

The seminal papers of George, Liang, and Xu [9] as well as Brown,

George and Xu [10], shed new light on the relationship between pre-

dictive density estimation and shrinkage estimation. They showed

there exists a duality between predictive density estimation under

KL loss and the problem of estimating the mean of the multivariate

normal distribution under SEL in model (1.9). They obtained large

class of minimax predictive densities, as well as Bayes admissible pre-

dictive densities. Their results revolved around the inadmissibility

of q̂mre for p ≥ 3, a result established earlier by Komaki [11].
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Also, they showed the generalized Bayes estimator for the mean of

a p–variate normal distribution shares many properties like mini-

maxity, best invariant estimator under location-scale transformation,

constant risk, admissibility for p ≤ 2 and inadmissibility for p ≥ 3.

More information on the dual relationship between density estima-

tion under α–divergence and the point estimation problem can be

found in Ghosh et al. [6].

1.2.1 Improvement by variance expansion

Consider predictive densities for Y in model (1.1) of the form

qθ̂,c(·, x) ∼ Np(θ̂(x), c σ
2
Y Ip) , (1.12)

where θ̂(x) is an estimate of θ. Cases c = 1, correspond to plug-

in predictive density estimators, while cases c > 1 correspond to

scale expanded variants. Previous work (e.g., Aitchison [7], Four-

drinier et al., [8]; Kubokawa, Marchand and Strawderman, [12], [13])

have shown that such scale expansions are interesting and can pro-

vide significant risk improvement on plug-in procedures. The MRE

predictive estimator in (1.10) related to Lα is obtained by taking

c = 1+
(1−α)σ2

X

2σ2
Y

and θ̂(X) = X. The following theorem elaborates on

a general phenomenon concerning plug-in estimators and how they

can be improved upon within the class of normal density estimators

in (1.12).

Theorem 1.2.4. Consider model (1.9) and θ ∈ C. Let δ(X) be

an estimator of θ, with risk R(θ, δ) = E‖δ(X)− θ‖2, and R =

inf
θ∈C

R(θ, δ) > 0. For estimating the density of Y ∼ Np(θ, σ
2
Y Ip),

the predictive density estimator q̂c ∼ Np(δ(X), c σ2Y Ip) dominates

q̂1 ∼ Np(δ(X), σ2Y Ip) under KL loss if 1 < c ≤ (1 + R
pσ2

Y

), and iff
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1 < c ≤ c0(1+
R
pσ2

Y

), with c0(m) the root of Gm(c) = (1−c−1)m−log c

on (m,∞).

Proof. The difference in risks is equal to

RKL(θ, q̂1)−RKL(θ, q̂c) = E
X,Y

[

log

(

q̂c(Y ;X)

q̂1(Y ;X)

)]

= −p
2
log c+

(1− c−1)

2σ2Y
E
X,Y
[

‖Y − δ(X)‖2
]

= −p
2
log c+

(1− c−1)

2σ2Y
E
X,Y
[

‖Y − θ‖2 + ‖θ − δ(X)‖2
]

(1.13)

= −p
2
log c+

(1− c−1)

2σ2Y

(

pσ2Y +R(θ, δ)
)

=
p

2
Gm(θ)(c),

with m(θ) = 1 + R(θ,δ)
pσ2

Y

. Note that the expectation in (1.13) is ob-

tained using the independence of Y and X given θ and the proof is

completed by using the fact that Gm(c) is positive for 1 < c ≤ m,

attains its maximum on (1,∞) at c = m, and has a single root on

(m,∞).

Here are two examples of application of Theorem 1.2.4.

Example 1.2.2. (Fourdrinier et al. [8]) Suppose model (1.9) with

p = 1, θ ≥ 0 and the restricted MLE of θ, i.e. δmle(X) = max(0, X).

A calculation yields

R(θ, δmle) = θ2Φ

(−θ
σX

)

+ σ2
∫ θ/σ

−∞
u2φ (u) du. (1.14)

Since, ∂R
∂θ = 2θΦ(−θσX ) > 0 the risk function is increasing on [0, ∞).

Therefore,
σ2
X

2 = R(0, δmle) ≤ R(θ, δmle) ≤ limθ→∞R(θ, δmle) = σ2X

and Theorem 1.2.4, tells us, q̂mle ∼ N(δmle(X), σ2) is dominated by
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q̂mle,c ∼ N(δmle(X), cσ2) under KL loss for 1 < c ≤ 1+
σ2
X

2σ2
Y

and iff

1 < c ≤ c0(1 +
σ2
X

2σ2
Y

).

It can derived from a similar analysis to the one above that, among

estimators q̂mle,c, those with 1 +
σ2
X

2σ2
Y

≤ c ≤ 1 +
σ2
X

σ2
Y

form a complete

subclass, while the estimators q̂mle,c with 1 < c ≤ c0(1 +
σ2
X

2σ2
Y

) form a

complete subclass among those that dominate q̂mle.

Example 1.2.3. Let Xi ∼ N(θi, σ
2); i = 1, 2, independent with θ1 ≥

θ2 be independent of Y ∼ N(θ1, σ
2). The restricted MLE of θ1 based

on X = (X1, X2) is given by

δ1,mle(X1, X2) =

{

X1 X1 ≥ X2

X1+X2

2 X1 < X2.
(1.15)

Since R(θ, δ1,mle) = σ2

2 + 1
2

(

2σ2 + (θ1 − θ2)
2
)

(see Example 2.3.1,

for details), we have R(θ, δ1,mle) ≥ R(θ, δ1,mle)
∣

∣

∣

θ1=θ2
= 3σ2

2 . Hence

Theorem 1.2.4 shows that q̂mle,c ∼ N(δmle(X), cσ2) dominates q̂mle,c ∼
N(δmle(X), σ2) under KL loss for 1 < c ≤ 1 + 3

4 σ
2 and iff 1 < c ≤

c0(1 +
3
4σ

2).

Here are some of loss functions for point estimation which will be

used in this thesis. The first two arise as dual to predictive den-

sity estimation for plug–in densities 1.12, where the latter arises in

estimating the ratio of densities (Chapter 4).

(a) Squared error loss (SEL): L(δ, θ) = ‖δ − θ‖2 , θ ∈ R
p

(b) Reflected normal loss (RNL): Lγ(δ, θ) = 1− e−‖δ−θ‖2/2γ , θ ∈
R
p, γ > 0

(c) Squared log error loss (Balanced loss) function: L(δ, θ) =

(log δ
θ)

2 , θ ∈ R.
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1.2.2 Duality between point estimation and predictive den-

sity estimation

For normal model (1.9), we focus here the role of the plug–in esti-

mator θ̂ within the predictive density estimator qθ̂,c and review some

known duality results with point estimation.

Lemma 1.2.5. (Duality between KL (or RKL) and SEL)

For model (1.9), the frequentist risk of the predictive density estima-

tor qθ̂,c of qθ under both KL and RKL losses, is dual to the frequen-

tist risk of θ̂(X) for estimating θ under SEL ‖θ̂− θ‖2. Namely, qθ̂A,c

dominates qθ̂B,c
under KL (or either RKL) loss iff θ̂A(X) dominates

θ̂B(X) under SEL.

Proof. We refer to Fourdrinier et al. [8] for the case of KL loss. For

RKL loss, the result follows as an application of Theorem 2.6.35;

which is a general result for exponential families presented in the

Appendix of Chapter 2.

For α−divergence losses whenever α ∈ (−1, 1), it is the reflected

normal loss which is dual, as shown by Ghosh, Mergel and Datta

[6], as well as Marchand, Perron and Yadegari (2017) for plug-in

predictive density estimators, and as expanded upon here for scale

expansions in (1.12).

Lemma 1.2.6. (Duality between α−divergence and reflected

normal losses) For model (1.1), the frequentist risk of the predictive

density estimator qθ̂,c of the density of Y under α−divergence loss

(1.5), with α ∈ (−1, 1), is dual to the frequentist risk of θ̂(X) for

estimating θ under reflected normal loss Lγ0(δ, θ) = 1− e−‖δ−θ‖2/2γ0

with γ0 = ( c2

1+α + 1
1−α) σ

2
Y . Namely, qθ̂A,c

dominates qθ̂B,c
under loss

Lα iff θ̂A(X) dominates θ̂B(X) under loss Lγ0 as above.
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Proof. From (1.5), we obtain that the α-divergence losses incurred by

the predictive density estimate qθ̂1,c2 of Np(θ, σ
2
Y Ip) density is equal

to

4

1− α2



1 −
∫

Rd

(

φ( t−θ̂cσY
)

(cσY )p

)β (

φ( t−θσY )

σpY

)1−β

dt



 , (1.16)

where we have set β = 1+α
2 . With the identity φk(z) = (2π)

d
2 (1−k) φ(z

√
k),

k > 0, loss function 1.16 can be written

1

β(1− β)



1 − (2π)p/2
∫

Rp φ(
(t−θ̂)

√
β

cσY
)φ( (t−θ)

√
1−β

σY
) dt

(cβσY )d



 . (1.17)

Finally, using the following identity

∫

Rp

φ(
t− a1
b1

)φ(
t− a2
b2

) dt = (
b21 b

2
2

b21 + b22
)p/2 φ(

a1 − a2
√

b21 + b22
) , ai ∈ R

p, bi ∈ R+, i = 1, 2,

for a1 = θ̂, a2 = θ, b1 =
cσY√
β
, b2 =

σY√
1−β , loss function (1.17) reduces

to 1− f + fLγ0(θ, θ̂) with f = cp(1−β)

(c2(1−β)+β)p and γ0 =
c2(1−β)+β
β(1−β) σ2Y , thus

establishing the result.

1.3 Point estimation in restricted parameter spaces

Here are some observations on point estimation problems for con-

strained on parameters which arise in this thesis. Consider a random

vector X having a normal distribution Np(θ, σ
2 Ip). In many practi-

cal situations, θ = (θ1, . . . , θp) is restricted to a strict subset of Rp.

Some of the common constraints in the literature on the parameter

space are as follows:

(i) complete order constraints θ1 ≥ θ2 ≥ · · · ≥ θp.
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(ii) spherical constraints ‖θ‖ ≤ m , where ‖ · ‖ is the Euclidean

norm.

(iii) complete (incomplete) order and bounded constraints, m1 ≥
θ1 ≥ θ2 ≥ · · · ≥ θp ≥ m2.

(iv) umbrella constraints such as, e.g., θ1 ≤ θ2 ≤ · · · ≤ θi ≥ θi+1 ≥
· · · ≥ θp and for some i = 2, . . . , p− 1.

(v) tree order constraints θ1 ≤ θi, for i = 2, . . . , p .

Notice that the benchmark estimator X becomes undesirable and

inadmissible under such restrictions. It remains minimax for many

cases (see Marchand and Strawderman [14]). This thesis makes use

of findings in the restricted parameter literature and useful references

include van Eeden [15], as well as Marchand and Strawderman [16].

In particular, we will make use of findings on point estimation with

additional information as expanded upon below in Lemma 1.3.8 and

1.3.9, as well as a lovely result due to Hartigan which is as follows.

Theorem 1.3.7 (Hartigan’s Theorem). Let X ∼ Np(θ, σ
2 Ip) and

θ ∈ C, where C is a convex subset in R
p with non empty interior.

Then the Bayes estimator δ(X) with respect to uniform prior on C

dominates X under SEL.

The following lemma proposes a class of estimators for normal pop-

ulations which can be transformed to capitalize on estimation prob-

lems in constrained parameter spaces. The key technical aspect con-

sists of subdividing the estimation problem into distinct pieces that

can be handled separately. This relates to the early work of Blumen-

thal and Cohen [17], as well as Cohen and Sackrowitz [18]. More re-

cent contributions, using the so–called rotation technique are due to
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van Eeden and Zidek [19]. Lemma 1.3.8 can be found in Marchand

and Strawderman [16].

Lemma 1.3.8. Suppose X1, X2 are independently distributed as Np(θ1, σ
2
1 Ip)

and Np(θ2, σ
2
2 Ip) respectively with θ1−θ2 ∈ A, where A being a proper

subset of Rp, and σ21 and σ
2
2 are known. For estimating θ1 under SEL

consider the subclass of estimators

C = {δψ : δψ(X1, X2) = X ′
2 + ψ(X ′

1)} , (1.18)

where X ′
1 = X1−X2

1+r , X ′
2 = r X1+X2

1+r and r = σ2
2

σ2
1
. Then δψ1

dominates

δψ0
in estimating θ1, iff ψ1(X

′
1) dominates ψ0(X

′
1) as an estimator

of θ′1 =
θ1−θ2
1+r under the model X ′

1 ∼ Np(θ
′
1 =

θ1−θ2
1+r ,

σ2
1

1+r Ip) with θ′1 ∈
{t : (1 + r)t ∈ A}.

Proof. It can be seen thatX ′
1 andX

′
2 are independent and distributed

as Np(θ
′
1 =

θ1−θ2
1+r ,

σ2
1

1+r Ip) and Np(θ
′
2 =

rθ1+θ2
1+r ,

rσ2
1

1+r Ip) respectively. The

risk function of δψ can be decomposed as

R(δψ, θ) = Eθ

(

∥

∥

∥

∥

(

X ′
2 −

rθ1 + θ2
1 + r

)

+

(

ψ(X ′
1)−

rθ1 − θ2
1 + r

)∥

∥

∥

∥

2
)

= Eθ

(

‖(X ′
2 − θ′2)‖2

)

+ Eθ

(

‖(ψ(X ′
1)− θ′1)‖2

)

,

given the independence of X ′
1 and X

′
2, establishing the result.

As an example, consider δψ0
(X1, X2) = X1, i.e. the unrestricted

MLE, and A be a convex set with a non empty interior. This esti-

mator belongs to the subclass C in (1.18) with ψ0(X
′
1) = X ′

1. The-

orem 1.3.7 applies to ψ0(X
′
1) and tells us that the Bayes estimator

ψu(X
′
1) of θ

′
1 with respect to a uniform prior on θ1−θ2 ∈ A dominates
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ψ0(X
′
1) = X ′

1. Making use of Lemma 1.3.8 with ψ1 = ψu, we obtain

δψu
(X1, X2) = X ′

2 + ψu(X
′
1) , (1.19)

which is also Bayes for the problem with prior π(θ1, θ2) = IA(θ1−θ2).
For further applications we refer to Marchand and Strawderman [16].

The following lemma relates to the unknown variance σ2 and repre-

sents a novel extension of Marchand et al. [20] to the multivariate

case.

Lemma 1.3.9. Let Xi ∼ Np(θi, σ
2Ip), S

2
i ∼ Gamma(n−1

2 , 2σ2), i =

1, 2, n ≥ 2, be independent with unknown σ2. Assume that θ1− θ2 ∈
A and the objective is to estimate θ1 under the loss ‖δ−θ1σ ‖2. Set,

U1 =
X1 −X2

2
, U2 =

X1 +X2

2
, W =

S2
1 + S2

2

2
, µ1 =

θ1 − θ2
2

, µ2 =
θ1 + θ2

2
.

Then, estimators of the form δφ(U1, U2,W ) = U2 + φ(U1,W ), have

risk given by

R((θ1, θ2, σ), δφ) =
1

2
+

1

σ2
E
U1,W‖φ(U1,W )− µ1‖2.

In addition, δφ1 dominates δφ2 iff φ1 dominates φ2 as an estimator of

µ1 under the restriction of 2µ1 ∈ A, loss ‖φ− µ1‖2 based on (U1,W )

with U1 ∼ Np(µ1,
σ2

2 ), W ∼ Gamma(n− 1, σ2) independent.

Proof. Since Ui ∼ N(µi,
σ2

2 ); i = 1, 2, and W ∼ Gamma(n − 1, σ2),

are independent, we can write

σ2R((θ1, θ2, σ), δ) = E
[

‖U2 + φ(U1,W )− θ1‖2
]

= E
[

‖U2 − µ2‖2 + ‖φ(U1,W )− µ1‖2
]

=
pσ2

2
+ E

[

‖φ(U1,W )− µ1‖2
]

.
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Furthermore, the dominance result is a direct consequence of the

representation of the risk of δφ.

Example 1.3.4. Consider X1, the MRE estimator of θ1 under the

scaled invariant loss ‖δ−θ1σ ‖2.
In the presence of second sample and the additional information θ1 ≥
θ2, X1 is dominated by the class of estimators forming U2+φ(U1,W )

according to Lemma 1.3.9. For more information on possible forms

of φ(U1,W ), see Kortbi and Marchand [21].

1.4 Bayes estimators and predictive density es-

timators in exponential families

We discuss here representations of Bayes point estimators and pre-

dictive density estimators for exponential family densities of the form

X|η ∼ pη(x) = h1(x) exp
{

ηT s1(x)− c1(η)
}

, x ∈ R
p ,

Y |η ∼ qη(y) = h2(y) exp{ηT s2(y)− c2(η)} , y ∈ R
p , (1.20)

where η ∈ R
p is a natural parameter. The results of Chapter 4 relate

to such densities. Although the predictive densities of Chapters 2

and 3 related to normal models, it is of interest to expand on more

general properties for KL and RKL loss functions.

Based on X in model (1.20), there exists an exponential family of

conjugate priors

π(η|λ) = h0(η) exp
{

λT1 η + λT2 (−c(η))− c0(λ)
}

, (1.21)

which also belong to model (1.20), with known λ = (λ1, λ2)
T . Thus,

the posterior densities π(η|x, λ) based on independent X−copies
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X1, . . . , Xn, have the form

π(η|x, λ) ∝ h(η) exp
{

λ∗
T

1 (x)η + λ∗2(−c(η))
}

,

where λ∗1(x) = λ1+
∑n

1 s1(xi) and λ
∗
2 = λ2+n. Furthermore, accord-

ing to (1.2), the Bayesian predictive density for KL loss and prior

density π for η with cdf of G(·), is given by

q(y|x) =
∫

p(y|η) π(η|x, λ) dG(η)

= exp {c (λ∗1(x) + y, λ∗2 + 1)} / exp {c (λ∗1(x), λ∗2)} . (1.22)

For more information, see Brown [22].

Next, we consider RKL loss and we are concerned with Bayes pre-

dictive density estimators and their frequentist risk. It is known

that Bayes predictive density estimators based on model (1.20) are

plug–in density estimators as obtained by Yanagimoto and Ohnishi

[23].

Theorem 1.4.10. For model (1.20), the RKL loss, a prior measure

π for η such that the posterior exists, the corresponding Bayes pre-

dictive density q̂π is the plug-in density qη̂, with η̂(X) = Eπ(η|X) the

posterior expectation.

Proof. See the proof of Theorem 2.6.34.

Theorem 1.4.11. For model (1.20), RKL frequentist risk of a plug-

in estimator is equivalent to the frequentist risk Rdual for the problem

of estimating η based on X under the dual loss

Ldual(η, η̂) =
∑

i

(η̂i − ηi)Eη̂(s2i(Y )) + (c2(η)− c2(η̂)) .
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q(y|η) η Ldual(η, η̂)
Poisson(λ) log(λ) (η̂ − η)eη̂ + (eη − eη̂)

Np(µ, νY Ip), known νY µ ‖η̂−η‖2
2νY

Np(µ, νY Ip), unknown νY η1 =
1
νY
; ηi+1 =

µi
νY

p
2
(η1
η̂1

− log(η1
η̂1
)− 1) + 1

2

√
η1
∑

i≥2(
ηi
η1

− η̂i
η̂1
)2

Binomial(n, p) log( p
1−p) n

(

(η̂ − η) eη̂

1+eη̂
+ log(1+e

η

1+eη̂
)
)

Gamma(α, β), known α β α
(

η
η̂
− log(η

η̂
)− 1

)

NegativeBinomial(k, p) log(1− p) k
{

(η̂ − η)( eη̂

1−eη̂ ) + log(1−e
η̂

1−eη )
}

Pareto (pdf α
yα+11(1,∞)(y)) α η

η̂
− log(η

η̂
)− 1

Table 1.1: Some densities from model (1.20) with their natural parameters
and dual losses.

Furthermore, the Bayes estimator of η under Ldual is given by the

posterior expectation E(η|X).

Proof. See the proof of Theorem 2.6.35.

Example 1.4.5. Theorem 1.4.10 tells us that the Bayes density

estimator under RKL loss based on model (1.20) is given by the

same model but with parameter η(X) = Eπ(η|X). For instance, (i)

q̂π(·, X) ∼ Poisson(eE(log(λ)|X)), in the Poisson(λ) case, (ii) q̂π(·, X) ∼
Np(E(µ|X)), νY Ip) in the Np(µ, νY Ip) case with known νY , and (iii)

q̂π(·, X) ∼ Np(
E( µ

νY
|X)

E( 1
νY

|X)
,

Ip
E( 1

νY
|X)

) in the Np(µ, νY Ip) case with unknown

µ, νY . For other examples, we refer to Table 1.1.

