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The paper contains the proposal how to reduce many–elements plane mechanism with
one degree of freedom to chosen axis or line as one–element model of mechanism. Mostly
the place of reduction is driving element in rotary motion (for example, shaft of elec-
tric motor) or element in linear motion (for example, piston rod of hydraulic cylinder).
The way of determining reduced load and reduced mass of the model is described. Pre-
sented mathematical description let determine: firstly, required driving torque or force
to provide the suitable acceleration when loads of element are known and secondly, the
acceleration (angular or linear) of driving element as result of known driving torque or
force and loads of element.
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1. Introduction

The knowledge about mechanisms is still developing since many years before the
Middle Ages. The necessity of wider range dynamic analysis of mechanisms grew
up after steam engine invent.

Among the different kinds of mechanisms the special group represent mecha-
nisms with variable ratio. The structures and dynamics of mechanisms with variable
ratio have been analyzed by many researchers.

In work [1] an analytical procedure for synthesizing crank–rocker mechanisms
with optimum transmission angle over the working stroke is presented. In paper [2]
optimum transmission angle for given values of the slider stroke and corresponding
crank rotation is presented. In this study complex algebra is used to solve this
classical problem

Work [3] describes literature on transmission angle in a planar 4-, 5-, 6- and
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7-bar linkages and spatial linkages and shows a survey of synthesis of mechanism
with transmission angle.

In paper [4] the dynamic equations of a slider–crank mechanism driven by a
servomotor are derived by using Hamilton’s principle, Lagrange multiplier, geo-
metric constraints and partitioning method. The dynamic responses between the
experimental results and numerical simulation are compared. In this paper, a new
identification method based on the real–coded genetic algorithm (RGA) is presented
to identify the parameters of mechanism.

A chain continuously variable transmission that offers a continuum of gear ra-
tios between desired limits is described in paper [5]. Dynamic performance and
torque capacity relying significantly on the friction characteristic of the contact
patch between the chain and the pulley are taken into consideration. Two different
mathematical models of friction, the computational scheme, and the results cor-
responding to different loading scenarios are discussed to define the influence of
friction characteristics on the nonlinear dynamics and torque transmitting capacity
of a chain CVT drive.

Paper [6] describes the analysis of stability of periodical elastic motion of a
flexible four bar crank rocker mechanism using the first approximation of Liapunov’s
stability theorem and Floquet theory. A procedure for predicting the stability
is presented. Carried out experimental investigation on the stability confirm the
theoretical researches.

Paper [7] shows analysis of the infinitely variable transmissions (IVT). Experi-
mental tests let measure input and output power (a circulating one as well). The
IVT efficiency curves, in relation to the torque and the transmission ratio variation,
are presented.

Work [8] presents the kinematic and dynamic analysis of a very interesting modi-
fied slider–crank mechanism which has an additional eccentric link between connect-
ing rod and crank pin, as distinct from a conventional mechanisms. The modified
mechanism has a bigger output torque than that of the conventional mechanism.
In work [9] the transmission angle of a compliant slider–crank mechanism is intro-
duced.

Paper [10] describes efficiency of infinitely variable transmission (IVT) where the
transmission ratio may achieve zero and compares the efficiency of possible IVT con-
figurations consisting of a conventional CVT (continuously variable transmission)
coupled to a planetary gear train and a fixed ratio mechanism.

Paper [11] investigates kinematic and dynamic analyses of a novel intermittent
slider–crank mechanism, which consists of four parts: a crank, a connecting rod
associated with a pneumatic cylinder, a slider and two stops at both ends of a
stroke

In paper [12] authors are interested in the study of the dynamic behavior of a
planar flexible slider–crank mechanism with clearance. Simulation and experimental
tests are carried out.

The historical review of the gears with variable transmission ratio is presented
in paper [13].

In work [14] a triple pendulum with damping, external forcing and impact is
investigated. Some numerical examples for three coupled identical rods with hori-
zontal barrier are shown.
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The literature review shows that the slider crank mechanisms are well recog-
nized. All mentioned mechanisms are investigated by using relatively complicated
numerical methods.

