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1. i n t r o d u c t i o n

Visual and auditory prostheses involve surgeries that 
are complex, expensive and invasive. They are limited to a 
small number of electrodes and can only be used when the 
impairment is peripheral. Non invasive prostheses (sensorial 
substitution systems) have existed for more than 40 years 
but have not been well accepted in the disability sector. 
Severals systems have been developped since the emergence 
of this concept. Paul Bach-Y-Rita proposed a substitution 
system from vision to touch (1969) in which pictures 
captured by a camera were converted into electrical 
stimulation of the tongue. Other studies have shown that 
some simple tasks such as localization (Jansson, 1983), 
shape recognition (Sampaio et al., 2001; Kaczmarek and 
Haase, 2003) and reading (Bliss et al., 1970) can be 
achieved using vision-to-touch substitution devices.

More recently, substitution systems from vision to audition 
have been proposed: (Akinbiyi, 2007; Merabet, 2009; 
Hanneton 2010). The following systems are the most 
important to have been developed so far: the vOICe (Meijer, 
1992), PSVA (Prosthesis for Substitution of Vision by 
Audition) (Capelle et al., 1998), the device developed by 
Cronly-Dillon (Cronly-Dillon, 1999) and the Vibe 
(Hanneton et al., 2010). These systems encode a full image 
with no prior analysis of the visual scene. Thus, they 
overload the ears of the patient with wasteful sounds that 
carry useless characteristics of the image. Usually these 
systems encode the luminosity of all pixels from the image 
in the amplitude of modulated sounds. The vOICe and the 
Cronly-Dillon device use left-to-right time scanning to 
encode horizontal position. The Vibe and PSVA encode the 
entire image in one complex sound. The PSVA uses 
frequencies that are associated with each pixel and increase 
from left to right and from bottom to top of the image. The 
Vibe splits the image into several regions that are equivalent 
to receptive fields. Each receptive field is associated with a 
single sound and the sum of all sounds forms a complex 
sound transmitted to the two ears. The receptive fields 
design is inspired by work on the retina.

The challenge in this project resides in the design of a 
suitable encoding of the visual scene into auditory stimuli 
such that the content of the sound carries the most important 
characteristics of the visual scene. These sounds should be 
shaped in a way that the subject can build mental 
representations of visual scenes even if the information 
carrier is the auditory pathway. A sensorial substitution 
system using an object-based approach is described. An 
image segmentation algorithm using a spiking neural

network combined with a sound generation is proposed. 
That neural system has a good potential for object based 
image and visual scene analysis. Also, human auditory 
features such as interaural time difference (ITD) and 
interaural level difference (ILD) are used to synthesize 
sounds that better characterize the visual scene for real-life 
environments.

2. d e s c r i p t i o n

The image analysis system has to be able to find and 
track objects in image sequences. For this purpose, a spiking 
neural network that offers a good potential is used for 
object-based image processing.

2.1 Mapping between image analysis and sound 
generation

An image is presented to a one layer self-organized 
spiking neural network (Figure 1).The positions of neurons 
from a given group are encoded into the same sound.

Figure 1. Pixels are input to the neural network (1). After 
synchronization, segments appear (2) and are encoded into 
sounds (3). In (2) color encodes moments of spike times and 
thickness of lines between neurons encodes weight values.

In the two following sections, the segmentation and the sound 
generation are described.

2.2 The spiking neural network

The neural network described by Molotchnikoff and 
Rouat (2011) is used. The neuron model is the conventional 
simplistic integrate and fire neuron. The sub-threshold 
potential of the neuron with a constant input is:

(1)

is the transmembrane potential, is the input 
current. When crosses, at time , a predetermined 
threshold 0, the neuron fires. Then is reset to 
(resting potential). C is the membrane capacitance; x has the 
dimension of a time constant expressed in seconds. In this 

case — must be superior to 0 for the neuron to be able to fire.
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Each neuron characterizes a pixel of the image and is 
connected to eight neighbours. A synaptic weight between 
two neurons encodes the similarity between the respective 
features (here gray levels of pixels). The weight between 
neuron i and neuron j is computed according to:

wi,j =  1 (2)

a=0.1, 0.05 or 0.015, A=100, 128 or 200 and \ f t — fj  \ is the 
absolute value of the gray level difference between neuron i 
and neuron j. A segment represents a group of neurons that 
spike at the same time (thus being synchronized). So, 
neurons associated to pixels with a small difference in gray 
level will spike at the same time and are identified as 
belonging to the same group (segment). Results of 
segmentation with this neural network are shown in Figure 
1 and 2.

Figure 2. Input (left) and time moments of spiking (right).

2.3 Sound generation

The segmented image is then encoded into sounds. A 
single sound is generated for each segment using the 
averaged gray level, the size and the position of the segment 
in the image. S*(t) is the sound from the segment to be 

played in the right ear and S f { t )  is the one in the left ear.

Sji { t )  = A^sin {Wjt  + 4>ji )  (3)

S /( t)  = A-'sin (Wj t  + <Pf) (4)

• Wj =  ~g)  with ~g~j: average level of gray of 
the segment j

• A f  =  a .  S j  with Sj : size of the segment j 
and a  : average distance of the segment j from the 
center of the image (ILD)

=
J ■ * -  with a max the half of the width

of the image (ITD)
• The expression of 0 f  and A f  are the same than 

0 f  and A f  except that the reference locations in 
the image are different.

The complex sound is the sum of all single sounds from 
each segment. One complex sound is generated for the right 
ear and another one for the left. In short, the differences 
between the right and the left sound reside in the size of the 
objects and their positions in the image.

3. DISCUSSION AND CONCLUSIONS

The approach described in this paper is very promising. 
The next step of this project is to adapt and modify the 
neural network to identify highly textured regions of an 
image. In others words, highly textured portions of an image 
would be isolated and the most homogeneous segment 
would be identified. Using this neural network, it would be 
possible to identify textured objects (natural objects) and 
non-textured objects (objects man-made objects). The 
strength of this approach is the combination of an object- 
based image analysis with the sound generator so that 
mental visual representations can be carried via an auditory 
stimulation. Indeed, this system does not convert the entire 
image into sound but only parts corresponding to important 
features of the image. This is not the case in the literature. 
Furthermore, the sound generation is based on human 
auditory features like ITD, ILD and the size of the object for 
the depth in the image. Using this approach, it might be 
possible to help people with visual disabilities with tasks 
like localisation or shape recognition.
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