1.5 Skew–normal and other skewed distributions

In this thesis, several skew–normal and skew–Student t distribution

will arise, namely generalized Balakrishnan type skew–normal dis-

tribution and generalized skew–Student t distribution. These distri-

butions arise below as posterior and predictive distributions. Such

relationships have appeared in the large literature on skew–normal

distributions (e.g., Liseo and Loperfido [3]).



23

1.5.1 Generalized Balakrishnan type skew-normal distri-

bution

Definition 1.5.12. A p–variate random variable T is said to have a

generalized Balakrishnan type skew–normal distribution, with shape

parameters n ∈ N+, α0 ∈ R, α1 ∈ R
p, location and scale parameters

ξ ∈ R
p and τ ∈ R respectively, denoted by SNp(n, α0, α1, ξ, τ), when

it admits the pdf

1

Kn(α0, α1)

1

τ p
φp(

t− ξ

τ
) Φn(α0 + αT1

t− ξ

τ
) t ∈ R

p, (1.23)

where

Kn(α0, α1) = Φn

(

α0
√

1 + αT1 α1

, · · · , α0
√

1 + αT1 α1

; ρ =
αT1 α1

1 + αT1 α1

)

,

(1.24)

φp(·) is the pdf of a p variate normal distribution, Φ(·) is cdf of a

univariate standard normal density and Φn(·; ρ) represents the cdf of
a Nn(0,Λ) distribution with covariance matrix Λ = (1−ρ) In+ρ InI ′n.

Remark 1.5.13. For α0 = 0 and p = 1, the densities in (1.23) were

proposed by Balakrishnan as a discussant of Arnold and Beaver [24],

and further analyzed by Gupta and Gupta [25]. for the normalization

constant, we have indeed

Kn(α0, α1) =

∫

R

φ(z)Φn(α0 + α1z) dz

= P(∩ni=1{Ui ≤ α0 + α1U0})
= P(∩ni=1{Wi ≤

α0
√

1 + α2
1

}) , (1.25)

where (U0, . . . , Un) ∼ Nn+1(0, In+1), Wi
d
= Ui−α1 U0√

1+α2
1

, for i = 1, . . . , n,

and (W1, . . . ,Wn) ∼ Nn(0,Λ).
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Remark 1.5.14. In Definition 1.5.12, setting n = 1 yields K1(α0, α1) =

Φ( α0√
1+αT

1 α1

). Properties of SN1(1, α0, α1, ξ, τ) were described by Arnold

et al. [26], as well as Arnold and Beaver [24].

Lemma 1.5.15. For T ∼ SNp(n, α0, α1, ξ, τ) and k ∈ N, we have

E(T k) = ξ+(k−1)E(T k−2)+
τnα1
√

1 + α2
1

φ(
α0

√

1 + α2
1

)
Kn−1(

α0

1+α2
1
, α1√

1+α2
1

)

Kn(α0, α1)
E (W k−1),

where W ∼ SNp(
n−1,α0

1+α2
1
, α0

1+α2
1
). From this, we have

E(T ) = ξ + τ
nα1

√

1 + α2
1

φ(
α0

√

1 + α2
1

)
Kn−1(

α0√
1+α2

1

, α1√
1+α2

1

)

Kn(α0, α1)
. (1.26)

Proof. By applying Stein’s identity as well as setting Z = (T − ξ)/τ ,

we have

∫

zkφ(z) Φn(α0 + α1z) dz =

∫

φ(z)
∂

∂z

(

zk−1Φn(α0 + α1z)
)

dz =

(k − 1)EZk−2Kn(α0 + α1) + nα1

∫

zk−1φ(z)φ(α0 + α1z) Φ
n−1(α0 + α1z) dz.

The result follows by using the identity φ(z)φ(α0+α1z) = φ( α0√
1+α2

1

)φ(
√

1 + α2
1 z

α0α1√
1+α2

1

), the change of variables v =
√

1 + α2
1 z+

α0α1√
1+α2

1

, and the def-

inition of Kn−1.

Remark 1.5.16. One can verify that setting n = 1 in equation

(1.26), yields

E(T ) = ξ + τ
α1

√

1 + α2
1

R(
α0

√

1 + α2
1

) , (1.27)

where R(·) = φ(·)
Φ(·) is the inverse Mill’s ratio. In addition, the par-

ticular case α0 = 0 and p = 1 reduces to the original skew normal

density introduced by Azzalini [27].
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Figures 1.1 depicts density (1.23) for p = 1, α0 = 1, α1 = 2, ξ = 0 and

τ = 1 for different values of n, while Figures 1.2 and 1.3 illustrate

the corresponding density for n = 3, p = 1 and different values of α0

and α1 respectively.

Figure 1.1: Density of SN1(n, 1, 2, 0, 1) for n = 1, 3 and 10.

Figure 1.2: Density of SN1(3, α0, 2, 0, 1) for α0 = −2, 0 and 2.

Figure 1.3: Density of SN1(3, 1, α1, 0, 1) for α1 = −2, 0 and 2.
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There exists other types of skew–normal densities, introduced by

Arnold [26], which will arise in Chapter 2, defined as below.

Definition 1.5.17. The density of a skew–normal random variable,

with shape parameters α0 ∈ R, α1 ∈ R
p, α2 ∈ R, (α2 < α0) and

location and scale parameters ξ ∈ R
p and τ ∈ R respectively, denoted

SNp(α0, α1, α2, ξ, τ), is given by

1

τ p
φ(
t− ξ

τ
)
Φ(α0 + αT1

t−ξ
τ )− Φ(α2 + αT1

t−ξ
τ )

Φ( α0√
1+αT

1 α1

)− Φ( α2√
1+αT

1 α1

)
, t ∈ R

p . (1.28)

As above, one can obtain the expectation

E(T ) = ξ + τ
α1

√

1 + αT1 α1

φ( α0√
1+αT

1 α1

)− φ( α2√
1+αT

1 α1

)

Φ( α0√
1+α2

1

)− Φ( α2√
1+αT

1 α1

)
.

If we consider α2 → +∞, in equation (1.28), we obtain the density

in (1.23).

1.5.2 Skew-Student t distribution

Definition 1.5.18 (Student t distribution). A p–variate Student

t distribution with degrees of freedom ν > 0, location parameter ξ

and scale parameter τ , denoted by Tp(ν, ξ, τ) has density on R
p given

by

fν,ξ,τ(t) =
1

τ p
Γ(ν+p2 )

Γ(ν2)(πν)
d
2

(

1 +
‖t− ξ‖2
ντ 2

)− ν+p
2

.

Another popular representative of the family of skewed distributions

is the skew–Student t distribution, introduced by Azzalini and Cap-

itanio [28], for which the symmetric base distribution is a Student t
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distribution.

The following definition introduces general form of skew–Student t

distributions related to Arellano-Valle and Genton [29].

Definition 1.5.19 (Skew–Student t distribution). A random

variable follows a skew–Student t distribution, denoted by STp(ν, α0, α1, ξ, τ)

with location ξ ∈ R
p, scale τ > 0, ν ∈ R+, α1 ∈ R

p and α0 ∈ R if

Z = (T − ξ)/τ has pdf

fν,ξ,τ(z)
Fp

(

ν + p, (α0 + αT1 z)
√

ν+p
ν+zT z

)

Fp

(

ν, α0√
1+αT

1 α1

) , (1.29)

where fν,ξ,τ(·) denotes pdf a Student t distribution in Definition

1.5.18 and Fp(ν, ·) is cdf of a standard p–variate Student t distri-

bution. For p = 1 and α0 = 0, density (1.29) reduces to

2 t(z, ν)F1

(

ν + 1, (
ν + 1

ν + z2
)
1
2α1z

)

,

(Azzalini and Capitanio [28]), and setting α0 = α1 = 0 reduces (1.29)

to the standard Student t distribution.

We conclude another extensions

Definition 1.5.20. A random variable T follows a skew–Student t

distribution, denoted by STp(ν, α0, α1, α2, ξ, τ) with location ξ ∈ R
p,

scale τ > 0, ν ∈ R+, α1 ∈ R
p, α0, α2 ∈ R, if Z = (T − ξ)/τ ∈ R

p,

has pdf

fν,ξ,τ(z)
Fp

(

ν + p, (α0 + αT1 z)
√

ν+p
ν+zT z

)

− Fp

(

ν + p, (α2 + αT1 z)
√

ν+p
ν+zT z

)

Fp

(

ν, α0√
1+αT

1 α1

)

− Fp

(

ν, α2√
1+αT

1 α1

) ,

(1.30)
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where fν,ξ,τ(·) denotes pdf a Student t distribution in Definition

1.5.18 and Fp(ν, ·) are as defined in Definition 1.5.19.





Chapter 2

Predictive Density Estimation

When the Variance is Known

This chapter contains a manuscript jointly written with my super-

visor Professor Éric Marchand and it includes a substantial number

of findings for predictive density estimation of multivariate normal

models under α–divergence loss function in the presence of additional

information.
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Éric MARCHAND, Abdolnasser SADEGHKHANI
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Summary

Based on independently distributed X1 ∼ Np(θ1, σ
2
1Ip) and X2 ∼ Np(θ2, σ

2
2Ip), we con-

sider the efficiency of various predictive density estimators for Y1 ∼ Np(θ1, σ
2
Y Ip), with

the additional information θ1 − θ2 ∈ A and known σ21, σ
2
2, σ

2
Y . We provide improve-

ments on benchmark predictive densities such as plug-in, the maximum likelihood, and

the minimum risk equivariant predictive densities. Dominance results are obtained for

α−divergence losses and include Bayesian improvements for reverse Kullback-Leibler

loss, and Kullback-Leibler (KL) loss in the univariate case (p = 1). An ensemble of

techniques are exploited, including variance expansion (for KL loss), point estimation

duality, and concave inequalities. Representations for Bayesian predictive densities, and

in particular for q̂πU,A associated with a uniform prior for θ truncated to {θ : θ1−θ2 ∈ A},
are established and are used for the Bayesian dominance findings. Finally and inter-

estingly, these Bayesian predictive densities also relate to skew-normal distributions, as

well as new forms of such distributions.
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2.1 Introduction

2.1.1 Problem and Model

Consider independently distributed

X =

(

X1

X2

)

∼ N2p

(

θ =

(

θ1
θ2

)

, Σ =
( σ2

1Ip 0

0 σ2
2Ip

)

)

, Y1 ∼ Np(θ1, σ
2
Y Ip) , (2.1)

where X1, X2, θ1, θ2 are p−dimensional, and with the additional information (or

constraint) θ1−θ2 ∈ A ⊂ R
p, A, σ2

1, σ
2
2, σ

2
Y all known, the variances not necessarily

equal. We investigate how to gain from the additional information in providing

a predictive density q̂(·;X) as an estimate of the density qθ1(·) of Y1. Such a

density is of interest as a surrogate for qθ1 , as well as for generating either future

or missing values of Y1. The additional information θ1−θ2 ∈ A rendersX2 useful in

estimating the density of Y1 despite the independence and the otherwise unrelated

parameters.

The reduced X data of the above model is pertinent to summaries X1 and X2

that arise through a sufficiency reduction, a large sample approximation, or limit

theorems. Specific forms of A include:

(i) order constraints θ1,i−θ2,i ≥ 0 for i = 1, . . . , p ; the θ1,i and θ2,i’s representing

the components of θ1 and θ2;

(ii) rectangular constraints |θ1,i − θ2,i| ≤ mi for i = 1, . . . , p ;

(iii) spherical constraints ‖θ1 − θ2‖ ≤ m ;

(iv) order and bounded constraints m1 ≥ θ1,i ≥ θ2,i ≥ m2 for i = 1, . . . , p .

There is a very large literature on statistical inference in the presence of such

constraints, mostly for (i) (e.g., Hwang and Peddada, 1994; Dunson and Neelon,

2003; Park, Kalbfleisch and Taylor, 2014) among many others). Other sources

on estimation in restricted parameter spaces can be found in the review paper

of Marchand and Strawderman (2004), as well as the monograph by van Eeden

(2006). There exist various findings for estimation problems with additional infor-

mation, dating back to Blumenthal and Cohen (1968) and Cohen and Sackrowitz

(1970), with further contributions by van Eeden and Zidek (2001, 2003), Marchand

et al. (2008), Marchand and Strawderman (2004).
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Remark 2.1.1. Our set-up applies to various other situations that can be trans-

formed or reduced to model (2.1) with θ1 − θ2 ∈ A. Here are some examples.

(I) Consider model (2.1) with the linear constrained c1θ1 − c2θ2 + d ∈ A, c1, c2

being constants not equal to 0, and d ∈ R
p. Transforming X ′

1 = c1X1, X
′
2 =

c2X2−d, and Y ′
1 = c1Y1 leads to model (2.1) based on the triplet (X ′

1, X
′
2, Y

′
1),

expectation parameters θ′1 = c1θ1, θ
′
2 = c2θ−d, covariance matrices c2iσ

2
i Ip, i =

1, 2 and c21σ
2
Y Ip, and with the additional information θ′1 − θ′2 ∈ A. With

the class of losses being intrinsic (see Remark 2.1.2), and the study of pre-

dictive density estimation for Y ′
1 equivalent to that for Y1, our basic model

and the findings below in this paper will indeed apply for linear constrained

c1θ1 − c2θ2 + d ∈ A.

(II) Consider a bivariate normal model for X with means θ1, θ2, variances σ
2
1,

σ2
2, correlation coefficient ρ > 0, and the additional information θ1− θ2 ∈ A.

The transformation X ′
1 = X1, X

′
2 =

1√
1+ρ2

(X2− ρσ2
σ1
X1) leads to independent

coordinates with means θ′1 = θ1, θ
′
2 = 1√

1+ρ2
(θ2 − ρσ2

σ1
θ1), and variances σ2

1,

σ2
2. We thus obtain model (2.1) with the additional information θ1 − θ2 ∈ A

transformed to the linear constraint c1θ1− c2θ2+d ∈ A, as in part (I) above,

with c1 = 1 + ρσ2
σ1

, c2 =
√

1 + ρ2, and d = 0.

2.1.2 Predictive density estimation

Several loss functions are at our disposal to measure the efficiency of estimate

q̂(·; x), and these include the class of α−divergence loss functions (e.g., Csiszàr,

1967) given by

Lα(θ, q̂) =

∫

Rp

hα

(

q̂(y; x)

qθ1(y)

)

qθ1(y) dy , (2.2)

with

hα(z) =















4
1−α2 (1− z(1+α)/2) for |α| < 1

z log(z) for α = 1

− log(z) for α = −1.

Notable examples in this class include Kullback-Leibler (h−1), reverse Kullback-

Leibler (h1), and Hellinger (h0/4). For an above given loss, we measure the per-

formance of a predictive density q̂(·;X) by the frequentist risk
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Rα(θ, q̂) =

∫

R2p

Lα (θ, q̂(·; x)) pθ(x) dx , (2.3)

pθ representing the density of X.

Such a predictive density estimation framework was outlined for Kullback-Leibler

loss in the pioneering work of Aitchison and Dunsmore (1975), as well as Aitchison

(1975), and has found its way in many different fields of statistical science such as

decision theory, information theory, econometrics, machine learning, image pro-

cessing, and mathematical finance. There has been much recent Bayesian and

decision theory analysis of predictive density estimators, in particular for multi-

variate normal or spherically symmetric settings, as witnessed by the work of Ko-

maki (2001), George, Liang and Xu (2006), Brown, George and Xu (2008), Kato

(2009), Fourdrinier et al. (2011), Ghosh, Mergel and Datta (2008), Maruyama

and Strawderman (2012), Kubokawa, Marchand and Strawderman (2015, 2017),

among others.

Remark 2.1.2. We point out that losses in (2.2) are intrinsic in the sense that

predictive density estimates of the density of Y ′ = g(Y ), with invertible g : Rp →
R
p and inverse jacobian J , lead to an equivalent loss with the natural choice

q̂(g−1(y′); x) |J | as
∫

Rp

hα

(

q̂(g−1(y′); x) |J |
qθ1(g

−1(y′)) |J |

)

qθ1(g
−1(y′)) |J | dy′ =

∫

Rp

hα

(

q̂(y; x)

qθ1(y)

)

qθ1(y) dy ,

which is indeed Lα(θ, q̂) independently of g.

2.1.3 Description of main findings

In our predictive density estimation framework, we study various predictive den-

sities such as: (i) plug-in densities Np(θ̂1(X), σ2
Y Ip) including the predictive maxi-

mum likelihood estimator (MLE); (ii)minimum risk equivariant (MRE) predictive

densities q̂mre; (iii) variance expansions Np(θ̂1(X), cσ2
Y Ip), with c > 1, of plug-in

predictive densities; and (iv) Bayesian predictive densities with an emphasis on

the uniform prior for θ truncated to the information set A. Our findings concern,

except for Section 2, frequentist risk performance as in (2.3), and related domi-

nated dominance results covering the class of α−divergence losses Lα, as well as

various types of information sets A.
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Subsection 3.1 provides Kullback-Leibler improvements on plug-in densities by

variance expansion. We make use of a technique due to Fourdrinier et al. (2011),

which is universal with respect to p and A and requiring a determination, or

lower-bound, of the infimum mean squared error of the plug-in estimator. Such

a determination is facilitated by a mean squared error decomposition (Lemma

2.3.14) expressing the risk in terms of the risk of a one-population restricted pa-

rameter space estimation problem. Such a decomposition appears in Marchand

and Strawderman (2004).

The dominance results of Subsection 3.2 apply to Lα losses and exploit point

estimation duality. The targeted predictive densities to be improved upon include

plug-in densities, q̂mre, and more generally predictive densities of the form q̂θ̂1,c ∼
Np(θ̂1(X), cσ2

Y Ip). The focus here is on improving on plug-in estimates θ̂1(X)

by exploiting a correspondence with the problem of estimating θ1 under a dual

loss. Both Kullback-Leibler and reverse Kullback-Leibler losses lead to dual mean

squared error performance. In turn, as in Marchand and Strawderman (2004), the

above risk decomposition relates this performance to a restricted parameter space

problem. Results for such problems are thus borrowable to infer dominance results

for the original predictive density estimation problem. For other α−divergence

losses, the strategy is similar, with the added difficulty that the dual loss relates to

a reflected normal loss. But, this is handled through a concave inequality technique

(e.g., Kubokawa, Marchand and Strawderman, 2015) relating risk comparisons to

mean squared error comparisons. Several examples complement the presentation

of Section 3.

Sections 2, 4, and 5 relate to Bayesian predictive densities, and especially to the

Bayes procedure q̂πU,A with respect to the uniform prior IA(θ1−θ2) restricted to A.

Section 2 presents various representations for q̂πU,A , with examples connecting not

only to known skewed-normal distributions, but also to seemingly new families of

skewed-normal type distributions. Section 4 contains Bayesian dominance results

for both reverse Kullback-Leibler and Kullback-Leibler losses. The case of reverse

Kullback-Leibler loss, which is addressed in Subsection 4.1, is special as Bayes

predictive densities are necessarily plug-in predictive densities, as expanded upon

for exponential families in the Appendix. This represents a slight extension of a

result due to Yanigimoto and Ohnishi (2009). Moreover, the duality with squared

error loss opens the way for Bayesian dominance results. Kullback-Leibler analysis

is more challenging, but two dominance findings are obtained in Subsection 4.2.
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For p = 1, and both θ1 ≥ θ2 or |θ1 − θ2| ≤ m, using Section 2’s representations,

we show that the Bayes predictive density q̂πU,A improves on q̂mre under Kullback-

Leibler loss. Finally, numerical illustrations are presented and commented upon

in Section 5.

2.2 Bayesian predictive density estimators and

skewed normal type distributions

2.2.1 Bayesian predictive density estimators

We provide here a general representation of the Bayes predictive density estimator

of the density of Y1 in model (2.1) associated with a uniform prior on the additional

information set A. Multivariate normal priors truncated to A are plausible choices

that are also conjugate, lead to similar results, but will not be further considered

in this manuscript. Throughout this manuscript, starting with the next result, we

denote φ as the Np(0, Ip) p.d.f.

Lemma 2.2.3. Consider model (2.1), a Bayes predictive density q̂π with respect to

prior π for θ, and the Bayes predictive density q̂πU,A with respect to the (uniform)

prior πU,A(θ) = IA(θ1 − θ2) for α-divergence loss Lα in (2.2).

(a) For −1 ≤ α < 1, we have

q̂πU,A(y1; x) ∝ q̂mre(y1; x1) I
2

1−α (y1; x) , (2.4)

with q̂mre(y1; x1) the minimum risk predictive density estimator based on x1

given by a Np(x1, (σ
2
1
(1−α)

2
+ σ2

Y )Ip) density, and I(y1; x) = P(T ∈ A), with

T ∼ Np (µT , σ
2
T Ip), µT = β(y1 − x1) + (x1 − x2), σ

2
T =

2σ2
1σ

2
Y

(1−α)σ2
1+2σ2

Y

+ σ2
2, and

β =
(1−α)σ2

1

(1−α)σ2
1+2σ2

Y

.