However, there are another plane mechanisms with v ariable ratio and design
engineers have to solve calculate problems connected with them especially, when
mass forces and torques are taken into consideration. As examples jib mechanism
of harbor jib crane (Fig. 1) and jib mechanism of truck mounted crane (Fig. 2) are
chosen.

Figure 1 Harbor jib crane

Figure 2 Track mounted crane
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For analyzing mechanism, particularly for selection of driving engine there is com-
fortably to reduce many–element plane mechanism with one degree of freedom to
one–element mechanism model (most often to engine driving shaft or to moving
element of linear motor).

The following assumptions are made:

• elements of mechanisms are rigid (not deformable),

• elements connections are realized as slidable or rotational kinematic pairs,

• considered mechanisms are simple, it means there is only one place (point or
element) of power delivery and only one place (point or element) of power
receiving,

• all elements of mechanisms move only in one plane; in progressive motion, or
rotation motion, or plane motion,

• the mechanism has only one degree of freedom, it means: the position, ve-
locity and acceleration of one element determines the position, velocity and
acceleration of each other element.

In the paper the method of creating the one-element dynamic model of mechanism
reduced to chosen element (mostly driving one) is described. The relationships
between velocities and accelerations (linear and angular) of different elements are
shown. The way of reducing loads and masses of any element to chosen driven
element is explained.

2. Mechanism in plane motion with rotary driving element

2.1. Example of mechanism

In Fig. 3 the four–jointed (S, A, B, D) mechanism is showed. The driving crank 1
rotates round stationary point S and drives other elements of mechanism; element
2 in plane motion and element 3 rotating round stationary point D. The element 2
has center of gravity in point C, temporary center of rotation – in point CI . There
is taken assumption that only element 2 has mass mC and moment of inertia IC in
respect of center of gravity C.

The element 2 is loaded by force F̄C applied to its gravity center C and by
torque TC . The driving torque TS is applied to crank 1.

Other designations in Fig. 1 are as follows:
ωS – angular velocity of crank 1,
εS – angular acceleration of crank 1,
v̄C – vector of element 2 gravity center C velocity,
avC – point C acceleration tangent component (in direction of velocity vector v̄C),
F̄v

C – vector of force F̄C projection on direction of velocity vector v̄C ,
ωC – angular velocity of element 2,
εC – angular acceleration of element 2.
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In analysis of motion of mechanism showed in Fig. 3 two cases are considered.

1. The angular acceleration εS is known and required driving torque TS is the
result.

2. The driving torque TS is known and angular acceleration εS is the result.

C
v

DS

- element of power delivery

wS

A

BC

C
I

eS

2

1

eCwC

v

C
F

C
F

- element of power receiving

3

a

mC IC

C
T

S
T

v

C
a

Figure 3 Four-jointed (S, A, B, D) mechanism with driving crank 1 and driven element 2 in plane
motion

2.2. Velocity and acceleration of element 2

There is interdependence between velocities and accelerations of elements 1 and 2.
The connections between velocities are given by formulas (1) and (2).

|v̄C |
ωS

=
vC
ωS

= Rz (1)

Rz – effective radius of mechanism for elements 1 and 2,

|v̄C | = vC – value of point C velocity vector.

ωS

ωC
= im (2)

im – ratio of mechanism between elements 1 and 2.

The effective radius Rz and ratio im are v ariable but always can be determined
dependently on position of mechanism given by angle α of crank 1 turn.

For further consideration the v alue of point C acceleration tangent component
avC in direction of velocity vector v̄C is important. Other components of point C
acceleration don’t have influence on power balance of mechanism.
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The component avC is determined as follows:

avC =
d

dt
|v̄C | =

d

dt
(RzωS) = Rz

dωS

dt
+ ωS

dRz

dt
dα

dt
= ωS

dωS

dt
= εS

dRz

dt
=

dRz

dα

dα

dt
=

dRz

dα
ωS (3)

avC = RzεS + ω2
S

dRz

dα
avC0 = RzεS ∆avC = ω2

S

dRz

dα
avC = avC0 +∆avC

The value of acceleration avC is the sum of avC0 depending on angular acceleration
εS of crank 1 and ∆avC depending on angular velocity of crank 1 ωS squared. This
component is equal zero when Rz = const.