(b) For α = 1 (i.e., reverse Kullback-Leibler loss), we have

q̂π(y1; x) ∼ Np(E(θ1|x), σ2
Y Ip) , (2.5)

where E(θ1|x) is the posterior expectation of θ1.
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Proof. (a) As shown by Corcuera and Giummolè (1999), the Bayes predictive

density estimator of the density of Y1 in (2.1) under loss Lα, α 6= 1, is given by

q̂πU,A(y1; x) ∝
{∫

Rp

∫

Rp

φ(1−α)/2(
y1 − θ1
σY

) π(θ1, θ2|x) dθ1 dθ2
}2/1−α

.

With prior measure πU,A(θ) = IA(θ1 − θ2), we obtain

q̂πU,A(y1; x) ∝







∫

Rp

∫

Rp

φ(
y1 − θ1
√

2
1−ασ

2
Y

)φ(
θ1 − x1
σ1

)φ(
θ2 − x2
σ2

) IA(θ1 − θ2) dθ1 dθ2







2/1−α

,

given that φm(z) ∝ φ(m1/2z) for m > 0. By the decomposition

‖θ1 − y1‖2
a

+
‖θ1 − x1‖2

b
=

‖y1 − x1‖2
a+ b

+
‖θ1 − w‖2

σ2
w

,

with a =
2σ2
Y

1−α , b = σ2
1, and w = by1+ax1

a+b
= βy1+(1−β)x1, σ

2
w = ab

a+b
=

2σ2
1σ

2
Y

2σ2
Y +(1−α)σ2

1
,

we obtain

q̂πU,A(y1; x) ∝ φ2/(1−α)(
y1 − x1

√

2σ2
Y

1−α + σ2
1

)

{∫

R2p

φ(
θ1 − w

σw
)φ(

θ2 − x2
σ2

) IA(θ1 − θ2) dθ1 dθ2

}2/1−α

∝ q̂mre(y1; x1) {P(Z1 − Z2 ∈ A)}2/1−α ,

with Z1, Z2 independently distributed as Z1 ∼ Np(w, σ
2
w), Z2 ∼ Np(x2, σ

2
2). The

result follows by setting T =d Z1 − Z2.

(b) This part is a consequence of Theorem 2.6.34, which is a general result for

exponential families; presented in the Appendix; and which establishes that Bayes

predictive densities are necessarily plug–in predictive densities. See Example 2.6.5

for details.

The general form of the Bayes predictive density estimator q̂πU,A is thus a weighted

version of q̂mre, with the weight a multivariate normal probability raised to the

2/(1−α)th power which is a function of y1 and which depends on x, α,A. Observe

that the representation applies in the trivial case A = R
p, yielding I = 1 and q̂mre

as the Bayes estimator. As expanded on in Subsection 2.2.2, the densities q̂πU,A

for Kullback-Leibler loss relate to skew-normal distributions, and more generally

to skewed distributions arising from selection (see for instance Arnold and Beaver,
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2002; Arellano-Valle, Branco and Genton, 2006; among others). Moreover, it is

known (e.g. Liseo and Loperfido, 2003) that posterior distributions present here

also relate to such skew-normal type distributions. Lemma 2.2.3 does not address

the evaluation of the normalization constant for the Bayes predictive density q̂πU,A ,

but we now proceed with this for the particular cases of Kullback-Leibler and

Hellinger losses, and more generally for cases where 2
1−α is a positive integer, i.e.,

α = 1− 2
n
where n = 1, 2, . . .. In what follows, we denote 1m as the m dimensional

column vector with components equal to 1, and ⊗ as the usual Kronecker product.

Lemma 2.2.4. For model (2.1), α−divergence loss with n = 2
1−α ∈ {1, 2, . . .}, the

Bayes predictive density q̂πU,A(y1; x) , y1 ∈ R
p, with respect to the (uniform) prior

πU,A(θ) = IA(θ1 − θ2), is given by

q̂πU,A(y1; x) = q̂mre(y1; x1)
{P(T ∈ A)}n

P(∩ni=1{Zi ∈ A}) , (2.6)

with q̂mre(y1; x1) a Np(x1, (σ
2
1/n + σ2

Y )Ip) density, T ∼ Np(µT , σ
2
T Ip) with µT =

β(y1 − x1) + (x1 − x2), σ
2
T = σ2

2 + nσ2
Y β, β =

σ2
1

σ2
1+nσ

2
Y

, and Z = (Z1, . . . , Zn)
′ ∼

Nnp(µZ ,ΣZ) with µZ = 1n⊗ (x1−x2) and ΣZ = (σ2
T +σ2

Y β
2)Inp+(

β2σ2
1

n
1n1

′
n⊗ Ip)

Remark 2.2.5. The Kullback-Leibler case corresponds to n = 1 and the above

form of the Bayes predictive density simplifies to

q̂πU,A(y1; x) = q̂mre(y1; x1)
P(T ∈ A)

P(Z1 ∈ A)
, (2.7)

with q̂mre(y1; x1) a Np(x1, (σ
2
1 + σ2

Y )Ip) density, T ∼ Np(µT , σ
2
T Ip) with µT =

σ2
1

σ2
1+σ

2
Y

(y1−x1)+(x1−x2) and σ2
T =

σ2
1σ

2
Y

σ2
1+σ

2
Y

+σ2
2, and Z1 ∼ Np(x1−x2, (σ2

1+σ
2
2)Ip).

In the univariate case (i.e., p = 1), T is univariate normally distributed and the

expectation and covariance matrix of Z simplify to 1n(x1−x2) and (σ2
T+σ

2
Y β

2)In +

β2 σ
2
1

n
1n1

′
n respectively. Finally, we point out that the diagonal elements of ΣZ

simplify to σ2
1 + σ2

2, a result which will arise below several times.

Proof of Lemma 2.2.4. It suffices to evaluate the normalization constant (say

C) for the predictive density in (2.4). We have

C =

∫

Rp

q̂mre(y1; x1) {P(T ∈ A)}n dy1

=

∫

Rp

q̂mre(y1; x1)P (∩ni=1{Ti ∈ A}) dy1 ,
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with T1, . . . , Tn independent copies of T . With the change of variables u0 =
y1−x1√
σ2
1/n+σ

2
Y

and letting U0, U1, . . . , Un i.i.d. Np(0, Ip), we obtain

C =

∫

Rp

φ(u0)P

(

∩ni=1{σTUi + βu0

√

σ2
1/n+ σ2

Y + x1 − x2} ∈ A

)

du0

= P

(

∩ni=1{σTUi + βU0

√

σ2
1/n+ σ2

Y + x1 − x2} ∈ A

)

,

= P (∩ni=1{Zi ∈ A}) .

The result follows by verifying that the expectation and covariance matrix of

Z = (Z1, . . . , Zn)
′ are as stated.

The next result presents a useful posterior distribution decomposition, with an

accompanying representation of the posterior expectation E(θ1|x) in terms of a

truncated multivariate normal expectation. The latter characterizes the Bayes

predictive density under reverse Kullback-Leibler loss in accordance with Lemma

2.2.3, as well as coincide with the expectation under the Bayes Kullback-Leibler

predictive density q̂πU,A . Specific examples will be presented in Subsection 2.3.4.

Lemma 2.2.6. Consider X|θ as in model (2.1) and the uniform prior πU,A(θ) =

IA(θ1 − θ2). Set r =
σ2
2

σ2
1
, ω1 = θ1 − θ2, and ω2 = rθ1 + θ2. Then, conditional on

X = x, ω1 and ω2 are independently distributed with

ω1 ∼ Np(µω1 , τ
2
ω1
) truncated to A, ω2 ∼ Np(µω2 , τ

2
ω2
) ,

µω1 = x1 − x2, µω2 = rx1 + x2, τ
2
ω1

= σ2
1 + σ2

2, and τ
2
ω2

= 2σ2
2. Furthermore, we

have E(θ1|x) = 1
1+r

(E(ω1|x) + µω2).

Proof. With the posterior density π(θ|x) ∝ φ( θ1−x1
σ1

) φ( θ2−x2
σ2

) IA(θ1 − θ2), the

result follows by transforming to (ω1, ω2).

2.2.2 Examples of Bayesian predictive density estimators

With the presentation of the Bayes predictive estimator q̂πU,A in Lemmas 2.2.3

and 2.2.4, which is quite general with respect to the dimension p, the additional

information set A, and the α−divergence loss, it is pertinent and instructive to con-

tinue with some illustrations. Moreover, various skewed-normal or skewed-normal
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type, including new extensions, arise as predictive density estimators. Such dis-

tributions have indeed generated much interest for the last thirty years or so, and

continue to do so, as witnessed by the large literature devoted to their study. The

most familiar choices of α−divergence loss are Kullback-Leibler and Hellinger (i.e.,

n = 2
1−α = 1, 2 below) but the form of the Bayes predictive density estimator q̂πU,A

is nevertheless expanded upon below in the context of Lemma 2.2.4, in view of

the connections with an extended family of skewed-normal type distributions (e.g.,

Definition 2.2.7), which is also of independent interest.

Subsections 2.2.1, 2.2.2, 2.2.3. deal with Kullback-Leibler and α−divergence losses

for situations: (i) p = 1, A = R+; (ii) p = 1, A = [−m,m]; (iii) p ≥ 1 and A a

ball of radius m centered at the origin, while Subsection 2.2.4. deals with reverse

Kullback-Leibler loss.

2.2.2.1 Univariate case with θ1 ≥ θ2

From (2.6), we obtain for p = 1, A = R+: P(T ∈ A) = Φ(µT
σT

) and

q̂πU,A(y1; x) ∝
1

√

σ2
1/n+ σ2

Y

φ(
y1 − x1

√

σ2
1/n+ σ2

Y

) Φn(
β(y1 − x1) + (x1 − x2)

σT
) , (2.8)

with β and σ2
T given in Lemma 2.2.4. These densities match the following family

of densities.

Definition 2.2.7. A generalized Balakrishnan type skewed-normal distribution,

with shape parameters n ∈ N+, α0, α1 ∈ R, location and scale parameters ξ and

τ , denoted SN(n, α0, α1, ξ, τ), has density on R given by

1

Kn(α0, α1)

1

τ
φ(
t− ξ

τ
) Φn(α0 + α1

t− ξ

τ
) , (2.9)

with

Kn(α0, α1) = Φn

(

α0
√

1 + α2
1

, · · · , α0
√

1 + α2
1

; ρ =
α2
1

1 + α2
1

)

,

Φn(·; ρ) representing the cdf of a Nn(0,Λ) distribution with covariance matrix

Λ = (1− ρ) In + ρ 1n1
′
n.
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Remark 2.2.8. (The case n = 1)

SN(1, α0, α1, ξ, τ) densities are given by (2.9) with n = 1 and K1(α0, α1) = Φ( α0√
1+α2

1

).

Properties of SN(1, α0, α1, ξ, τ) distributions were described by Arnold et al. (1993),

as well as Arnold and Beaver (2002), with the particular case α0 = 0 reduc-

ing to the original skew normal density modulo a location-scale transformation

as presented in Azzalini’s seminal 1985 paper. Namely, the expectation of T ∼
SN(1, α0, α1, ξ, τ) is given by

E(T ) = ξ + τ
α1

√

1 + α2
1

R(
α0

√

1 + α2
1

) , (2.10)

with R =: φ
Φ
known as the inverse Mill’s ratio.

Remark 2.2.9. For α0 = 0, n = 2, 3, . . ., the densities were proposed by Balakrish-

nan as a discussant of Arnold and Beaver (2002), and further analyzed by Gupta

and Gupta (2004). We are not aware of an explicit treatment of such distributions

in the general case, but standard techniques may be used to derive the following

properties. For instance, as handled more generally above in the proof of Lemma

2.2.4, the normalization constant Kn may be expressed in terms of a multivariate

normal c.d.f. by observing that

Kn(α0, α1) =

∫

R

φ(z)Φn(α0 + α1z) dz

= P(∩ni=1{Ui ≤ α0 + α1U0})

= P(∩ni=1{Wi ≤
α0

√

1 + α2
1

}) ,

with (U0, . . . , Un) ∼ Nn+1(0, In+1),Wi
d
= Ui−α1 U0√

1+α2
1

, for i = 1, . . . , n, and (W1, . . . ,Wn) ∼
Nn(0,Λ).

In terms of expectation, we have, for T ∼ SN(n, α0, α1, ξ, τ), E(T ) = ξ + τE(W )

where W ∼ SN(n, α0, α1, 0, 1) and

E(W ) =
nα1

√

1 + α2
1

φ(
α0

√

1 + α2
1

)
Kn−1(

α0√
1+α2

1

, α1√
1+α2

1

)

Kn(α0, α1)
. (2.11)
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This can be obtained via Stein’s identity EUg(U) = Eg′(U) for differentiable g

and U ∼ N(0, 1). Indeed, we have

∫

R

uφ(u) Φn(α0 + α1u) du = nα1

∫

R

φ(u)φ(α0 + α1u) Φ
n−1(α0 + α1u) du

and the result follows by making use of the identity φ(u)φ(α0+α1u) = φ( α0√
1+α2

1

)φ(v),

with v =
√

1 + α2
1 u + α0α1√

1+α2
1

, as well as the change of variables u → v and the

definition of Kn−1.

The connection between the densities of Definition 2.2.7 and the predictive den-

sities in (2.8) is thus explicitly stated as follows, with the Kullback-Leibler and

Hellinger cases corresponding to n = 1, 2 respectively.

Corollary 2.2.10. For p = 1, A = R+, πU,A(θ) = IA(θ1−θ2), the Bayes predictive
density estimator q̂πU,A under α−divergence loss, with n = 2

1−α ∈ N+ positive

integer, is given by a SN(n, α0 = x1−x2
σT

, α1 = βτ
σT
, ξ = x1, τ =

√

σ2
1

n
+ σ2

Y ) density,

with σ2
T = σ2

2 + nβσ2
Y and β =

σ2
1

σ2
1+nσ

2
Y

.

Remark 2.2.11. For the equal variances case with σ2
1 = σ2

2 = σ2
Y = σ2, the above

predictive density estimator is a SN(n, α0 =
√

n+1
(2n+1)σ

(x1−x2), α1 =
√

1
n(2n+1)

, ξ =

x1, τ =
√

n+1
n
σ) density.

2.2.2.2 Univariate case with |θ1 − θ2| ≤ m

From (2.6), we obtain for p = 1, A = [−m,m]: P(T ∈ A) = Φ(µT+m
σT

)− Φ(µT−m
σT

),

and we may write

q̂πU,A(y1; x) =
1

τ
φ(
t− ξ

τ
)
{Φ(α0 + α1

t−ξ
τ
)− Φ(α2 + α1

t−ξ
τ
)}n

Jn(α0, α1, α2)
, (2.12)

with ξ = x1, τ =
√

σ2
1/n+ σ2

Y , α0 = x1−x2+m
σT

, α1 = βτ
σT

α2 = x1−x2−m
σT

, β and σ2
T

given in Lemma 2.2.4, and Jn(α0, α1, α2) (independent of ξ, τ) a special case of

the normalization constant given in (2.6).

For fixed n, the densities in (2.12) form a five-parameter family of densities

with location and scale parameters ξ ∈ R and τ ∈ R+, and shape parameters

α0, α1, α2 ∈ R such that α0 > α2. The Kullback-Leibler predictive densities
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(n = 1) match densities introduced by Arnold et al. (1993) with the normal-

ization constant in (2.12) simplifying to:

J1(α0, α1, α2) = Φ(
α0

√

1 + α2
1

)−Φ(
α2

√

1 + α2
1

) = Φ(
m− (x1 − x2)
√

σ2
1 + σ2

2

)−Φ(
−m− (x1 − x2)
√

σ2
1 + σ2

2

).

(2.13)

The corresponding expectation is readily obtained as in (2.10) and equals

E(T ) = ξ + τ
α1

√

1 + α2
1

φ( α0√
1+α2

1

)− φ( α2√
1+α2

1

)

Φ( α0√
1+α2

1

)− Φ( α2√
1+α2

1

)

= x1 +
σ2
1

√

σ2
1 + σ2

2

φ(x1−x2+m√
σ2
1+σ

2
2

)− φ(x1−x2−m√
σ2
1+σ

2
2

)

Φ(x1−x2+m√
σ2
1+σ

2
2

)− Φ(x1−x2−m√
σ2
1+σ

2
2

)
, (2.14)

by using the above values of ξ, τ, α0, α1, α2.

Hellinger loss yields the Bayes predictive density in (2.12) with n = 2, and a

calculation as in Remark 2.2.9 leads to the evaluation

J2(α0, α1, α2) = Φ2(α
′
0, α

′
0;α

′
1) + Φ2(α

′
2, α

′
2;α

′
1)− 2Φ2(α

′
0, α

′
2;α

′
1)

with α′
i =

αi√
1+α2

1

for i = 0, 1, 2.

2.2.2.3 Multivariate case with ||θ1 − θ2|| ≤ m

For p ≥ 1, the ball A = {t ∈ R
p : ||t|| ≤ m}, µT and σ2

T as given in Lemma 2.12,

the Bayes predictive density in (2.6) under α−divergence loss with 2
1−α = n ∈ N+

is expressible as

q̂πU,A ∝ q̂mre(y1; x1) {P(||T ||2 ≤ m2)}n

with T ∼ σ2
Tχ

2
p(‖µT‖2/σ2

T ), i.e., the weight attached to q̂mre is proportional to the

nth power of the c.d.f. of a non-central chi-square distribution.

For Kullback-Leibler loss, we obtain from (2.6)

q̂πU,A(y1; x) = q̂mre(y1; x1)
P(||T ||2 ≤ m2)

P(||Z1||2 ≤ m2)

= q̂mre(y1; x1)
Fp,λ1(x,y1)(m

2/σ2
T )

Fp,λ2(x)(m
2/(σ2

1 + σ2
2))

, (2.15)
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where Fp,λ represents the c.d.f. of a χ2
p(λ) distribution, λ1(x, y1) = ‖µT ‖2

σ2
T

and

λ2(x) =
‖x1−x2‖2
σ2
1+σ

2
2
. Observe that the non-centrality parameters λ1 and λ2 are ran-

dom, and themselves non-central chi-square distributed as λ1(X, Y1) ∼ χ2
p(

||θ1−θ2||2
σ2
T

)

and λ2(X) ∼ χ2
p(

||θ1−θ2||2
σ2
1+σ

2
2
).

Of course, the above predictive density (2.15) matches the Kullback-Leibler pre-

dictive density given in (2.12) for n = 1, and represents an otherwise interesting

multivariate extension.

2.2.2.4 reverse kullback-leibler loss

It follows from Lemma 2.2.3 and Lemma 2.2.6 (also see Lemma 2.4.23) that the

Bayes predictive density estimator q̂πU,A for reverse Kullback-Leibler loss, is given

by a Np(E(θ1|x), σ2
Y Ip) density with

E(θ1|x) =
1

1 + r
(E(ω1|x)+rx1+x2), with ω1 ∼ Np(x1−x2, (σ2

1+σ
2
2)Ip) truncated to A .

(2.16)

Truncated normal distributions and their expectations are familiar quantities and

thus provide expressions for such predictive densities. Alternatively, as mentioned

in the paragraph preceding Lemma 2.2.6, the expectation E(θ1|x) also matches

the expected value under the Kullback-Leibler Bayes predictive density q̂U,A. We

illustrate these two above approaches by evaluating (2.16) for the following situa-

tions.

(I) Consider p = 1, A = R+ and let T ∼ q̂πU,A corresponding to Kullback-Leibler

loss. Then, we have

E(θ1|x) = E(T ) = x1 +
σ2
1

√

σ2
1 + σ2

2

R(
x1 − x2
√

σ2
1 + σ2

2

) ,

by using directly (2.10) and Corollary 2.2.10.

(II) Similarly, for p = 1, A = [−m,m], letting let T ∼ q̂πU,A corresponding to

Kullback-Leibler loss, we have E(θ1|x) = E(T ) as given in (2.14).

(III) Consider the ball A = {t ∈ R
p : ‖t‖ ≤ m} with p ≥ 1. Observe that

E(ω1|x) = δπU,A(x
′), with x′ = x1 − x2, is the Bayes point estimator under

squared error loss based on the model X ′ ∼ Np(µ, (σ
2
1 +σ2

2)Ip) and the prior
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πU,A. Such an estimator was expressed in terms of the χ2
p(λ) c.d.f. Fp,λ by

Marchand and Perron (2001, Remark 1). From their formula and the above

connection, we obtain an evaluation of (2.16) with

E(ω1|x) = (x1 − x2)

F
p+2,

‖x1−x2‖2
σ21+σ

2
2

( m2

σ2
1+σ

2
2
)

F
p,

‖x1−x2‖2
σ21+σ

2
2

( m2

σ2
1+σ

2
2
)
.

2.3 General dominance results

We exploit different channels to obtain predictive density estimation improvements

on benchmark procedures such as the maximum likelihood predictive density es-

timator q̂mle and the minimum risk equivariant predictive density q̂mre. These

predictive density estimators are members of the larger class of densities

qθ̂1,c ∼ Np(θ̂1(X), cσ2
Y Ip) , (2.17)

with, for instance, the choice θ̂1(X) = θ̂
1,mle(X), c = 1 yielding q̂mle, and θ̂1(X) =

X, c = 1+
(1−α)σ2

1

2σ2
Y

yielding q̂mre for loss Lα. Two main strategies are exploited to

produce improvements: (A) scale expansion and (B) point estimation duality.

(A) Plug–in predictive densities qθ̂1,1 were shown in Fourdrinier et al. (2011) in

models where X2 is not observed and for Kullback-Leibler loss, to be univer-

sally deficient and improved upon uniformly in terms of risk by a subclass

of scale expansion variants qθ̂1,c with c− 1 positive and bounded above by a

constant depending on the infimum mean squared error of θ̂1. A slight adap-

tation of their result leads to dominating predictive densities of q̂mle, as well

as other plug–in predictive densities which exploit the additional informa-

tion θ1 − θ2 ∈ A, in terms of Kullback-Leibler risk. Similar improvements

by scale expansion were obtained by Kubokawa, Marchand and Strawder-

man (2015, 2017) for both integrated L1 and L2 losses, as well as in ongoing

work of LMoudden, Marchand and Kortbi for α−divergence losses, but we

will not pursue applications of these results here. This is expanded upon in

Subsection 2.3.1.
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(B) By duality, we mean that the frequentist risk performance of a predictive

density qθ̂1,c is equivalent to the point estimation frequentist risk of θ̂1 in es-

timating θ1 under an associated dual loss (e.g., Robert, 1996). For Kullback-

Leibler risk, the dual loss is squared error (Lemma 2.3.16) and our problem

connects to the problem of estimating θ1 with θ1 − θ2 ∈ A based on model

(2.1). In turn, as expanded upon in Marchand and Strawderman (2004),

improvements for the latter problem can be generated via the rotation tech-

nique (Blumenthal and Cohen, 1968, Cohen and Sackrowitz, 1970, van Eeden

and Zidek, 2001, 2003) by improvements for a related restricted parameter

space problem. Details are provided in Subsection 2.3.2.

Similarly, for α−divergence loss with α ∈ (−1, 1), the predictive density risk

performance of qθ̂1,c connects to the point estimation frequentist risk of θ̂1 in

estimating θ1, with θ1−θ2 ∈ A based on model (2.1), under reflected normal

loss Lγ0 as seen in Lemma 2.3.17 below. In turn, one can capitalize on a result

of Kukobawa, Marchand and Strawderman (2015) which provides a sufficient

condition, expressed in terms of a dominance condition under squared error

loss, for estimator θ̂1,A to dominate estimator θ̂1,B under loss Lγ0 . Then,

proceeding as above, this latter problem connects to a restricted parameter

space and analysis at this lower level provides results all the way back to the

original predictive density estimation problem. Details and illustrations are

provided in Subsection 2.3.2.

2.3.1 Improvements by variance expansion

Improvements on plug–in predictive density estimators by variance expansion

stem from the following result.

Lemma 2.3.12. Consider model (2.1) with θ1 − θ2 ∈ A, a given estimator θ̂1

of θ1, and the problem of estimating the density of Y1 under Kullback-Leibler loss

by a predictive density estimator qθ̂1,c as in (2.17). Let R = infθ{Eθ[‖θ̂1(X) −
θ1‖2]}/(pσ2

Y ), where the infimum is taken over the parameter space, i.e. {θ ∈ R
2p :

θ1 − θ2 ∈ A}, and suppose that R > 0.

(a) Then, qθ̂1,1 is inadmissible and dominated by qθ̂1,c for 1 < c < c0(1+R), with

c0(s), for s > 1, the root c ∈ (s,∞) of Gs(c) = (1− 1/c) s− log c.
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(b) Furthermore, we have s2 < c0(s) < es for all s > 1, as well as lims→∞ c0(s)/e
s =

1.

Proof. See Fourdrinier et al. (2011, Theorem 5.1) for part (a). For the first part of

(b), it suffices to show that (i) Gs(s
2) > 0 and (ii) Gs(e

s) < 0, given that Gs(·) is,
for fixed s, a decreasing function on (s,∞). We have indeed Gs(e

s) = −se−s < 0,

while Gs(s
2)|s=1 = 0 and ∂

∂s
Gs(s

2) = (1 − 1/s)2 > 0, which implies (i). Finally,

set k0(s) = log c0(s), s > 1, and observe that the definition of c0 implies that

u(k0(s)) =
k0(s)

1−e−k0(s) = s. Since u(k) increases in k ∈ (1,∞), it must be the case

that k0(s) increases in s ∈ (1,∞) with lims→∞ k0(s) ≥ lims→∞ log s2 = ∞. The

result thus follows since lims→∞ k0(s)/s = lims→∞(1− e−k0(s)) = 1.

Remark 2.3.13. Part (b) above is indicative of the large allowance in the degree of

expansion that leads to improvement on the plug–in procedure. However, among

these improvements c ∈ (1, c0(1 + R)) on qθ̂1,1, a complete subclass is given by

the choices c ∈ [1 +R, c0(1 +R)), while a minimal complete subclass of predictive

density estimators qθ̂1,c corresponds to the choices c ∈ [1 + R, 1 + R], with R =

supθ{Eθ[‖θ̂1(X) − θ1‖2]}/(pσ2
Y ), where the supremum is taken over the restricted

parameter space, with θ1 − θ2 ∈ A} (see Fourdrinier et al., 2011, Remark 5.1).

The above result is, along with Corollary 2.3.15 below, universal with respect to

the choice of the plug-in estimator θ̂1, the dimension p and the constraint set A. We

will otherwise focus below on the plug-in maximum likelihood predictive density

estimator q̂mle. The next result will be used in both this, and the following,

subsections. The first part presents a decomposition of θ̂1,mle, while the second

and third parts relate to a squared error risk decomposition of estimators given

by Marchand and Strawderman (2004).

Lemma 2.3.14. Consider the problem of estimating θ1 in model (2.1) with θ1 −
θ2 ∈ A and based on X. Set r = σ2

2/σ
2
1, µ1 = (θ1−θ2)/(1+r), µ2 = (rθ1+θ2)/(1+

r), W1 = (X1 −X2)/(1 + r),W2 = (rX1 +X2)/(1 + r), and consider the subclass

of estimators of θ1

C = {δψ : δψ(W1,W2) = W2 + ψ(W1)} . (2.18)

Then,
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(a) The maximum likelihood estimator (mle) of θ1 is a member of C with ψ(W1)

the mle of µ1 based on W1 ∼ Np(µ1, σ
2
1/(1 + r)Ip) and (1 + r)µ1 ∈ A;

(b) The frequentist risk under squared error loss ‖δ−θ1‖2 of an estimator δψ ∈ C

is equal to

R(θ, δψ) = Eµ1 [‖ψ(W1)− µ1‖2] +
pσ2

2

1 + r
; (1 + r)µ1 ∈ A; (2.19)

(c) Under squared error loss, the estimator δψ1 dominates δψ2 iff ψ1(W1) domi-

nates ψ2(W1) as an estimator of µ1 under loss ‖ψ− µ1‖2 and the constraint

(1 + r)µ1 ∈ A.

Proof. Part (c) follows immediately from part (b). As in Marchand and Straw-

derman (2004), part (b) follows since

R(θ, δψ) = Eθ

[

‖W2 + ψ(W1)− θ1‖2
]

= Eθ

[

‖ψ(W1)− µ1‖2
]

+ Eθ

[

‖W2 − µ2‖2
]

,

yielding (2.19) given that W1 and W2 are independently distributed with W2 ∼
Np(µ2, (σ

2
2/(1+ r))Ip). Similarly, for part (a), we have θ̂1,mle = µ̂1,mle+ µ̂2,mle with

µ̂2,mle(W1,W2) = W2 and µ̂1,mle(W1,W2) depending only on W1 ∼ Np(µ1, (σ
2
1/(1+

r))Ip) given the independence of W1 and W2.

Combining Lemmas 2.3.12 and 2.3.14, we obtain the following.

Corollary 2.3.15. Lemma 2.3.12 applies to plug-in predictive density estimators

qδψ ,1 ∼ Np(δψ, σ
2
Y Ip) with δψ ∈ C, as defined in (2.18), and

R =
1

σ2
Y

(

σ2
1σ

2
2

σ2
1 + σ2

2

+
1

p
inf
µ1

E[‖ψ(W1)− µ1‖2]
)

. (2.20)

Namely, qδψ ,c ∼ Np(δψ, cσ
2
Y Ip) dominates qδψ ,1 for 1 < c < c0(1 + R). Moreover,

we have c0(1 +R) ≥ (1 +R)2 ≥ (1 + 1
σ2
Y

σ2
1σ

2
2

σ2
1+σ

2
2
)2 . Finally, the above applies to the

maximum likelihood predictive density estimator

q̂mle ∼ Np(θ̂1,mle, σ
2
Y Ip) , with θ̂1,mle(X) = W2 + µ̂1,mle(W1) , (2.21)

and

R =
1

σ2
Y

(

σ2
1σ

2
2

σ2
1 + σ2

2

+
1

p
inf
µ1

E[‖µ̂1,mle(W1)− µ1‖2]
)

, (2.22)
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where µ̂1,mle(W1) the mle of µ1 based on W1 ∼ Np(µ1, (σ
2
1/(1 + r))Ip) and under

the restriction (1 + r)µ1 ∈ A.

With the above dominance result quite general, one further issue is the determi-

nation of the R, equivalently c0(1+R), or a better lower bound. Simulation of the

mean squared error in (2.20) is a possibility. Otherwise, analytically, this seems

challenging, but the simple univariate order restriction case leads to the following

explicit solution.

Example 2.3.1. (Univariate case with θ1 ≥ θ2)

Consider model (2.1) with p = 1 and A = [0,∞). The maximum likelihood predic-

tive density estimator q̂mle is given by (2.21) with µ̂1,mle(W1) = max(0,W1). The

mean squared error of θ̂1,mle(X) may be derived from (2.19) as equal to

R(θ, θ̂1,mle) = Eµ1 [ |µ̂1,mle(W1)− µ1|2] +
σ2
2

1 + r
, µ1 ≥ 0.

A standard calculation for the mle of a non-negative normal mean based on W1 ∼
N
(

µ1, σ
2
W1

= σ2
1/(1 + r)

)

yields the expression

Eµ1 [ |µ̂1,mle(W1)− µ1|2] = µ2
1 Φ(−

µ1

σW1

) +

∫ ∞

0

(w1 − µ1)
2 φ(

w1 − µ1

σW1

)
1

σW1

dw1

= σ2
W1

{

1

2
+ ρ2Φ(−ρ) +

∫ ρ

0

t2 φ(t) dt

}

,

with the change of variables t = (w1 − µ1)/σW1, and by setting ρ = µ1/σW1. Fur-

thermore, it is readily verified that the above risk increases in µ1; as
d
dρ

{

ρ2Φ(−ρ) +
∫ ρ

0
t2 φ(t) dt

}

2ρΦ(−ρ) > 0 for ρ > 0, ranging from a minimum value of σ2
W1
/2 to a supremum

value of σ2
W1

.

Corollary 2.3.15 thus applies with

R =
1

σ2
Y

(
σ2
1σ

2
2

σ2
1 + σ2

2

+
σ2
W1

2
) =

σ2
1

σ2
Y (σ

2
1 + σ2

2)
(σ2

2 + σ2
1/2) .

Similarly, Remark 2.3.13 applies with R = σ2
1/σ

2
Y .

As a specific illustration of Corollary 2.3.15 and Remark 2.3.13, consider the equal

variances case with σ2
1 = σ2

2 = σ2
Y for which the above yields R = 3/4, R = 1 and

for which we can infer that:



50

(a) qθ̂1,mle,c dominates q̂mle under Kullback-Leibler loss for 1 < c < c0(7/4) ≈
3.48066

(b) Among the class of improvements in (a), the choices 7/4 ≤ c < c0(7/4) form

a minimal complete subclass;

(c) A minimal complete subclass among the qθ̂1,mle,c’s is given by the choices

c ∈ [1 +R, 1 +R] = [7/4, 2].

2.3.2 Improvements through duality

We consider again here predictive density estimators qθ̂1,c, as in (2.17), but fo-

cus rather on the role of the plugged-in estimator θ̂1. We seek improvements

on benchmark choices such as q̂mre, and plug–in predictive densities with c = 1.

We begin with known duality results, and namely Kullback-Leibler and reverse

Kullback-Leibler losses which relate to a dual squared error loss.

Lemma 2.3.16. For model (2.1), the frequentist risk of the predictive density esti-

mator qθ̂1,c of the density of Y1, under both Kullback-Leibler and reverse Kullback-

Leibler losses, is dual to the frequentist risk of θ̂1(X) for estimating θ1 under

squared error loss ‖θ̂1 − θ1‖2. Namely, qθ̂1,A,c dominates qθ̂1,B ,c under loss Lα iff

θ̂1,A(X) dominates θ̂1,B(X) under squared error loss.

Proof. We refer to Fourdrinier et al. (2011) for the case of Kullback-Leibler loss.

For reverse Kullback-Leibler loss, the result follows as an application of Theorem

2.6.35; which is a general result for exponential families presented in the Appendix,

and expanded upon with Example 2.6.5.

For other α−divergence losses, it is reflected normal loss (defined below) which is

dual, as shown by Ghosh, Mergel and Datta (2008) for plug–in predictive density

estimators, as well as scale expansions in (2.17).

Lemma 2.3.17. (Duality between α−divergence and reflected normal losses)

For model (2.1), the frequentist risk of the predictive density estimator qθ̂1,c of the

density of Y1 under α−divergence loss (2.2), with |α| < 1, is dual to the frequentist

risk of θ̂1(X) for estimating θ1 under reflected normal loss

Lγ0(θ1, θ̂1) = 1− e−‖θ̂1−θ1‖2/2γ0 , (2.23)
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with γ0 = ( c
1+α

+ 1
1−α) σ

2
Y . Namely, qθ̂1,A,c dominates qθ̂1,B ,c under loss Lα iff

θ̂1,A(X) dominates θ̂1,B(X) under loss Lγ0 as above.

Proof. See for instance Marchand, Perron and Yadegari (2017), or again Ghosh,

Mergel and Datta (2008).

Remark 2.3.18. Observe that limγ0→∞ 2γ0 Lγ0(θ1, θ̂1) = ‖θ̂1 − θ1‖2, so that the

point estimation performance of θ1 under reflected normal loss Lγ0 should be ex-

pected to match that of squared error loss when γ0 → ∞. In view of Lemma 2.3.16

and Lemma 2.3.17, this in turn suggests that the α−divergence performance of

q̂θ̂1,c will match both the Kullback-Leibler and reverse Kullback-Leibler performance

when |α| → 1.

Now, pairing Lemma 2.3.16 and Lemma 2.3.14 leads immediately to the following

general dominance result for Kullback-Leibler and reverse Kullback-Leibler losses.

Proposition 2.3.19. Consider model (2.1) with θ1 − θ2 ∈ A and the problem

of estimating the density of Y1 under either Kullback-Leibler or reverse Kullback-

Leibler losses. Set r = σ2
2/σ

2
1, W1 = (X1 − X2)/(1 + r),W2 = (rX1 + X2)/(1 +

r), µ1 = (θ1 − θ2)/(1 + r), and further consider the subclass of predictive densities

qδψ ,c, as in (2.17) for fixed c, with δψ an estimator of θ1 of the form δψ(W1,W2) =

W2 + ψ(W1). Then, qδψA ,c dominates qδψB ,c if and only if ψA dominates ψB as an

estimator of µ1 under loss ‖ψ − µ1‖2, for W1 ∼ Np(µ1,
σ2
1

1+r
Ip) and the parametric

restriction (1 + r)µ1 ∈ A.

Proof. The result follows from Lemma 2.3.16 and Lemma 2.3.14.

The above result connects three problems, namely:

(I) the efficiency of qδψ ,c under KL or RKL loss as a predictive density for Y1

with the additional information θ1 − θ2 ∈ A;

(II) the efficiency of δψ(X) as an estimator of θ1 under squared error loss ‖δψ −
θ1‖2 with the additional information θ1 − θ2 ∈ A;

(III) the efficiency of ψ(W1) for W1 ∼ Np(µ1, σ
2
1/(1 + r)Ip) as an estimator of µ1

under squared error loss ‖ψ−µ1‖2 with the parametric restriction (1+r)µ1 ∈
A.
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Previous authors (Blumenthal and Cohen, 1968; Cohen and Sackrowitz, 1970; van

Eeden and Zidek, (2001, 2003), for p = 1; Marchand and Strawderman, 2004, for

p ≥ 1) have exploited the (II)-(III) connection (i.e., Lemma 2.3.14) to obtain

findings for problem (II) based on restricted parameter space findings for (III).

The above Proposition further exploits connections (I)-(II) (i.e., Lemma 2.3.16)

to derive findings for predictive density estimation problem (I) from restricted

parameter space findings for (III). Consequently, findings for (III)-(II) provide

findings for our predictive density estimation problem (I), and we refer for Marc-

hand and Strawderman (2004), as well as the references therein, for examples of

such results. An example, which is also illustrative of α−divergence results, is

provided below at the end of this section.

For α−divergence losses other than Kullback-Leibler and reverse Kullback-Leibler,

the above scheme is not immediately available for the dual reflected normal loss

since Lemma 2.3.14 is intimately linked to squared error loss. However, a slight

extension of Lemma 3.3 of Kubokawa, Marchand and Strawderman (2015); ex-

ploiting a concave loss technique dating back to Brandwein and Strawderman

(1980); permits us to connect (but only in one direction) reflected normal loss to

squared error loss, and consequently the efficiency of predictive densities under

α-divergence loss to point estimation in restricted parameter spaces as in (III)

above.

Lemma 2.3.20. Consider model (2.1) and the problem of estimating θ1 based on

X, with θ1 − θ2 ∈ A and reflected normal loss as in (2.23) with |α| < 1. Then

θ̂1(X) dominates X1 whenever θ̂1(Z) dominates Z1 as an estimate of θ1, under

squared error loss ‖θ̂1 − θ1‖2, with θ1 − θ2 ∈ A, for the model

Z =

(

Z1

Z2

)

∼ N2p

(

θ =

(

θ1
θ2

)

, ΣZ =
( σ2

Z1
Ip 0

0 σ2
2Ip

)

)

, (2.24)

with σ2
Z1

=
γσ2

1

γ+σ2
1
.

Proof. Denote the loss ρ(‖θ̂1 − θ1‖2) with ρ(t) = 1 − e−t/2γ. Since ρ is concave,

we have for all x = (x1, x2)
′ ∈ R

2p:

ρ(‖θ̂1(x)− θ1‖2)− ρ(‖x1 − θ1‖2) ≤ ρ′(‖x1 − θ1‖2)
(

‖θ̂1(x)− θ1‖2 − ‖x1 − θ1‖2)
)

.
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With ρ′(t) = 1
2γ
e−t/2γ, we have for the difference in risks and Z ∼ fZ :

∆(θ) = R(θ, θ̂1)−R(θ,X1)

≤ 1

2γ

1

(2πσ1σ2)p

∫

R2p

e−
‖x1−θ1‖2

2γ

(

‖θ̂1(x)− θ1‖2 − ‖x1 − θ1‖2)
)

e
− ‖x1−θ1‖2

2σ21
− ‖x2−θ2‖2

2σ22 dx

=
1

2γ
(

γ

γ + σ2
1

)p/2
∫

R2p

(

‖θ̂1(z)− θ1‖2 − ‖z1 − θ1‖2)
)

fZ(z)dz ,

establishing the result.

Proposition 2.3.21. Consider model (2.1) with θ1 − θ2 ∈ A and the problem

of estimating the density of Y1 under either Kullback-Leibler or reverse Kullback-

Leibler losses. Set r = σ2
2/σ

2
1, W1 = (X1 − X2)/(1 + r),W2 = (rX1 + X2)/(1 +

r), µ1 = (θ1 − θ2)/(1 + r), and further consider the subclass of predictive densities

qδψ ,c, as in (2.17) for fixed c, with δψ an estimator of θ1 of the form δψ(W1,W2) =

W2 + ψ(W1). Then, qδψA ,c dominates qδψB ,c as long as ψA dominates ψB as an

estimator of µ1 under loss ‖ψ − µ1‖2, for W1 ∼ Np(µ1,
σ2
Z1

1+r
Ip), the parametric

restriction (1 + r)µ1 ∈ A, and σ2
Z1

=
{(1+α)+c(1−α)}σ2

1

{(1+α)+c(1−α)}+(1−α2)σ2
1/σ

2
Y

.