The value of element 2 angular acceleration is determined as follows.

εC =
dωC

dt
=

d

dt

(
ωS

im

)
=

dωS

dt im − ωS
dim
dt

i2m
=

1

im

dωS

dt
− ωS

i2m

dim
dt

dα

dt
= ωS

dωS

dt
= εS

dim
dt

=
dim
dα

dα

dt
=

dim
dα

ωS (4)

εC =
εS
im

− ω2
S

i2m

dim
dα

εC0 =
εS
im

∆εC = −ω2
S

i2m

dim
dα

εC = εC0 +∆εC

The value of angular acceleration εC is the sum of εC0 depending on angular accel-
eration εS of crank 1 and ∆εC depending on angular velocity of crank 1 ωS squared.
This component is equal zero when im = const.

2.3. Motion equations of mechanism

The formula (5) determines efficiency of mechanism between elements 1 and 2 and
describes power balance of mechanism.

ηm =
Pu

Pin
(5)

Pu – power necessary to move element 2 (including mass forces),
Pin – power delivered to element 1.

Pu = −F̄C v̄C +mCa
v
CvC + TCωC + ICεCωC

(6)

= F v
CvC +mCa

v
CvC + TCωC + ICεCωC∣∣F̄v

C

∣∣ = F v
C – value of force vector F̄C projection on direction of velocity vector v̄C ,

F v
CvC – power necessary to overcome force F̄C ,

mCa
v
CvC – power necessary to accelerate element 2,

TCωC – power necessary to overcome torque TC ,
ICεCωC – power necessary to set angular acceleration of element 2.

Pin = TSωS (7)
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By using formulas (6) and (7) in (5) formula (8) can be determined.

ηm =
F v
CvC +mCa

v
CvC + TCωC + ICεCωC

TSωS
(8)

The torque TS needful for driving crank 1 is determined from relation (8).

TS = F v
C

vC
ωS

1

ηm
+mCa

v
C

vC
ωS

1

ηm
+ TC

ωC

ωS

1

ηm
+ ICεC

ωC

ωS

1

ηm
(9)

After using relations (1) ÷ (4) the following formulas are correct.

TS = F v
C

Rz

ηm
+mC

Rz

ηm
avC +

TC

imηm
+

IC
imηm

εC

= F v
C

Rz

ηm
+mC

Rz

ηm
(avC0 +∆avC) +

TC

imηm
+

IC
imηm

(εC0 +∆εC)

= F v
C

Rz

ηm
+mC

Rz

ηm

(
RzεS + ω2

S

dRz

dα

)
+

TC

imηm
(10)

+
IC

imηm

(
εS
im

− ω2
S

i2m

dim
dα

)
= F v

C

Rz

ηm
+mC

R2
z

ηm
εS +mC

ω2
S

ηm
Rz

dRz

dα

+
TC

imηm
+

IC
i2mηm

εS − ICω
2
S

ηm

1

i3m

dim
dα

When the system is massless (mass mC and moment of inertia IC can be neglected)
the relation (10) describing torque TS simplifies.

TS = P v
C

Rz

ηm
+

TC

imηm
TS = TSu TSu = F v

C

Rz

ηm
+

TC

imηm
(11)

The torque TSu (11) is named the static load torque reduced to crank 1 (exactly to
shaft S of crank 1).

When mass mC and moment of inertia IC have to be taken into consideration
but the effective radius Rz and the ratio im are constant:(

Rz = const ∧ im = const ⇒ dRz

dα
= 0 ∧ dim

dα
= 0

)
the relation (10) describing torque TS changes.

TS = TSu +

(
mC

R2
z

ηm
+

IC
i2mηm

)
εS

TS = TSu + IzSεS (12)

IzS = mC
R2

z

ηm
+

IC
i2mηm

The moment of inertia IzS is named the effective moment of inertia reduced to
crank 1 (exactly to shaft S of crank 1).

In general case the torque TS can be determined by relation (13).

TS = TSu + IzSεS +mC
ω2
S

ηm
Rz

dRz

dα
− ICω

2
S

ηm

1

i3m

dim
dα

(13)
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The two last components of relation (13) are named the torque (-∆MS) and devel-
oped as follows.