Proof. The result follows from Lemma 2.3.17 and its dual reflected normal loss

Lγ0 , the use of Lemma 2.3.20 applied to σ2
Z1

=
γ0σ2

1

γ0+σ2
1
, and an application of part

(c) of Lemma 2.3.14 to Z as distributed in (2.24).

Remark 2.3.22. Proposition 2.3.21 holds as stated for |α| = 1 and is thus a

continuation of the sufficiency part of Proposition 2.3.19. As well, the above result

provides positive findings as long as ψB is inadmissible under squared error loss

and dominating estimators ψA are available. Many particular cases follow from

the above. These include: (i) Hellinger loss with α = 0 and σ2
Z1

simplifying to

{(c+ 1)/(c+ 1 + σ2
1/σ

2
Y )} σ2

1; (ii) plug-in predictive densities with c = 1; (iii)

cases where qδψB ≡ q̂mre with the corresponding choice c = 1 +
(1−α)σ2

1

2σ2
Y

yielding

σ2
Z1

=
4σ2

Y + (1− α)2σ2
1

4σ2
Y + (3 + α)(1− α) σ2

1

σ2
1 .

The above α− divergence result connects four problems, namely:

(I) the efficiency of qδψ ,c under α−divergence loss, −1 < α < 1, as a predictive

density for Y1 with the additional information θ1 − θ2 ∈ A;
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(IB) the efficiency of δψ(X) as an estimator of θ1 under reflected normal loss Lγ0

with γ0 = ( c
1+α

+ 1
1−α) σ

2
Y with the additional information θ1 − θ2 ∈ A;

(II) the efficiency of δψ(Z), for Z distributed as in (2.24) with σ2
Z1

= (γ0σ
2
1)/(γ0+

σ2
1), as an estimator of θ1 under squared error loss ‖δψ − θ1‖2 with the

additional information θ1 − θ2 ∈ A;

(III) the efficiency of ψ(W1) for W1 ∼ Np(µ1, σ
2
Z1
/(1 + r)Ip) as an estimator of µ1

under squared error loss ‖ψ−µ1‖2 with the parametric restriction (1+r)µ1 ∈
A.

Example 2.3.2. Here is an illustration of both Propositions 2.3.19 and 2.3.21.

Consider model (2.1) with A a convex set with a non-empty interior, and α−divergence

loss (|α| ≤ 1) for assessing a predictive density for Y1. Further consider the min-

imum risk predictive density q̂mre as a benchmark procedure, which is of the form

qδψB as in Proposition 2.3.21 with δψB ∈ C, ψB(W1) = W1 and c = cmre =

1 + (1 − α)σ2
1/(2σ

2
Y ). Now consider the Bayes estimator ψU(W1) under squared

error loss of µ1 associated with a uniform prior on the restricted parameter space

(1 + r)µ1 ∈ A, for W1 ∼ Np((µ1,
σ2
Z1

1+r
Ip) as in Proposition 2.3.21. It follows

from Hartigan’s theorem (Hartigan, 2003; Marchand and Strawderman, 2004)

that ψA(W1) ≡ ψU(W1) dominates ψB(W1) under loss ‖ψ − µ1‖2 and for (1 +

r)µ1 ∈ A. It thus follows from Proposition 2.3.21 that the predictive density

qδψB ,cmre ∼ Np(δψB(X), (1−α
2
σ2
1 + σ2

Y )Ip) dominates q̂mre under α−divergence loss

with δψB(X) = rX1+X2

1+r
+ ψU(

X1−X2

1+r
). The dominance result is unified with respect

to α ∈ [−1, 1], the dimension p, and the set A.

We conclude this section with an adaptive two-step strategy, building on both

variance expansion and improvements through duality, to optimise on potential

Kullback-Leibler improvements on a maximum likelihood estimator predictive den-

sity estimator in model (2.1) of the form q̂mle ∼ Np(θ̂1,mle, σ
2
Y Ip), in cases where

point estimation improvements on θ̂1,mle(X) under squared error loss are readily

available.

(I) Select an estimator θ̂∗1 which dominates θ̂1,mle under squared error loss. This

may be achieved via part (c) of Lemma 2.3.14 resulting in a dominating

estimator of the form θ̂∗1(X) = W2+ψ
∗(W1) = (rX1+X2)/(1+r)+ψ

∗((X1−
X2)/(1+r)) where ψ

∗(W1) dominates µ̂1,mle(W1) as an estimator of µ1 under

squared error loss and the restriction (1 + r)µ1 ∈ A.
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(II) Now, with the plug-in predictive density estimator qθ̂1∗ ,1 dominating q̂mle,

further improve qθ̂1∗ ,1 by a variance expanded qθ̂1∗ ,c. Suitable choices of c are

prescribed by Corollary 2.3.15 and given by c0(1+R), with R given in (2.20).

The evaluation of R hinges on the infimum risk infµ1 E[‖ψ∗(W1)−µ1‖2], and
such a quantity can be either estimated by simulation, derived in some cases

analytically, or safely underestimated by 0.

Examples where the above can be applied include the cases: (i) A = [0,∞) with

the use of Shao and Strawderman’s (1996) dominating estimators, and (ii) A the

ball of radius m centered at the origin with the use of Marchand and Perron’s

(2001) dominating estimators. 2

2.4 Bayesian dominance results

In the previous section, we studied the efficiency of predictive densities as in

(2.17) and elaborated on methods to obtain improvements, whenever possible,

for instance on plug-in and minimum risk equivariant predictive density estima-

tors. We focus here on Bayesian improvements, for reverse Kullback-Leibler and

Kullback-Leibler losses, of the benchmark minimum risk equivariant predictive

density estimator. For Kullback-Leibler loss, we establish that the uniform Bayes

predictive density estimator q̂πU,A dominates q̂mre for the univariate cases where

θ1−θ2 is either restricted to a compact interval, lower-bounded or upper-bounded.

Our findings for reverse Kullback-Leibler loss are more wide ranging. Indeed, we

exploit the fact that Bayes predictive density estimators are plug–in predictive

density estimators, that the comparison of such procedures is dual to point esti-

mation comparisons under squared error loss, and that we thus can capitalize on

existing results for our purposes via Lemma 2.3.14. Such properties are, as ex-

panded upon in the Appendix, quite general for exponential families and reverse

Kullback-Leibler loss.

2Alternatively, one could expand the variance first, and then improve on the plug-in; such
as using a Shao and Strawderman estimator to obtain an improvement on q

θ̂1,mle,c
in Example

2.3.1; but this may be suboptimal in view of the complete class considerations of Remark 2.3.13.
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2.4.1 Reverse Kullback-Leibler loss

We begin with an identification of Bayes predictive densities that belong to the

class C given in (2.18), which will permit us to apply Lemma 2.3.14 in decomposing

the frequentist risk of such procedures. This formalizes and extends representation

(2.16).

Lemma 2.4.23. Consider model (2.1) and the problem of estimating θ1 based on

X with θ1− θ2 ∈ A and loss ‖δ− θ1‖2. Set r = σ2
2/σ

2
1, µ1 = (θ1− θ2)/(1+ r), µ2 =

(rθ1 + θ2)/(1 + r), W1 = (X1 − X2)/(1 + r),W2 = (rX1 + X2)/(1 + r), and

consider prior densities of the form π(θ) = π1(µ1) IA((1 + r)µ1) IRp(µ2). Then,

the corresponding Bayes estimators θ̂1,π are members of the subclass C, as defined

in (2.18), and are given by

θ̂1,π(X) = ψπ(W1) +W2 , (2.25)

where ψπ(W1) is the Bayes estimator based on W1 ∼ Np(µ1,
σ2
1

1+r
Ip) of µ1 for loss

‖ψ − µ1‖2 and prior π1(µ1) IA((1 + r)µ1) .

Proof. The result follows since the Bayes point estimator of θ1 is given by

E(θ1|x) = E(µ1|w1, w2) + E(µ2|w1, w2) = E(µ1|w1) + E(µ2|w2) = ψπ(w1) + w2,

given the independence of W1,W2 and the multiplicative aspect of the prior which

imply µ1|w1, w2 =
d µ1|w1 and µ2|w1, w2 =

d µ2|w1.

Proposition 2.4.24. Consider model (2.1) with θ1 − θ2 ∈ A, a prior density of

the form π(θ) = π1(µ1) IA((1 + r)µ1) , and the corresponding Bayes predictive

density q̂π for estimating the density of Y1 under reverse Kullback-Leibler loss. Set

r = σ2
2/σ

2
1, W1 = (X1−X2)/(1+r),W2 = (rX1+X2)/(1+r), µ1 = (θ1−θ2)/(1+r),

and let qδψ0 (·;X) ∼ Np(δψ0(X), σ2
Y Ip) be a competing plug-in predictive density

with δψ0 ∈ C of the form δψ(W1,W2) = ψ0(W1) +W2. Then, q̂π(·;X) dominates

qδψ0 (·;X) if and only if the Bayes estimator ψπ(W1), with respect to the prior

π1(µ1) IA((1+r)µ1) , dominates ψ0(W1) as an estimator of µ1 under loss ‖ψ−µ1‖2,
for W1 ∼ Np(µ1,

σ2
1

1+r
Ip) and (1 + r)µ1 ∈ A.

Proof. Part (b) of Lemma 2.2.3 and Lemma 2.4.23 tell us that q̂π is a plug-in

predictive density of the form Np(θ̂1,π(X), σ2
Y Ip) with θ̂1,π(X) as in (2.25). In turn,

Lemma 2.3.16 implies that the reverse Kullback-Leibler risk comparison between
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q̂π and qδψ0 hinges on the mean squared error comparison between θ̂1,π and δψ0

under model (2.1). Finally, the result follows by making use of Lemma 2.3.14.

We pursue with applications.

Example 2.4.3. Consider the context of Proposition 2.4.24 with A a convex set

with a non-empty interior, the restricted to A uniform prior πU,A(θ) = IA(θ1 −
θ2) and its corresponding Bayes predictive density q̂πU,A (see section 2.2.4.), and

the minimum risk predictive density q̂mre(·;X) ∼ Np(X1, σ
2
Y Ip). It follows from

Hartigan’s theorem that the Bayes estimator ψU(W1) dominates ψ0(W1) = W1

under squared error loss. Hence, from Proposition 2.4.24, it follows that the Bayes

predictive density q̂πU,A dominates q̂mre for reverse Kullback-Leibler loss. The result

is general with respect to the choices of p and A.

For p = 1 and A = [−m,m], Kubokawa (2005), as well as Marchand and Payandeh

(2011), provide alternative Bayes estimators ψπa(W1) which dominate as well W1

for priors πa supported on the set µ1 ∈ [−m
1+r

, m
1+r

]. In turn, and as above for the

uniform prior, it thus follows that the corresponding Bayes predictive densities

q̂π(·;X) ∼ N(ψπa(W1) +W2, σ
2
Y ) dominate q̂mre with π(θ) = πa(µ1)IR(µ2).

Remark 2.4.25. For p ≥ 3, q̂πU , as well as plug-in predictive density of the form

qδψ0 (·;X) ∼ Np(ψ0(W1)+W2, σ
2
Y Ip), are inadmissible and dominated by predictive

densities qδψ0,ψ1 (·;X) ∼ Np(ψ0(W1)+ψ1(W2), σ
2
Y Ip) where ψ1(W2) is an estimator

of µ2, for W2 ∼ Np(µ2,
σ2
2

1+r
Ip), which dominates W2. Stein estimation findings

(e.g., Stein, 1981) provide many such dominating estimators, including Bayesian

improvements. For instance, for p ≥ 3 and a superharmonic prior π2 for µ2, the

predictive density q̂πU is dominated by the Bayes predictive density qδψU ,ψπ2
(·;X) ∼

Np(ψU(W1)+ψπ2(W2), σ
2
Y Ip), associated with the prior π(θ) = IA((1+r)µ1) π2(µ2).

The above inferences come about a rewriting of Lemma 2.3.14 for estimators of

the form ψ0(W1) + ψ1(W2), with ψ0 ≡ ψU for the case of q̂mre and its use as in

Proposition 2.4.24.

Example 2.4.4. Consider the context of Proposition 2.4.24 and the maximum

likelihood predictive density estimator q̂mle ∼ Np(θ̂1,mle, σ
2
Y Ip) with θ̂1,mle(X) =

W2 + ψ0(W1), as in (2.21) with ψ0(W1) = µ̂1,mle(W1). It follows from Lemma

2.3.16 that plug-in predictive densities Np(ψ1(W1) +W2, σ
2
Y Ip) dominate q̂mle un-

der reverse Kullback-Leibler loss if and only if ψ1(W1) dominates µ̂1,mle(W1) un-

der squared error loss. In particular and in accordance with Proposition 2.4.24,
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a Bayes predictive density q̂π, for prior π(θ) = π1(µ1) IA((1 + r)µ1)IRp(µ2), domi-

nates q̂mle if and only if ψπ(W1) dominates µ̂1,mle(W1), where ψπ(W1) is the Bayes

point estimator of µ1 for prior π1(µ1) IA((1 + r)µ1). The determination of such

dominating Bayesian ψπ is challenging though. For the specific case of A being

a p-dimensional ball of radius m centered at the origin, Marchand and Perron

(2001), as well as Fourdrinier and Marchand (2010), provide several applicable

Bayesian dominance results.

2.4.2 Kullback-Leibler loss

In this subsection, we show, for θ1 − θ2 either lower bounded, upper bounded, or

bounded to an interval, that the uniform Bayes predictive density estimator q̂πU,A

improves uniformly on the minimum risk equivariant predictive density estima-

tor q̂mre under Kullback-Leibler loss. Without loss of generality (given Remark

2.1.1), we consider the restrictions θ1 ≥ θ2 and |θ1 − θ2| ≤ m. We also investi-

gate situations where the variances of model (2.1) are misspecified, but where the

dominance persists. We begin with the lower bounded case.

Theorem 2.4.26. Consider model (2.1) with p = 1 and A = [0,∞). For esti-

mating the density of Y1 under Kullback-Leibler loss, the Bayes predictive density

q̂πU,A dominates the minimum risk equivariant predictive density estimator q̂mre.

The Kullback-Leibler risks are equal iff θ1 = θ2.

Proof. Making use of Corollary 2.2.10’s representation of q̂πU,A , the difference in

risks is given by

∆(θ) = RKL(θ, q̂mre)−RKL(θ, q̂πU,A)

= E
X,Y1 log

(

q̂πU,A(Y1;X)

q̂mre(Y1;X)

)

= E
X,Y1 log

(

Φ(α0 + α1
Y1 −X1

τ
)

)

− E
X,Y1 log

(

Φ(
α0√
1 + α2

)

,(2.26)

with α0 =
X1−X2

σT
, α1 =

βτ
σT
, τ =

√

σ2
1 + σ2

Y , β =
σ2
1

σ2
1+σ

2
Y

, and σ2
T = σ2

2 + βσ2
Y . Now,

observe that

α0 + α1
Y1 −X1

τ
=

1

σT
(X1 −X2 + β(Y1 −X1) ∼ N(

θ1 − θ2
σT

, 1) , (2.27)
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and
α0

√

1 + α2
1

=
X1 −X2
√

σ2
1 + σ2

2

∼ N(
θ1 − θ2
√

σ2
1 + σ2

2

, 1) . (2.28)

We thus can write

∆(θ) = EG(Z) ,

with G(Z) = log Φ(Z +
θ1 − θ2
σT

)− log Φ(Z +
θ1 − θ2
√

σ2
1 + σ2

2

) , Z ∼ N(0, 1) .

With θ1− θ2 ≥ 0 and σ2
T < σ2

1 +σ
2
2, we infer that Pθ(G(Z) ≥ 0) = 1 and ∆(θ) ≥ 0

for all θ such that |θ1 − θ2| ≤ m, with equality iff θ1 − θ2 = 0.

We now obtain an analogue dominance result in the univariate case for the addi-

tional information θ1 − θ2 ∈ [−m,m].

Theorem 2.4.27. Consider model (2.1) with p = 1 and A = [−m,m]. For esti-

mating the density of Y1 under Kullback-Leibler loss, the Bayes predictive density

q̂πU,A (strictly) dominates the minimum risk equivariant predictive density estima-

tor q̂mre.

Proof. Making use of (2.12) and (2.13) for the representation of q̂πU,A , the differ-

ence in risks is given by

∆(θ) = RKL(θ, q̂mre)−RKL(θ, q̂πU,A)

= E
X,Y1 log

(

q̂πU,A(Y1;X)

q̂mre(Y1;X)

)

= E
X,Y1 log

(

Φ(α0 + α1
Y1 −X1

τ
)− Φ(α2 + α1

Y1 −X1

τ
)

)

− E
X,Y1 log

(

Φ(
α0

√

1 + α2
1

)− Φ(
α2

√

1 + α2
1

)

)

,

with the αi’s given in Section 2.2. Now, observe that

α0 + α1
Y1 −X1

τ
=

1

σT
(m+ (X1 −X2) + β(Y1 −X1) ∼ N(δ0 =

m+ θ1 − θ2
σT

, 1) ,

(2.29)

and
α0

√

1 + α2
1

=
(m+ (X1 −X2)
√

σ2
1 + σ2

2

∼ N(δ′0 =
m+ θ1 − θ2
√

σ2
1 + σ2

2

, 1) . (2.30)
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Similarly, we have α2 + α1
Y1−X1

τ
∼ N(δ2 = −m+θ1−θ2

σT
, 1) and α2√

1+α2
1

∼ N(δ′2 =

−m+θ1−θ2√
σ2
1+σ

2
2

, 1). We thus can write

∆(θ) = EH(Z) ,

with H(Z) = log (Φ(Z + δ0)− Φ(Z + δ2))− log (Φ(Z + δ′0)− Φ(Z + δ′2)) , Z ∼ N(0, 1) .

With −m ≤ θ1 − θ2 ≤ m and σ2
T < σ2

1 + σ2
2, we infer that δ0 ≥ δ′0 with equality iff

θ1− θ2 = −m and δ2 ≤ δ′2 with equality iff θ1− θ2 = m, so that Pθ(H(Z) > 0) = 1

and ∆(θ) > 0 for all θ such that |θ1 − θ2| ≤ m.

We now investigate situations where the variances in model (2.1) are misspecified.

To this end, we consider σ2
1, σ

2
2 and σ2

Y as the nominal variances used to construct

the predictive density estimates q̂πU,A and q̂mre, while the true variances, used

to assess frequentist Kullback-Leibler risk, are, unbeknownst to the investigator,

given by a21σ
2
1, a

2
2σ

2
2 and a2Y σ

2
Y respectively. We exhibit, below in Theorem 2.4.30,

many combinations of the nominal and true variances such that the Theorem

2.4.26’s dominance result persists. Such conditions for the dominance to persist

includes the case of equal a21, a
2
2 and a2Y (i.e., the three ratios true variance over

nominal variance are the same), among others.

We require the following intermediate result.

Lemma 2.4.28. Let U ∼ N(µU , σ
2
U) and V ∼ N(µV , σ

2
V ) with µU ≥ µV and

σ2
U ≤ σ2

V . Let H be a differentiable function such that both H and −H ′ are

increasing. Then, we have EH(U) ≥ EH(V ).

Proof. Suppose without loss of generality that µV = 0, and set s = σU
σV

. Since U

and µU + sV share the same distribution and µU ≥ 0, we have:

EH(U) = EH(µU + sV )

≥ EH(sV )

=

∫

R+

(H(sv) +H(−sv)) 1

σV
φ(

v

σV
) dv .

Differentiating with respect to s, we obtain

d

ds
EH(sV ) =

∫

R+

v (H ′(sv)−H ′(−sv)) 1

σV
φ(

v

σV
) dv ≤ 0
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since H ′ is decreasing. We thus conclude that

EH(U) ≥ EH(sV ) ≥ EH(V ) ,

since s ≤ 1 and H is increasing by assumption.

Remark 2.4.29. We point out that the result and proof extend to location-scale

families U ∼ 1
σU
f0(

t−µU
σU

),

V ∼ 1
σV
f0(

t−µV
σV

), with even f0, µU ≥ µV , and σU < σV .

Theorem 2.4.30. Consider model (2.1) with p = 1 and A = [0,∞). Sup-

pose that the variances are misspecified and that the true variances are given by

V(X1) = a21σ
2
1,V(X2) = a22σ

2
2,V(Y1) = a2Y σ

2
Y . For estimating the density of Y1

under Kullback-Leibler loss, the Bayes predictive density q̂πU,A dominates the min-

imum risk equivariant predictive density estimator q̂mre whenever σ2
U ≤ σ2

V with

σ2
U =

a22σ
2
2 + (1− β)2a21σ

2
1 + β2a2Y σ

2
Y

σ2
2 + βσ2

Y

, σ2
V =

a21σ
2
1 + a22σ

2
2

σ2
1 + σ2

2

, β =
σ2
1

σ2
1 + σ2

Y

. (2.31)

In particular, dominance occurs for cases : (i) a21 = a22 = a2Y , (ii) a
2
Y ≤ a21 = a22,

(iii) σ2
1 = σ2

2 = σ2
Y and

a22+a
2
Y

2
≤ a21.

Remark 2.4.31. Conditions (i), (ii) and (iii) are quite informative. One com-

mon factor for the dominance to persist, especially seen by (iii), is for the variance

of X1 to be relatively large compared to the variances of X2 and Y1.

Proof. Particular cases (i), (ii), (iii) follow easily from (2.31). To establish con-

dition (2.31), we prove, as in Theorem 2.4.26, that ∆(θ) given in (2.26) is greater

or equal to zero. We apply Lemma 2.4.28, with H ≡ log Φ increasing and con-

cave as required, showing that E logΦ(U) ≥ E logΦ(V ) with U = α0 + α1
Y1−X1

τ
∼

N(µU , σ
2
U) and V = α0√

1+α2
1

∼ N(µV , σ
2
V ). Since µU = θ1−θ2

σT
> θ1−θ2√

σ2
1+σ

2
2

= µV , the

inequality σ2
U ≤ σ2

V will suffice to have dominance. Finally, the proof is complete

by checking that σ2
U and σ2

V are as given in (2.31), when the true variances are

given by V(X1) = a21σ
2
1,V(X2) = a22σ

2
2,V(Y1) = a2Y σ

2
Y .

Remark 2.4.32. In opposition to the above robustness analysis, the dominance

property of q̂πU,A versus q̂mre for the restriction θ1 − θ2 ≥ 0 does not persists

for parameter space values such that θ1 − θ2 < 0, i.e., the additional information

difference is misspecified. In fact, it is easy to see following the proof of Theorem

2.4.26 that RKL(θ, q̂mre) − RKL(θ, q̂πU,A) < 0 for θ’s such that θ1 − θ2 < 0. A
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potential protection is to use the predictive density estimator q̂πU,A′ with A′ =

[ε,∞), ε < 0, and with dominance occurring for all θ such that θ1 − θ2 ≥ ε

(Remark 2.1.1 and Theorem 2.4.26).

2.5 Examples, illustrations and further comments

We present and comment numerical evaluations of Kullback-Leibler risks in the

univariate case for both θ1 ≥ θ2 (Figures 2.1, 2.2) and |θ1 − θ2| ≤ m,m = 1, 2.

(Figures 2.3, Figure 2.4). Each of the figures consists of plots of risk ratios, as

functions of ∆ = θ1 − θ2 with the benchmark q̂mre as the reference point. The

variances are set equal to 1, except for Figure 2 which highlights the effect of

varying σ2
2.

Figure 2.1 illustrates the effectiveness of variance expansion (Corollary 2.3.15),

as well as the dominance finding of Theorem 2.4.26. More precisely, the Figure

relates to Example 2.3.1 where q̂mle is improved by the variance expansion version

q̂mle,2, which belongs both to the subclass of dominating densities q̂mle,c as well

as to the complete subclass of such predictive densities. The gains are impressive

ranging from a minimum of about 8% at ∆ = 0 to a supremum value of about

44% for ∆ → ∞. Moreover, the predictive density q̂mle,2 also dominates q̂mre by

duality, but the gains are more modest. Interestingly, the penalty of failing to

expand is more severe than the penalty for using an inefficient plug-in estimator of

the mean. In accordance with Theorem 2.4.26, the Bayes predictive density q̂πU,A

improves uniformly on q̂mre except at ∆ = 0 where the risks are equal. As well,

q̂πU,A compares well to q̂mle,2, except for small ∆, with R(θ, q̂mle,2) ≤ R(θ, q̂πU,A) if

and only if ∆ ≤ ∆0 with ∆0 ≈ 0.76.

Figure 2.2 compares the efficiency of the predictive densities q̂πU,A and q̂mre for

varying σ2
2. Smaller values of σ2

2 represent more precise estimation of θ2 and

translates to a tendency for the gains offered by q̂πU,A to be greater for smaller σ2
2;

but the situation is slightly reversed for larger ∆.
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Np(θ1, σ
2
1Ip) with the added parametric information θ1 − θ2 ∈ A. Several findings

provide improvements on benchmark predictive densities, such those obtained as

plug-in’s, as maximum likelihood, or as minimum risk equivariant. The results

range over a class of α−divergence losses, different settings for A, and include

Bayesian improvements for reverse Kullback-Leibler and Kullback-Leibler losses.

The various techniques used lead to novel connections between different problems,

which is also of interest as, for instance, described following both Proposition

2.3.19 and Proposition 2.3.21-Remark 2.3.22.

Although the Bayesian dominance results for Kullback-Leibler loss for p = 1 extend

to the rectangular case with θ1,i−θ2,i ∈ Ai for i = 1, . . . , p and the A′
is either lower

bounded, upper bounded, or bounded to intervals [−mi,mi] (since the Kullback-

Leibler divergence for the joint density of Y factors and becomes the sum of the

marginal Kullback-Leibler divergences, and that the posterior distributions of the

θ1,i’s are independent), a general Bayesian dominance result of q̂πU,A over q̂mre, is

lacking and would be of interest. Finally, comparisons of predictive densities for

the case of homogeneous, but unknown variance (i.e., σ2
1 = σ2

2 = σ2
Y ), is equally of

interest.

Appendix

Predictive density estimation under reverse Kullback-Leibler

loss

The objective of this part is two-fold. First, we present a quite general result which

stipulates that Bayes predictive density estimators are always plug-in densities in

an exponential family set-up with, or without, additional information. Such a

result was obtained by Yanagimoto and Ohnishi (2009). We provide an extension

for problems with additional information and we seek to give more prominence to

Yanagimoto and Ohnishi’s wonderful result. Secondly, applications of Theorems

2.6.34 and 2.6.35 yield part (b) of Lemma 2.2.3 and the reverse Kullback-Leibler

part of Lemma 2.3.16.
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Consider the exponential family model densities, with respect to σ−finite measures

µ1 and µ2, under canonical form

X|η ∼ pη(x) = h1(x) exp{η1T s1(x) + η2
T s2(x)− c1(η)},

Y1|η1 ∼ qη1(y) = h2(y1) exp{η1T t1(y1)− c2(η1)} , (2.32)

where X = (X1, X2)
T , η = (η1, η2)

T , and η1, η2, s1(x), s2(x), t1(y1) are vectors

of dimension p. In this set-up, we assume that X and Y1 are independently dis-

tributed given η, η1 is a common parameter, and we seek a predictive density for

Y1 based on X and with the additional information η1− η2 ∈ A. We thus consider

predictive densities q̂(·;X) for Y1 and their performance as evaluated by reverse

Kullback-Leibler loss

L(η1, q̂) =

∫

q̂(y1) log

(

q̂(y1)

qη1(y1)

)

dµ2(y1) , (2.33)

and corresponding risk

R(η, q̂) =

∫ ∫

pη(x)q̂(y1; x) log

(

q̂(y1; x)

qη1(y1)

)

dµ2(y1) dµ1(x) .

A plug–in estimator for the density qη1 is simply of the form qη̂1(X). For Kullback-

Leibler loss, obtained by switching qη1 and q̂ in (2.33), plug-in density estima-

tors are not compatible with Bayesianity and can be quite inefficient in terms of

Kullback-Leibler risk, as seen above in Lemma 2.3.12 for normal models. However,

for reverse Kullback-Leibler loss, the situation is the opposite, and universally so

for the exponential family set-up above as shown in Theorem 2.6.33. Furthermore,

the plug–in estimator is the posterior expectation of η1. This holds regardless of

the prior on η (including cases where η1 − η2 ∈ A) and the particular forms of pη

and qη1 . This was observed and exploited for normal models by Maruyama and

Strawderman (2012).

The second observation made below concerns the frequentist risk of plug–in den-

sities. Indeed, reverse Kullback-Leibler loss (among others) for a plug-in estimate

becomes simply a measure of distance between the densities qη1 and qη̂1 , otherwise

known as intrinsic loss (e.g. Robert, 1996). For exponential families, as noted by

Brown (1986, Proposition 6.3), such a distance has a simple and appealing form.

Here, it leads to a representation, for both plug–in and thus Bayes predictive den-

sity estimators, of the reverse Kullback-Leibler risk in terms of the point estimate
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risk performance of the same plug–in estimator with respect to a dual loss.

The following representation of a Bayes predictive density estimator under re-

verse Kullback-Leibler is well known (e.g., Corcuera and Giummolè, 1999), but we

provide a short presentation for completeness.

Lemma 2.6.33. For estimating qη1 under reverse Kullback-Leibler loss and based

on X as in (2.32), the Bayes predictive density estimator is q̂π(y1; x) ∝ exp {E(log qη1(y1)|x)} .

Proof. For an estimator q̂ and denoting Gx as the posterior c.d.f. of η, the

expected posterior loss may be expressed as:

E (L(η1, q̂)|x) =

∫

{
∫

q̂(y1) (log q̂(y1)− log qη1(y1)) dµ2(y1) } dGx(η)

=

∫

q̂(y1) { log q̂(y1) − E(log qη1(y1)|x) } dµ2(y1)

= log c+

∫

q̂(y1) {− log(
q̂π(y1; x)

q̂(y1)
)} dµ2(y1) , (2.34)

where q̂π(y1; x) = c exp {E(log qη1(y1)|x)} . Using Jensen’s inequality applied to

− log, we obtain indeed from (2.34), for all estimators q̂,

E (L(η1, q̂ )|x) ≥ log c − log

∫

q̂π(y1; x) dµ2(y1) = log c = E (L(η1, q̂π)|x) .

The following representation applies with or without the additional information

provided by the constraint η1 − η2 ∈ A, with the additional information case

representing an extension of Yanagimoto and Ohnishi’s result.

Theorem 2.6.34. For model (2.32), reverse Kullback-Leibler loss, a prior mea-

sure π for η such that the posterior distribution and expectation exists, the Bayes

predictive density estimate q̂π(·; x) is the plug–in density estimate qη̂1(·; x), with
η̂1(x) = Eπ(η1|x) the posterior expectation of η1.

Proof. Using Lemma 2.6.33, we obtain

q̂π(y1; x) ∝ exp {E(log qη1(y1)|x)}
∝ h2(y1) exp{E(ηT1 t1(y1)− c2(η1)|x)}
∝ h2(y1) exp{(ηT1 t1(y1)− c2(E(η1)|x))},

which matches indeed the plug-in density qη̂1(·; x) with η̂1(x) = Eπ(η1|x).
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Theorem 2.6.35. For model (2.32), the reverse Kullback-Leibler frequentist risk

of the plug–in density qη̂1(·;X) is equivalent to the frequentist risk for estimating

η1 based on X under the dual point estimation loss

Ldual(η1, η̂1) = (η̂1 − η1)
T
Eη̂1(t(Y )) + (c2(η1)− c2(η̂1)).

Proof. For the plug–in density estimator, we have

Ldual(η1, η̂1) =

∫

qη̂1(y1) log
qη̂1(y1)

qη1(y1)
dµ2(y1)

=

∫

qη̂1(y1){(η̂1 − η1)
T t(y1) + (c2(η1)− c2(η̂1))} dµ2(y1)

= (η̂1 − η1)
T
Eη̂1t(Y1) + (c2(η1)− c2(η̂1)) ,

which leads to the result.

Example 2.6.5. For the multivariate normal model (2.1), the last two theorems

apply as examples of model (2.32) with η1 = θ1, η2 = θ2, c2(η1) =
‖η1‖2
2σ2
Y

, t(y1) =
y1
σ2
Y

.

Theorem 2.6.34 yields the Bayes predictive density given in (2.5), while Theorem

2.6.35 yields the dual loss Ldual(η1, η̂1) = (η̂1 − η1)
T
Eη̂1(

Y1
σ2
Y

) + ‖η1‖2
2σ2
Y

− ‖η̂1‖2
2σ2
Y

=
‖η̂1−η1‖2

2σ2 , as stated in Lemma 2.3.16.
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Fourdrinier, D., Marchand, É., Righi, A. & Strawderman, W.E. (2011). On im-

proved predictive density estimation with parametric constraints. Electronic Jour-

nal of Statistics, 5, 172-191.

George, E. I., Liang, F. & Xu, X. (2006). Improved minimax predictive densities

under Kullback-Leibler loss. Annals of Statistics, 34, 78-91.

Ghosh, M., Mergel, V. & Datta, G. S. (2008). Estimation, prediction and the

Stein phenomenon under divergence loss. Journal of Multivariate Analysis, 99,

1941-1961.

Gupta, R.C. & Gupta, R.D. (2004). Generalized skew normal model. Test, 13,

501-524.

Hartigan, J. (2004). Uniform priors on convex sets improve risk. Statistics & Prob-

ability Letters, 67, 285-288.

Hwang, J. T. G. & Peddada, S. D. (1994). Confidence interval estimation subject

to order restrictions. Annals of Statistics, 22, 67-93.

Komaki, F. (2001). A shrinkage predictive distribution for multivariate normal

observables. Biometrika, 88, 859-864.

Kubokawa, T. (2005). Estimation of bounded location and scale parameters. Jour-

nal of the Japanese Statistical Society, 35, 221-249.
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Chapter 3

Predictive Density Estimation

With Unknown Variance

3.1 Introduction

This chapter mainly focuses on obtaining efficient predictive density estimates for

the following model:

Xi ∼ Np(θi, σ
2Ip), i = 1, 2, Y1 ∼ Np(θ1, σ

2Ip), S2 ∼ σ2 χ2
k, independent, (3.1)

with k ≥ 2, θ1 ∈ R
p, θ2 ∈ R

p, σ2 ∈ R+, and θ1 − θ2 ∈ A ⊆ R
p. We consider

that θ = (θ1, θ2) and σ
2 are unknown, and the objective is to obtain a predictive

density estimate for Y1.

Past research has indicated that plug–in predictive density estimators can be inef-

ficient and improve upon. (Geisser [30], Komaki [31], Lawless and Fredette [32]).

For the above normal problem with A = R
p, Aitchison [7] proved that the plug-in

predictive density estimator based on θ̂1(X1) = X1, σ̂
2(X1) = S2 is dominated

by the MRE predictive density estimator under KL loss. The MRE predictive

density estimator under KL loss is obtained by choosing the prior π0(θ, σ) = 1/σ

(see Lemma 3.2.6). Kato [33] proved for p ≥ 3 that the MRE predictive density

estimator is dominated under KL loss by the Bayes predictive density associated

with the prior π(θ, σ) = 1
σ
‖θ‖2−p, while Boisbunon and Maruyama [34] obtained

other dominating Bayes predictive density estimators even for p = 1, 2.

The results of this section are original as they exploit the additional information

74
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θ1 − θ2 ∈ A through the added observation X2. In Section 3.2, we expand on

Bayesian posterior analysis and predictive densities, as well as interesting repre-

sentations in terms of skewed Student t distributions. In Section 3.3, we consider

the KL risk of plug–in predictive density estimators and we expand on a point esti-

mation dual loss, which leads to improvements. Section 3.4 expands along similar

lines for RKL loss, with the difference that Bayes predictive density estimators

are necessarily plug–in densities (Yanagimoto and Ohnishi [23]; Maruyama and

Strawderman [35], Example 1.4.5).

3.2 Bayes posterior analysis

3.2.1 Posterior distributions and expectations

The joint density corresponding to (X,S2) in model (3.1), supported on R
2p×R+,

is given by

pθ,σ2(x, s2) =
(s2)k/2−1

(2πσ2)p
exp

{

− 1
2σ2 (‖x1 − θ1‖2 + ‖x2 − θ2‖2 + s2)

}

(2σ2)k/2Γ(k/2)
. (3.2)

We consider the prior density

πA(θ, σ
2) =

1

σ2
IA(θ1 − θ2), (3.3)

supported on the restricted parameter space θ1− θ2 ∈ A ∈ R
p. In the next lemma

we provide the posterior density θ | x, s2 and marginal posterior density θ1 | x, s2,
which are needed for determining q̂πA .

Lemma 3.2.1. For model (3.1) and prior density (3.3), we have that

(a) the posterior density π(θ | x, s2) is proportional to

(

1 +
‖x2 − θ2‖2

s2 + ‖x1 − θ1‖2
)−(p+k/2)(

1 +
‖x1 − θ1‖2

s2

)−(p+k/2)

IA(θ1 − θ2) . (3.4)

(b) the marginal posterior density is given by

π(θ1 | x, s2) ∝ fk,x1, s√
k
(θ1)P(V ∈ A) ,
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where fν,ξ,τ is the density of Tp(ν = k, ξ = x1, τ = s√
k
) density and

V ∼ Tp

(

ν = k + p, ξ = θ1 − x2, τ =

√

s2 + ‖x1 − θ1‖2
p+ k

)

. (3.5)

Proof. (a) We have

π(θ, σ2 | x, s2) ∝ (σ2)−(p+k/2+1) exp

{ −t
2σ2

}

IA(θ1 − θ2) , (3.6)

where t = ‖x1 − θ1‖2 + ‖x2 − θ2‖2 + s2. Now, letting z = t
2σ2 , by integrating out

σ2, we have

π(θ | x, s2) ∝
∫ ∞

0

(σ2)−(p+k/2+1) exp{− t

2σ2
} IA(θ1 − θ2) dσ

2

∝ t−(p+k/2)
IA(θ1 − θ2)

∫ ∞

0

zp+k/2−1 exp{−z} dz

∝ t−(p+k/2)
IA(θ1 − θ2)

∝ (‖x1 − θ1‖2 + ‖x2 − θ2‖2 + s2)−(p+k/2)
IA(θ1 − θ2)

∝
(

1 +
‖x2 − θ2‖2

s2 + ‖x1 − θ1‖2
)−(p+k/2)(

1 +
‖x1 − θ1‖2

s2

)−(p+k/2)

IA(θ1 − θ2).

(b) We have

π(θ1 | x, s2) =
∫

{θ2: θ1−θ2∈A}

π(θ | x, s2) dθ2

∝
(

1 +
‖x1 − θ1‖2

s2

)−(p+k/2) ∫

{θ2: θ1−θ2∈A}

(

1 +
‖x2 − θ2‖2

s2 + ‖x1 − θ1‖2
)−(p+k/2)

dθ2,

∝
(

1 +
‖θ1 − x1‖2
k(s2/k)

)−(p+k/2)∫

A

(

1 +
‖t− (θ1 − x2)‖2
s2 + ‖x1 − θ1‖2

)−(p+k/2)

dt ,

by the change of variable t = θ1 − θ2.

For example for p = 1 and A = [0,∞), the probability as defined in Lemma 3.2.1

(b) is equivalent to

P(V > 0) = F1



k + 1,
θ1 − x2

√

s2+‖x1−θ1‖2
p+k



 , (3.7)
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where F1(ν, ·) is cdf of a standard Student t distribution with degrees of freedom

ν > 1. The following lemma (e.g. see Azzalini and Capitanio [28]) will be used

below.

Lemma 3.2.2. For η ∼ Gamma(a, b), and a > 0, b > 0, c > 0, we have

E[Φp(c
√
η; 0)] = Fp

(

2a, c

√

a

b

)

, (3.8)

where Φp is cdf of a Np(0, Ip) distribution and Fp(ν, ·) is cdf of Tp(ν, 0, 1) Student
t distribution with degrees of freedom ν.

Lemma 3.2.3. For model (3.1), prior (3.3), η = 1/σ2 and u =
√
η(θ1 − x1), the

joint posterior density (U, η) | x, s2 is proportional to weighted normal and weighted

gamma densities:

π(u | η, x, s2) = φp(u)
P(W ′ ∈ A)

P(V ∈ A)
, (3.9)

π(η | x, s2) =
ηk/2−1e−s

2η/2

Γ(k
2
)( 2
s2
)k/2

P(V ∈ A)

P(V ′ ∈ A)
, (3.10)

whereW ′ ∼ Np(
u√
η
+x1−x2, Ip/η), V ∼ Np(x1−x2, 2/ηIp), and V ′ ∼ Tp(k,

x1−x2
√

2s2

k

, 1).

Proof. We have

π(θ1, σ
2 | x, s2) ∝ e−

s2

2σ2 (σ2)−( p+k
2

+1)φ(
θ1 − x1
σ

)

∫

{θ2:θ1−θ2∈A}

(σ2)−
p
2 φ(

θ2 − x2
σ

) dθ2.

∝ e−
s2

2σ2 (σ2)−( p+k
2

+1) φ(
θ2 − x2
σ

) P(W ∈ A), (3.11)

where W ∼ Np(θ1 − x2, σ
2 Ip). From this a change of variables

π(u | η, x, s2) = ηk/2−1e−s
2η/2

Γ(k
2
)( 2
s2
)k/2

P(W ′ ∈ A)

EU(P(W ′ ∈ A))
.