−∆MS = mC
ω2
S

ηm
Rz

dRz

dα
− ICω

2
S

ηm

1

i3m

dim
dα

= mC
ω2
S

ηm

1

2

d

dα

(
R2

z

)
− ICω

2
S

ηm

(
−1

2

)
d

dα

(
1

i2m

)
=

1

2
ω2
S

[
d

dα

(
mC

R2
z

ηm

)
+

d

dα

(
IC

i2mηm

)]
(14)

=
1

2
ω2
S

d

dα

(
mC

R2
z

ηm
+

IC
i2mηm

)
=

1

2
ω2
S

dIzS
dα

2.4. One–element dynamic model of mechanism

The component (14) has measure of torque. The additional torque ∆MS is described
by relation (15).

∆TS = −1

2
ω2
S

dIzS
dα

(15)

Using relations (14) and (15) in (13) the equation describing motion of mechanism
can be presented.

TS = TSu + IzSεS −∆TS (16)

The equation (16) describes the motion of one–element dynamic model of mecha-
nism reduced to shaft S of the crank 1. It is shown in Fig. 4.

Su
T

S
T

S

S

TD

shaft
of crank 1

zS
I

wS

eS

Figure 4 One–element dynamic model of mechanism reduced to shaft S of crank 1



The Dynamic Model of Plane Mechanism ... 401

The relation (16) is useful when angular crank acceleration εS is known and calcu-
lation of driving torque TS is demanded.

When driving torque TS is known and calculation of angular crank acceleration
εS is necessary there is comfortably to transform equation (16) to the form (17):

IzSεS = TS − TSu +∆TS (17)

All formulas above are correct by assumption that power is delivered to crank 1
and received from element 2 (the power transfer from crank 1 to element 2). This
case is characteristic by positive value of power Pin = TS · ωS (Pin > 0).

When the power is transferred in opposite direction from element 2 to crank 1
(Pin = TSωS < 0) the formulas (6) ÷ (16) are some different. It is easy to show that
in this case the factor of efficiency ηm appears in numerator and not in denominator
of adequate fractions.

2.5. Analytical example

In Fig. 5 the slider–crank mechanism containing driving crank 1 (length r), connecting–
rod 2 (length l) and piston 3 is shown.

Figure 5 Example of slider–crank mechanism

The driving torque TS is applied to crank 1, only the piston 3 has mass mC and can
move along v ertical line without rotation. The piston 3 is loaded by vertical force∣∣F̄C

∣∣. The crank 1 turns round point (shaft) S with determined angular velocity ωS

and acceleration εS .
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For data showed in Fig. 5 it is necessary to calculate:

aC0 – acceleration of piston 3 caused by angular acceleration εS of crank 1,

∆aC – additional acceleration of piston 3 caused by variation of effective ra-
dius Rz,

aC – total acceleration of piston 3 (aC = aC0 +∆aC),

TSu –static load torque reduced to crank 1 (exactly to shaft S),

IzS · εS – load torque caused by angular acceleration εS of crank 1,

∆TS – additional driving torque caused by variation of effective radius Rz,

TS – total driving torque applied to crank 1 (shaft S) (TS = TSu+IzSεS−∆TS).

To simplify the problem the value of efficiency of mechanism is set as ηm = 1.
Therefore there is no necessary to test the sign of crank power Pin = MSωS in every
moment of the motion.

Using obvious laws of geometry and kinematics basing on designations in Fig. 5
the following formulas can be determined.

Effective radius Rz of mechanism for elements 3 (piston) and 1 (crank).

Rz =
vC
ωS

= r

sin α− 1

2

sin 2α√
r2

l2 − sin2 α

 (18)

The derivative of radius Rz in respect to angle α of crank 1 rotation.

dRz

dα
= r

cos α− 1

2

2 cos 2α
(

r2

l2 − sin2 α
)
+ 1

2 sin
2 2α

2
(
r2

l2 − sin2 α
) 3

2

 (19)

The radius Rz and its derivative dRz

dα are functions of variable angle α of crank 1
rotation. Their dependences on angle for range ⟨0, 360o⟩ are shown in Fig. 6.
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Figure 6 Radius Rz and its derivative dRz
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as functions of angle α of crank 1 rotation
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The effective moment of inertia IzS reduced to crank 1 (to shaft S) caused by piston
3 mass mC .