In the above equation, the expectation is given by

∫

φ(u)

∫

A

η
p
2φ

(

η(t− (
u√
η
+ x1 − x2))

)

dt du = P(V ∈ A),
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and the result in (3.9) is obtained after some algebra.

To prove (3.10), we have

π(η | x, s2) = ηk/2−1e−s
2η/2

Γ(k
2
)( 2
s2
)k/2

P(W ′ ∈ A)

Eη(P(W ′ ∈ A))
.

The expectation in the denominator above, is given by

E
η[P(V ∈ A)] = E

T

(

P

(

Z =

√

T

2
(v − (x1 − x2) ∈

[

A− (x1 − x2)

√

T

2

]

|T = t

))

= P





Z
√

T
2
k
s2

∈ (x1 − x2)

√

2s2

k



 ,

where Z ∼ Np(0, Ip), T ∼ Gamma(k
2
, s

2

2
), and hence Z

√

T
2
k

s2

has standard Student

t distribution with degrees of freedom k.

The following corollary studies the joint posterior density (U, η) | x, s2 with the

specific constraint θ1 − θ2 ∈ A = R
p
+.

Corollary 3.2.4. Under the assumptions of Lemma 3.2.3, with constraint A =

R
p
+, we have

θ1 | η, x, s2 ∼ SNp

(

α0 = (x1 − x2)

√

η

2
, α1 = 1, ξ = 1, τ =

1√
η

)

, (3.12)

and,

η | x, s2 ∼ πU,A(η | x, s2) =
ηk/2−1e−s

2η/2

Γ(k
2
)( 2
s2
)k/2

Φp

(

(x1 − x2)
√

η
2
; 0
)

Fp

(

k, x1−x2√
2s2/k

) , (3.13)

where Φp is cdf of a Np(0, Ip) and Fp(ν, ·) is a cdf of a p–variate Student t distri-

bution with degrees of freedom ν.

Proof. In (3.11), P(W ∈ A) can be replaced by Φp(
θ1−x2
σ

; 0). Thus

πU,A(θ1, σ
2 | x, s2) ∝ e

−s2
2σ2

(σ2)(k/2+1)
(
1

σ2
)
p
2φp(

θ1 − x1
σ

)Φp(
θ1 − x1
σ

; 0)

∝ Φp(
x1 − x2√

2τ
; 0)

e
−s2
2σ2

(σ2)(k/2+1)

( 1
τ
)pφp(

θ1−ξ
τ

)Φp(α0 + α1
θ1−ξ
τ

; 0)

Φp(
α0√
1+α2

1

; 0)
,
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and changing the variable η = 1/σ2, proves (3.12).

In addition, we can write

πU,A(η | x, s2) ∝
ηk/2−1e−s

2η/2

Γ(k
2
)( 2
s2
)k/2

Φp

(

(x1 − x2)

√

η

2
; 0

)

.

Now, choosing a = k/2, b = s2/2 in (3.8), we have

πU,A(η | x, s2) =
ηk/2−1e−s

2η/2

Γ(k
2
)(2
s
)k/2

Φp

(

(x1 − x2)
√

η
2
; 0
)

Fp

(

k, x1−x2√

2s2

k

) ,

establishing and completing the proof. (3.13).

Similarly, one can consider constraint of the form θ1 − θ2 ∈ A = [−m,m]p in

Lemma 3.2.7 leading to the following corollary.

Corollary 3.2.5. Under the assumptions of Lemma 3.2.3, with constraint θ1−θ2 ∈
A = [−m,m]p, the marginal posterior distribution π(θ1 | η, x, s2) is given by

SNp

(

α0 = (x1 − x2 +m)

√

η

2
, α1 = 1, α2 = (x1 − x2 −m)

√

η

2
, ξ = 1, τ =

1√
η

)

,

and also,

π(η | x, s2) = ηk/2−1e−sη/2

Γ(k
2
)(2
s
)k/2

Φp

(

(x1 − x2 +m)
√

η
2
; 0
)

− Φp

(

(x1 − x2 −m)
√

η
2
; 0
)

Fp(k,
x1−x2+m√

2s2/k
)− Fp(k,

x1−x2−m√
2s2/k

)
.

Proof. The proof is similar to Corollary 3.2.4 using the fact that P(W ∈ A) =

Φp(
θ1−x2+m

σ
; 0)− Φp(

θ1−x2−m
σ

; 0) in (3.11) .

3.2.2 Predictive densities

The MRE predictive density estimator q̂mre, which is the generalized Bayes predic-

tive density estimator with respect to the non–informative prior π0(θ1, σ
2) = 1

σ2

for (θ1, σ
2) based on (X1, S

2) is considered as a benchmark density estimator.

Lemma 3.2.6. For model (3.1), and KL loss, the MRE predictive density estimate

for density of Y1 is given by

q̂mre(y1; x1, s
2) ∼ Tp

(

ν = k, ξ = x1, τ =

√

2s2

k

)

. (3.14)
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Proof. For the non–informative prior π0(θ1, σ
2) we have

π(θ1, σ
2 | x1, s2) ∝ (σ2)−

p+k
2

−1 exp{−t
′

2σ2
},

where t′ = ‖x1 − θ1‖2 + s2. This gives π(σ2 | x1, s2) ∝ (σ2)−(k/2+1) exp{− s2

2σ2} and

recognized as a scale inverse chi–square, SInv − χ2(k,
√

s2

k
). Therefore we have

q(y1; x1, s
2) =

∫ ∞

0

q(y1 | x1, σ2)π(σ2 | x1, s2) dσ2

∝
∫ ∞

0

(σ2)−p/2 exp{−‖y1 − x1‖2
2σ2

}(σ2)−(k/2−1) exp{−−t′
2σ2

} dσ2

∝
∫ ∞

0

(σ2)−
p+k
2

−1 exp

{

− 1

2σ2

(

‖y1 − x1‖2 +
s2

2

)}

dσ2

∝ t′′−
p+k
2

∫ ∞

0

z
p+k
2

−1 exp{−z} dz, with t′′ = ‖y1 − x1‖2 +
s2

2

∝
(

1 +
2k‖y1 − x1‖2

k s2

)− p+k
2

.

This is the kernel of Tp(ν = k, ξ = x1, τ =
√

s2

2k
) and hence the proof.

The, next lemma enables us to express predictive density estimates of density of

Y1 under additional information as a weighted Student t distribution. These den-

sities under some of specific constraints on parameters belong to skewed–Student

t distribution varying with A (see examples 3.2.1 and 3.2.2).

Theorem 3.2.7. For model (3.1), prior (3.3) on A ⊆ R
p, the Bayes predictive

density q̂π,A(y1; x, s
2) associated with KL loss is given by

q̂π,A(y1; x) = q̂mre(y1; x1)
P(V ′′ ∈ A)

P(V ′ ∈ A)
, (3.15)

where V ′ ∼ Tp(k,
x1−x2
√

2s2

k

) and V ′′ ∼ Tp(k + p, x1−x2√

2s2

k

).
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Proof. Set η = 1/σ2 and u =
√
η(θ1 − x1). The joint density of (U, η) | x, s2 is

given by multiplication of equations (3.9) and (3.10). According to (1.2),

q̂π,A(y1; x, s
2) = E

[

q(y1 | x1 +
U√
η
,
1

η
) | x, s2

]

=

∫

R
p
+

(∫

Rp

(
η

2π
)
p
2 e

− η
2
‖y1−x1− u√

η
‖2 φp(u)P(W

′ ∈ A)

P(V ∈ A)
du

)

π(η | x, s2) dη

=

∫

R
p
+

η
k+p
2

−1e−η/2(s
2+‖y1−x1‖2)

P(V ∈ A)Γ(k
2
)( 2
s2
)k/2

∫

Rp

e−‖u‖2/2+√
ηuT (y1−x1)

(2π)
p
2

φp(u)P(V
′ ∈ A) du dη

=
Γ(k+p

2
)

Γ(k
2
)( 2
s2
)
k
2 (2π)

p
2P

(

s2

2
+

‖y1 − x1‖2
4

)− k+p
2

×
∫

R
p
+

η
k+1
2

−1e
−η

(

s2

2
+

‖y1−x1‖2
4

)

1√
2
P(V ′ ∈ A) dη

=
Γ(k+p

2
)

Γ(k
2
)( 2
s2
)
k
2 (2π)

p
2P

1√
2
E
η |x,s2 [P(W ′ ∈ A)] ,

where η | x, s2 ∼ Gamma(k+1
2
, s

2

2
+ ‖y1−x1‖2

4
). Finally applying identity (3.8) to

above expectation completes the proof.

The next lemma relates to Bayes predictive density estimates associated with

reverse Kullback–Leibler loss.

Lemma 3.2.8. Under the assumptions of Theorem 3.2.7, with constraint A = R
p
+,

we have

E[η | x, s2] = k

s2

Fp(k + 2, x1−x2√
2s2/k

)

Fp(k,
x1−x2√
2s2/k

)
, (3.16)

E[θ1η | x, s2] = x1
k

s2

Fp(k + 2, x1−x2√
2s2/k

)

Fp(k,
x1−x2√
2s2/k

)
+

1

Fp(k,
x1−x2√
2s2/k

)

Γ(k+p
2
)

Γ(k
2
) (2π)

p
2 s2

(3.17)

(

1 +
(x1 − x2)

2

2s2

)− k+p
2

,

where Fp(ν, ·) is cdf of a standard p–variate Student t distribution with degrees of

freedom ν.
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Proof. Making use of posterior density in (3.13), yields (3.16).

In order to prove (3.17), one can write

E[η θ1 | x, s2] = E
η |x,s2 [η E(θ1 | η, x, s2)

]

= E
η |x,s2

[

η

(

x1 + (
1

2η
)
p
2
φp
(

(x1 − x2)
√

η
2

)

Φp

(

(x1 − x2)
√

η
2

)

)]

= E
η |x,s2η + E

η |x,s2
[

φp
(

(x1 − x2)
√

η
2

)

Φp

(

(x1 − x2)
√

η
2

)

]

,

by replacing (3.16) in the first part in above as well as some algebra for the second

part, yields the result.

We conclude this section with predictive density examples for cases A = R+
p and

A = [−m,m]p.

Example 3.2.1. For model (3.1) and prior (3.3) with A = R+
p, the Bayes pre-

dictive density q̂π,A(y1; x, s
2) associated with KL loss is given by a

STp

(

ν = k, α0 =

√

2

3

x1 − x2
√

2s2/k
, α1 = 1/

√
3, ξ = x1, τ =

√

2s2

k

)

.

or equivalently

q̂π,A(y1; x, s
2) = q̂mre(y1; x1, s

2)
Fp

(

k + p,
(√

2
3
(x1 − x2) +

y1−x1√
3

)√

k+1
2s2+(y1−x1)2

)

Fp(k,
x1−x2√
2s2/k

)
,

(3.18)

where q̂mre(y1; x1, s
2) ∼ Tp

(

ν = k, ξ = x1, τ =
√

2s2

k

)

as given in Lemma 3.2.6

and Fp(ν, ·) is cdf of a standard p–variate Student t distribution with degrees of

freedom ν.

To establish the above, set U = η(θ1 − x1), and η = 1
σ2 , one can write the joint

density of (U, η) | x, s2 as multiplication of equations (3.12) and (3.13) in Corollary
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3.2.4. So, we have

q̂π,A(y1; x, s
2) = E

(U,η) |x,s2q(y1 | x1 +
U√
η
,
1

η
)

=

∫

R
p
+





∫

Rp

(
η

2π
)
p
2 e

− η
2
‖y1−x1− u√

η
‖2 φp(u)Φp(α0 + α1u; 0)

Φp(
α0√

1+αT1 α1

; 0)
du



 π(η | x, s2) dη

=

∫

R
p
+

η
k+p
2

−1e−η/2(s
2+‖y1−x1‖2)

Fp(k;
x1−x2√
2s2/k

)Γ(k
2
)( 2
s2
)k/2

∫

Rp

e−‖u‖2/2+√
ηuT (y1−x1)

(2π)
p
2

φp(u)Φp(α0 + α1u; 0) du dη

=
Γ(k+p

2
)

Γ(k
2
)( 2
s2
)
k
2 (2π)

p
2Fp(k,

x1−x2√
2s2/k

)

(

s2

2
+

‖y1 − x1‖2
4

)− k+p
2

×
∫

R
p
+

η
k+1
2

−1e
−η

(

s2

2
+

‖y1−x1‖2
4

)

1√
2
Φp

(√
η

(

x1 − x2√
3

+
y1 − x1√

6
; 0

))

dη

=
Γ(k+p

2
)

Γ(k
2
)( 2
s2
)
k
2 (2π)

p
2Fp(k;

x1−x2√
2s2/k

)

1√
2
E
η |x,s2

[

Φp

(√
η

(

x1 − x2√
3

+
y1 − x1√

6

)

; 0

)]

,

where η | x, s2 ∼ Gamma(k+1
2
, s

2

2
+ ‖y1−x1‖2

4
). Applying identity (3.8) to the above

expectation yields (3.18).

Example 3.2.2. For model (3.1), A = [−m,m]p for some m > 0 and a uniform

prior (3.3), the Bayes predictive density q̂π,A(y1; x, s
2), associated with KL loss

follows is given by a

STp

(

α0 =

√

2

3

x1 − x2 +m
√

2s2/k
, α1 =

1√
3
, α2 =

√

2

3

x1 − x2 −m
√

2s2/k
ξ = x1, τ =

√

2s2

k

)

density.

(3.19)

In other words,

q̂π,A(y1; x, s
2) = q̂mre(y1; x1, s

2)
Fp (k + 1, L1(x, s

2))− Fp (k + 1, L2(x, s
2))

Fp

(

1, x1−x2+m√
2s2/k

)

− Fp

(

1, x1−x2−m√
2s2/k

) ,

(3.20)

where L1(x, s
2) =

√

2
3
(x1−x2+m)+ y1−x1√

3

√

k+1
2s2+‖y1−x1‖2 , L2(x, s

2) =
√

2
3
(x1−x2−

m) + y1−x1√
3

√

k+1
2s2+‖y1−x1‖2 and q̂mre(y1; x1, s

2) ∼ Tp

(

ν = k, ξ = x1, τ =
√

2s2

k

)

.

It would be interesting to compare analytically the KL risk performance of the

Bayes predictive density estimator q̂π,A. In order to do this, consider model (3.1)

with p = 1, KL loss and prior density (3.3) on restricted parameter space θ1−θ2 ∈
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A, for A = [0,∞) in estimating density of Y1. According to Theorem 3.2.1 the

difference in risk of the Bayes predictive density estimator q̂π,A and the MRE

predictive density estimator q̂mre given by

∆(θ, σ2) = RKL((θ, σ
2), q̂mre)−RKL((θ, σ

2), q̂π,A)

= E
X,Y1,s2 log

(

q̂π,A(Y1;X)

q̂mre(Y1;X)

)

= E
X,Y1,S2

log

(

Fk+1

((

√

2

3
(X1 −X2) +

Y1 −X1√
3

)
√

k + 1

2S2 + (Y1 −X1)2

))

−E
X,Y1,S2

log

(

Fk

(

X1 −X2
√

2S2/k

))

. (3.21)

Finally based on numerical results we conjecture that ∆(θ, σ2) > 0 for all θ1 ≥ θ2 and

σ2 > 0 with equality iff θ1 = θ2. A similar conjecture is applies for A = [−m,m].

3.3 Improving on plug–in predictive density es-

timators under KL loss function

In this section, we provide improvements on plug–in predictive density estimators

under KL loss function. Consider plug–in predictive density estimators qθ̂1,σ̂2 ,

defined as Np(θ̂1, σ̂
2Ip) densities, where θ̂1 and σ̂2 are estimators of θ1 and σ2

based on (X,S2) in model (3.1).

Lemma 3.3.9. For model (3.1), the KL loss incurred by the plug-in predictive

density qθ̂1,σ̂2 ∼ Np(θ̂1(X,S
2), σ̂2(X,S2)) in estimating qθ1,σ2 is given by

LKL((θ, σ
2), qθ̂1,σ̂2) = LE(σ

2, σ̂2) + LQ(θ1, θ̂1)/σ̂
2 , (3.22)

where

LE(σ
2, σ̂2) =

σ̂2

σ2
− log(

σ̂2

σ2
)− 1 , and LQ(θ1, θ̂1) =

‖θ̂1 − θ1‖2
p

. (3.23)

Consequently, the the corresponding risk function is given by

RKL((θ, σ
2), qθ̂1,σ̂2) = E

X,S2 [

LKL((θ, σ
2), qθ1,σ2)

]

=
p

2

[

RE(σ
2, σ̂2) +

RQ(θ1, θ̂1)

σ̂2

]

, (3.24)
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where RE(σ
2, σ̂2) and RQ(θ1, θ̂1) are the risks associated with LE and LQ losses

respectively.

Proof. From (1.3), we have

LKL((θ, σ
2), qθ̂1,σ̂2) =

∫

qθ1,σ2(y1) log
qθ1,σ2(y1)

qθ̂1,σ̂2(y1)
dy1

=

∫

qθ1,σ2(y1) log
(2πσ2)−

p
2

(2πσ̂2)−
p
2

exp{− 1
2σ2‖y1 − θ1‖2}

exp{− 1

2σ̂2
‖y1 − θ̂1‖2}

dy1

=

∫

qθ1,σ2(y1)

(

p

2
log

σ̂2

σ2
+

1

2
(
1

σ̂2
− 1

σ2
)‖y1 − θ1‖2

)

dy1

+
1

2σ̂2
‖θ1 − θ̂1‖2

=
p

2

{

σ2

σ̂2
− log

σ2

σ̂2
− 1 +

‖θ1 − θ̂1‖2
p σ̂2

}

.

Also, equation (3.24) is a direct consequence of (3.23).

In fact, loss function LE in (3.23) is the entropy loss while LQ/σ̂
2. It rewards

accurate estimation of θ1 and over estimation of σ2, which hence leads to the

preference over estimators with inflated variance. Furthermore, loss function

LE(σ
2, σ̂2) penalizes more on overestimating since for f(t) = t − log t − 1, we

have f(c) < f(1
c
) for c < 1. Hence when the variance is known LE(σ̂

2, σ2) = 0,

and hence LKL((θ, σ
2), q̂) = ‖θ1−θ̂1‖2

2σ2 .

In addition, setting θ̂1(X) = X1, in Lemma 3.3.9, implies RKL((θ, σ
2), qθ̂1,σ̂2) =

E‖X1−θ1‖2
2σ2 = p

2
, which is a constant.

Lemma 3.3.10. For model (3.1), under loss function LE, and among estimators

of aσ2 of the form σ̂2(X) = c S2, c > 0, a > 0, the optimal choice is copt =
a
k−2

, for

k > 2. Furthermore σ̂2
1(X) = c1 S

2 dominates σ̂2
0(X) = c0 S

2, iff copt > c1 > c0.

The second part is the direct consequence of the definition of copt.

Proof. Since S2 ∼ σ2 χ2
k, we have

RE((θ, σ
2), qθ̂1,σ̂2) = E

X

(

a σ2

c S2

)

− E
X

(

log
a σ2

c S2

)

− 1

=
a

c(k − 2)
− log

a

c
+ log 2 + ψ(

k

2
)− 1,

which minimizes by a/c = k − 2 and ψ(·) is the digamma function.
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Remark 3.3.11. Choosing a = 2 in Lemma 3.3.10, gives copt = 2
k−2

, and the

corresponding estimator dominates all the plug–in density estimators of the form

c S2 with c < 2
k−2

such as the MRE of σ2 (c = 1
k−2

) and the unbiased estimator of

σ2 (c = 1
k
).

Lemma 3.3.12. For model (3.1), under KL loss, consider estimate of (θ1, σ),

(

θ̂1(x) = x1 +
s2

k
g(x1), σ̂

2(x) = b s2
)

,

then if EX (‖g(X1)‖2 + 2 div g(X1)) ≤ 0, and consequently (θ̂(x), σ̂2(x)) improves

on (θ̂′(x), σ̂′2(x)) under LE in (3.23), therefore, the plug–in density estimate N(θ̂(x), σ̂2(x) Ip)

dominates N(θ̂′(x), σ̂′2(x) Ip) under KL loss function.

In addition, improvement with respect to b, in (3.22) is achieved for any choices of b

varies between
(

2
k−2

+ a
k
, 2
k−2

+ ā
k

)

, where ā = sup σ2

p
{E (‖g(X1)‖2 + 2 div g(X1))}

and a is the infimum.

Proof. We have

E
X,S2 ‖X1 − θ1 +

X2

k
g(X1)‖2

pbS2
=

E
X,S2

(

‖X1 − θ1‖2 + S4

k2
‖g(X1)‖2 + 2(X1 − θ1)

T g(X1)
S2

k

pbS2

)

=

pσ2

pb

1

(k − 2)σ2
+
kσ2

pbk2
E
X,S2 (‖g(X1)‖2 + 2 divg(X1)

)

=

1

b(k − 2)
+

σ2

pbk2
E
X,S2 (‖g(X1)‖2 + 2 divg(X1)

)

.

therefore the risk function is given by

E

(

σ2

bσ2
− log σ2 + log S2 − 1

)

+
1

b

(

1

k − 2
+
a(θ, σ2)

k

)

(

− log σ2 + E(log S2)− 1
)

+ log b+
1

b

(

1

k − 2
+
a(θ, σ2)

k

)

.

After some algebra it is deduced that for all θ and σ2, bopt =
2

k−2
+ a(θ, σ2)

k
and

permits bopt varies from
2

k−2
+ a

k
to 2

k−2
+ ā

k
.

Remark 3.3.13. In Lemma 3.3.12, one can examine:

(a) If g(X1) = 0, then bopt =
2

k−2
, since ā = a = 0.
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(b) For p ≥ 3, the estimator X1 + σ2g(X1) is minimax and ā = 0, so the choice
2

k−2
will improve on for all b > 2

k−2
.

(c) For all James–Stein estimators, we have g(X1) = (p−2)X1

X′
1X1

for p > 2 and

a = −(p−2)σ2

p
E( 1

X′
1X1

). Consequently ‖g(X1)‖2 + 2 div g(X1) =
−(p−2)2

‖X1‖2 . This

yields to have a = −(p−2)
p

and ā = 0. Therefore bopt varies from 2
k−2

− p−2
kp

to
2

k−2
. In addition, any choices of b less that 2

k−2
− p−2

kp
leads to an admissible

estimator.

3.4 Improving on plug–in predictive density es-

timators under RKL loss function

One of the reason that makes plug–in predictive density estimators are widely

recognizable and appealing is that plug-in predictive density estimator is a Bayes

predictive density estimator as well under RKL in the exponential families are

equal thanks to Yanagimoto and Ohnishi [23], as well as by Maruyama and Straw-

derman [35] (See theorem 1.4.10).

Theorem 3.4.14. Consider the plug–in predictive density estimator qθ̂1,σ̂2

and model (3.1). Under RKL loss we have

(a) LRKL((θ, σ
2), qθ̂1,σ̂2) = L(σ2, σ̂2) + L′((θ, σ2), θ̂1), is the corresponding loss

with

L(σ2, σ̂2) =
σ̂2

σ2
− log(

σ̂2

σ2
)− 1 , and L′((θ, σ), θ̂1) =

‖θ̂1 − θ1‖2
pσ2

, (3.25)

and the risk function given by

p

2

(

R(σ, σ̂) +
RQ(θ1, θ̂1)

σ2

)

.

(b) For a given prior π(θ, σ2), the Bayes predictive density under RKL loss is a

plug-in predictive density q̂π,A ∼ Np

(

η̂1
η̂2
, 1
η̂2
Ip

)

, with η̂1(X,S
2) = E( θ1

σ2 |X,S2)

and η̂2(X,S
2) = E( 1

σ2 |X,S2).
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Proof. (a) We have

LRKL(θ, qθ̂1,σ̂2(y1)) =

∫

qθ̂1,σ̂2 log
qθ̂1,σ̂2(y1)

qθ1,σ2(y1)
dy1

=

∫

qθ̂1,σ̂2 log
(2πσ̂2)−

p
2

(2πσ2)−
p
2

exp{− 1
2σ̂2‖y1 − θ̂1‖2}

exp{− 1
2σ2‖y1 − θ1‖2}

dy1

=

∫

qθ̂1,σ̂2

(

p

2
log

σ2

σ̂2
+

1

2
(
1

σ2
− 1

σ̂2
)‖y1 − θ1‖2

)

dy1

+
1

2σ̂2
‖θ1 − θ̂1‖2

=
p

2

{

log
σ2

σ̂2
+
σ̂2 − σ2

σ2
+

‖θ1 − θ̂1‖2
pσ2

}

= L(σ2, σ̂2) + L′(θ1, θ̂1).

(b) Since L in (3.25) does not depend on θ̂1, so the Bayes estimate of the θ1,

is obtained by minimizing the posterior risk related to L′, i.e, η̂1(X,S
2) =

E( θ1
σ2 |X,S2). Similarly the minimizer of the posterior risk associated with L

is obtained by η̂2(X,S
2) = E( 1

σ2 |X,S2). This completes the proof.

Corollary 3.4.15. For any estimator σ̂ of σ2, as well as estimators δ and δ′ of

θ1, the plug–in predictive density estimator qδ1,σ̂2 dominates qδ1,σ̂2 under RKL loss

iff δ1 dominates δ2 under L′ in (3.25).

One can use the idea of Jafari Jozani et al. [20]’s paper to improve θ1 (for unknown

σ2) by Setting δ1 = δφ1 and δ2 = δφ2 in Lemma 1.3.9 as the following.

Theorem 3.4.16. Consider the problem of estimating θ1 with the estimator of

the form δφ(X,S
2) = Z2 + φ(Z1, S

2), with Z1 = X1−X2

2
and Z2 = X1+X2

2
. Set

µ1 =
θ1−θ2

2
, µ2 =

θ1+θ2
2

and W =
S2
1+S

2
2

2
. Then we have

(a) The frequentist risk of δφ is given by

R((θ1, θ2, σ), δφ) =
p

2
+

1

σ2
E
Z1,W‖φ(Z1,W )− µ1‖2.

(b) δφ1 dominates δφ2 under under L′ in (3.25) iff φ1 dominates φ2 under loss

‖φ− µ1‖2/σ2. And consequently qδφ1 ,σ̂2 dominates qδφ2 ,σ̂2 under RKL loss iff

for any estimator σ̂2 of σ2.
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Lemma 3.4.17. For model (3.1), p = 1, and uniform prior (3.3) on A = R+,

the Bayes predictive density estimate associated with RKL is a N(x1 + κ(x), γ(x))

density, where

κ(x) =
1

F1(k + 2, x1−x2√
2s2/k

)

Γ(k+1
2
)

Γ(k
2
)
√
2πk

(

1 +
(x1 − x2)

2

2s2

)− k+1
2

, (3.26)

γ(x) =
s2

k

F1(k,
x1−x2√
2s2/k

)

F1(k + 2, x1−x2√
2s2/k

)
. (3.27)

Proof. The proof is straightforward by virtue of Theorem 3.4.14 (b) and Lemma

3.2.8.

Corollary 3.4.18. As a direct consequence of Lemma 3.4.17, set x2 → −∞, in

equations (3.26) and (3.27) yields N(x1,
S2

k
) as MRE predictive density estimate

for density Y1 under RKL loss function.

3.5 Concluding remarks

This Chapter extends the line of work in Chapter 2, which seeks to improve the

predictive density estimates of the normal model with the unknown variance and

subject ti some restrictions on the parameter space under the KL and RKL loss.

We have shown that the Bayes predictive density estimator of for the distribution of

future observation under these situations belongs to the class of weighted Student

t distribution. More specifically, we studied the restrictions θ1 − θ2 ∈ A and

θ1 − θ2 ∈ [−m,m]p lead to the predictive density estimators form skew-Student t

densities corresponding to Definitions 1.5.19 and 1.5.20 respectively.

However, dominance results of Bayes predictive density estimator over MRE under

KL loss had been conjectured in this chapter but they can be verified in the

following figures.

Figure 3.1, and 3.2 present the risk ratio of the Bayes and MRE predictive density

estimators for k = 3 in ∆ = (θ1 − θ2)/σ based on restricted parameter A = [0,∞)

and A = [−6, 6] respectively. For both graphs, we have about 12% improvement

in risk function.







Chapter 4

Density Ratio Estimation

4.1 Introduction

In this chapter, we establish a general result for a Bayesian estimation of a ratio

of two exponential family densities. The estimation of the ratio of two densities

appears in several contexts, and has attracted much attention in recent years.

Sugiyama et al. ([36], [37]) considered such a problem in statistical data analy-

sis. In non-stationarity adaptation, Shimodaira [38], Sugiyama and Müller [39],

Sugiyama et al. [40], Quiñonero-Candela et al. [41], and Bickel et al. [42] dis-

cussed the density ratio estimation (DRE) in multitask learning, while Hido et al.

([43], [44]) have proposed DRE as a method for statistical outlier detection.

DRE has been utilized in many applications such as: information theory, variable

selection, dimension reduction, causal inference, conditional density estimation,

clustering, probabilistic classification, two-sample testing, change point detection,

independent component analysis, among others. Noticeably, most of the references

in this area are very recent and limited to a last decade. The majority of previous

studies has adapted to non-parametric and semi-parametric approaches. Here we

address cases where the density belongs to the (parametric) exponential family.

4.2 Bayesian density ratio estimation

In this section, we obtain a representation for Bayesian estimators of a ratio of

two exponential family densities.
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One of the simplest approaches is estimating each density (say, a Bayes or plug-in

predictive density estimators) separately and then forming the ratio of them.

Various approaches to estimate such a ratio include: the moment mutually ap-

proach (Gretton et al. [45]), the probabilistic classification approach (Qin [46],

Cheng [47]), density matching approach (Sugiyama [48]), and density-ratio fitting

(Kanamori et al. [49]).

Suppose that X and Y are independently distributed with densities from expo-

nential families defined with respect to σ–finite as follows.

X| η1 ∼ pη1(x) = h1(x) exp
{

ηT1 s1(x)− c1(η1)
}

,

Y | η2 ∼ qη2(y) = h2(y) exp
{

ηT2 s2(y)− c2(η2)
}

, (4.1)

where ηi are natural parameters, si(·) are sufficient statistics for i = 1, 2. Consider

the problem of estimating the density ratio

rη(t) =
pη1(t)

qη2(t)
,

at some fixed point t, where η = (η1, η2). A plug-in density ratio estimate is of

the form r̂(t; x, y) =
pη̂1(x)(t)

q̂η̂2(y)(t)
, where η̂1(x) and η̂2(y) are estimates of parameters of

pη1(t) and pη2(t) respectively. We show that such a estimator can be derived in a

Bayesian framework in some cases. Here is a general Bayesian representation for

squared log error loss.

Theorem 4.2.1. For model (4.1), the Bayes density ratio estimate of rη associated

with loss L(r̂, rη) = (log r̂
rη
)2, and prior distribution π(η), is given by

r̂π(t; x, y) = r̂(t; x, y)H(x, y),

where r̂(t; x, y) =
pη̂1(x)(t)

q̂η̂2(y)(t)
is a plug–in DRE and

H(x, y) =
exp {c1(E(η1 | x))− E(c1( η1 | x))}
exp {c2(E(η2 | y))− E(c2( η2 | y))}

, (4.2)

is a correction factor.



94

Proof. We have, log r̂π(t; x, y) = E(log rη(t)| x, y), or equivalently, r̂π(t; x, y) =

exp {E(log rη(t)| x, y)}. Therefore

r̂π(t; x, y) = exp {E(log pη1(t)|x)− E(log qη2(t)|y)}

=
exp {E(log pη1(t)|x)}
exp {E(log qη2(t)| y)}

=
h1(t) exp

{

E(η1|x)T s1(t)− c1(E(η1|x))
}

h2(t) exp {E(η2|y)T s2(t)− c2(E(η2|y))}

× exp {c1(E(η1|x))− E(c1(η1)|x)}
exp {c2(E(η2|y))− E(c2(η2)|y)}

= r̂(t; x, y)H(x, y).

4.3 Examples

Some examples are considered here. Note that, in some cases, the correction factor

H(x, y) is constant, i.e. it does not depend on x and y.

Example 4.3.1. In (4.1), consider X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) with ηi =

µi
σ2
i

and ci(ηi) = η2i σ
2
i /2 for i = 1, 2. Hence the correction factor is given by

H(x, y) =
exp

{

σ2
1

2
E(η1|x)2 − σ2

1

2
E
2(η1|x)

}

exp
{

σ2
2

2
E(η2|y)2 − σ2

2

2
E2(η2|y)

}

=
exp

{

−σ2
1

2
V ar(η1|x)

}

exp
{

−σ2
2

2
V ar(η2|y)

} . (4.3)

Assuming a prior µi ∼ N(ξi, τ
2
i ), for i = 1, 2, gives

η1 |X = x ∼ N

(

τ1
2x

σ12(σ12 + τ12)
+

ξ1
σ12 + τ12

,
τ1

2

σ12(σ12 + τ12)

)

η2 |Y = y ∼ N

(

τ2
2y

σ22(σ22 + τ22)
+

ξ2
σ22 + τ22

,
τ2

2

σ22(σ22 + τ22)

)

.

Therefore

r̂π(t; x, y) = H(x, y) r̂(t; x, y) ,
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where H(x, y) = exp{− σ2
1τ

2
2−σ2

2τ
2
1

(τ21+σ
2
1)(τ

2
2+σ

2
2)
} is constant with respect to x and y. If

σ1
σ2

= τ1
τ2
, then H(x, y) = 1, which tells us that the Bayes density ratio estimator is

also a plug–in density estimator where the plug–in’s are posterior expectations.

Example 4.3.2. Suppose that X and Y are Gamma distributed with pdfs pλ1(x) =
λ1
α1

Γ(α1)
xα1−1e−λ1x and qλ2(y) = λ2

α2

Γ(α2)
yα2−1e−λ2y respectively where α1 and α2 are

known. We are thus in the presence of model (4.1), with ηi = λi and c(ηi) =

−αi ln(ηi) for i = 1, 2. Hence we have

H(x, y) =
exp {−α1 (ln(E(η1|x)− E(ln η1|x))}
exp {−α2 (ln(E(η2|y)− E(ln η2|y))}

. (4.4)

Setting a prior λi ∼ Gamma(τi, βi) for i = 1, 2 yields posterior distributions

λ1 | x ∼ Gamma(τ1 + α1, β1 + x), and λ2 | y ∼ Gamma(τ2 + α2, β2 + y).

By using the fact that E (lnZ) = ψ(α) − lnλ, for Z ∼ Gamma(α, λ), where

ψ(α) = Γ′(α)
Γ(α)

is the digamma function, we can rewrite (4.4) as

H(x, y) =
(τ2 + r2)

α2

(τ1 + α1)r1
exp {α1 ψ(τ1 + α1)− α2 ψ(α2 + α2)} . (4.5)

Therefore the Bayes density estimator is of the form

r̂π(t; x, y) = H(x, y) r̂(t; x, y) ,

where H(x, y) is given in (4.5) and constant with respect to x and y. Note that the

Bayes estimator is the ratio of two plug–in density estimators whenever α1 = α2

and τ1 = τ2.

Example 4.3.3. Let X and Y are Poisson distributed with means λ1 and λ2

respectively. We are thus in the presence of model (4.1) with lnλi = ηi and

ci(ηi) = eηi for i = 1, 2. Therefore

H(x, y) =
eE(η1|x) − E(eη1 |x)
eE(η2|y) − E(eη2 |y) .

Assuming priors λi ∼ Gamma(αi, βi) with means αi/βi, one obtains from Theorem

4.2.1

H(x, y) = exp

{

eψ(x+α1)

β1 + 1
− eψ(y+α2)

β2 + 1

}

exp

{

y + α2

β2 + 1
− x+ α1

β1 + 1

}

, (4.6)
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which depends on x and y in opposition to the previous examples.

Despite the usefulness of such examples, we recall that Theorem 4.2.1 is quite

general for exponential family density ratios and open the door to many further

applications.

We conclude with another motivation for studying the problem of estimating the

ratio of densities of the form rη(t) =
pη1 (t)

qη2 (t)
for unknown η and fixed t.

Example 4.3.4. (Estimating an α– divergence loss between two proba-

bility densities) Consider an α–divergence loss between two probability densities

(equation 1.5), of the form

Lα(pη1 , qη2) =

∫

Rp

hα

(

pη1(t)

qη2(t)

)

qη2(t) dt , (4.7)

with hα(·) as in (1.6). So, if r(t) is estimated by r̂(t) then, α–divergence can be

estimated by the expected value of hα(r̂(t)) under t ∼ qη2(t).

4.4 Conclusion

We have established a general representation for Bayesian estimators for exponen-

tial family density ratio and provided various examples. In some cases the Bayes

estimators coincide with a ratio of plug–in density estimators.





Conclusion and future work

Conclusion

In this thesis, we tried to address the fundamental question of how we can gain

from additional parametric information in order to obtain effective, and sometimes

better performing, predictive densities than others in the literature. We focused

on a multivariate normal model and results are applicable to Kullback–Leibler and

reverse Kullback–Leibler, and the class of α−divergence loss functions.

In Chapter 2 for the multivariate normal observable X1 ∼ Np(θ1, σ
2
1Ip), X2 ∼

Np(θ2, σ
2
2Ip), we have provided findings concerning the efficiency of predictive den-

sity estimators Y1 ∼ Np(θ1, σ
2
1Ip) with the additional information θ1 − θ2 ∈ A. We

provided several results of improvements on benchmark predictive densities, such

those obtained as plug-in’s, maximum likelihood, and minimum risk equivariant.

The findings covered α−divergence losses, different settings for A. We showed

that the obtained Bayesian predictive densities also relate to skew-normal distri-

butions, as well as new forms of such distributions. In Chapter 3, we provided

Bayes predictive density estimates for the density of Y1 ∼ Np(θ1, σ
2Ip) based on

Xi ∼ Np(θi, σ
2Ip), i = 1, 2, independent of S2 ∼ σ2 χ2

k, associated with Kullback–

Leibler and reverse Kullback–Leibler losses under the restriction θ1 − θ2 ∈ A.

Interesting posterior and predictive density representations arise and we provided

improvements on plug–in densities. We showed that the Bayes predictive density

estimator under some situations belongs to a class of skew–Student t distribution.

We have established dual relationships with problems for estimating (θ1, σ
2) that

can be used for generating improved predictive densities under KL and RKL losses.

In Chapter 4, we established a general form for Bayesian estimators for the ratio of

exponential family densities. We showed that in some cases the Bayes estimators

coincide with a ratio of plug–in density estimators or assuming that X and Y are

conditionally dependent.
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Future work

For future work in order to improve on predictive density estimators, it would be

quite interesting to obtain more elaborate Bayesian dominance results with respect

to A, the loss and even the underlying model for both known and unknown variance

cases. Another possibility is to consider mixture (normal) models and try to extend

the results. On the other hand, one can used some ideas in survival analysis and

find the predictive density estimators in the sense of missing data and additional

information.

The future work in density estimation problem may include the application of

the proposed method not just at a single point t, but over a acceptable range of

support space.
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[14] Éric Marchand and William E. Strawderman. A unified minimax result for

restricted parameter spaces. Bernoulli, 18(2):635–643, 2012.

[15] Constance Van Eeden. Restricted Parameter Space Estimation Problems:

Admissibility and Minimaxity Properties, volume 188. Springer, 2006.

[16] Eric Marchand and William E. Strawderman. Estimation in restricted pa-

rameter spaces: A review. Lecture notes-monograph series, 4:21–44, 2004.

[17] Saul Blumenthal and Arthur Cohen. Estimation of the larger translation

parameter. The Annals of Mathematical Statistics, 39:502–516, 1968.

[18] Arthur Cohen and Harold B Sackrowitz. Estimation of the last mean of a

monotone sequence. The Annals of Mathematical Statistics, 41:2021–2034,

1970.

[19] Constance Van Eeden and James V Zidek. Combining sample information in

estimating ordered normal means. Sankhyā: The Indian Journal of Statistics,
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[34] Aurélie Boisbunon and Yuzo Maruyama. Inadmissibility of the best equiv-

ariant predictive density in the unknown variance case. Biometrika, 101(3):

733–740, 2014.

[35] Yuzo Maruyama and William E. Strawderman. Bayesian predictive densities

for linear regression models under α-divergence loss: Some results and open

problems. In Contemporary Developments in Bayesian Analysis and Statisti-

cal Decision Theory: A Festschrift for William E. Strawderman, pages 42–56.

Institute of Mathematical Statistics, 2012.

[36] Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Shohei Hido, Jun Sese,

Ichiro Takeuchi, and Liwei Wang. A density-ratio framework for statistical

data processing. IPSJ Transactions on Computer Vision and Applications, 1:

183–208, 2009.

[37] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio es-

timation in machine learning. Cambridge University Press, 2012.

[38] Hidetoshi Shimodaira. Improving predictive inference under covariate shift

by weighting the log-likelihood function. Journal of Statistical Planning and

Inference, 90(2):227–244, 2000.

[39] Masashi Sugiyama and Klaus-Robert Müller. Input-dependent estimation of

generalization error under covariate shift. Statistics & Decisions, 23(4/2005):

249–279, 2005.

[40] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covari-
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