IzS = mC
R2

z

ηm
=

mCr
2

ηm

sin α− 1

2

sin 2α√
r2

l2 − sin2 α

2

(20)

The derivative of inertia moment IzS in respect to angle α of crank 1 rotation.

dIzS
dα

= 2
mCr

2

ηm

sin α− 1

2

sin 2α√
r2

l2 − sin2 α


(21)cos α−

2 cos 2α
(

r2

l2 − sin2 α
)
+ 1

2 sin
2 2α

2
(
r2

l2 − sin2 α
) 3

2
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Figure 7 The effective moment of inertia IzS and its derivative dIzS
dα

as functions of angle α of
crank 1 rotation

The effective moment of inertia IzS and its derivative dIzS
dα are functions of variable

angle α of crank 1 rotation. Their dependences on angle for range ⟨0, 360o⟩ are
shown in Fig. 7.

Using formulas (3) the acceleration aC0, ∆aC and total acceleration aC of piston
3 can be determined as functions of angle α of crank 1 rotation. These dependences
are shown in Fig. 8.

The torque TS necessary to drive crank 1 with constant angular acceleration εS
and still constant angular velocity ωS and its components TSu, (IzS · εS) and ∆TS

can be determined from relations 11 ÷ 16. Their dependences on angle α of crank
1 rotation for range ⟨0, 360o⟩ are shown in Fig. 9.
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Figure 8 The acceleration aC0, ∆aC and total acceleration aC of piston 3 as functions of angle
α of crank 1 rotation
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Figure 9 The torque TS and its components TSu, (IzS · εS) and ∆TS as functions of angle α of
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3. Mechanism in plane motion with linear motor

3.1. Example of mechanism

In Fig. 10 the scheme of four–jointed (A, B, D, E) crane jib mechanism is showed.
The jib of the crane 2 rotates round stationary point A and is driven by connected
linear motor 1 (for example hydraulic cylinder) and drives other elements of mech-
anism; jib beak 3 in plane motion and connector 4 rotating round stationary point
E. The beak 3 has center of gravity in point C, temporary center of rotation – in
point CI . There is taken assumption that only element 3 has mass mC and moment
of inertia IC in respect of center of gravity C.

The beak 3 is loaded by force F̄C applied to its gravity center C and by
torque TC . The driving force F̄S is applied to moving element (piston rod of hy-
draulic cylinder) of linear motor 1 and has its direction.
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Figure 10 Four–jointed (S, A, B, D) mechanism with driving crank 1 and driven element 3 in
plane motion

Other designations in Fig. 10 are as follows:

v̄S – vector of v elocity of linear motor 1 moving element (piston rod of hydraulic
cylinder) in point S (vector v̄S is directed along axis of hydraulic cylinder),

āvS – tangent component of acceleration of piston rod in point S (it has direction
of vector v̄C velocity and its value is |āvS | = avS = dvS

dt ),

v̄C – vector of beak 3 gravity center C velocity,

avC – point C tangent acceleration component in direction of velocity vector v̄C ,

F̄v
C – vector of force F̄C projection on direction of velocity vector v̄C ,

ωC – angular velocity of beak 3,

εC – angular acceleration of beak 3.

In analysis of motion of mechanism showed in Fig. 10 two cases are considered.

1. The acceleration avS is known and required driving force FS is the result.

2. The driving force FS is known and acceleration avS is the result.
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3.2. Velocity and acceleration of element 3 (jib beak)

There is interdependence between velocities and accelerations of elements 1 and 3.
The connections between velocities are given by formulas (22) and (23).

|v̄S |
ωC

=
vS
ωC

= Re (22)

Re – effective radius of mechanism for elements 1 and 3,
|v̄S | = vS – value of piston rod of hydraulic cylinder velocity vector in point S.

|v̄S |
|v̄C |

=
vS
vC

= iv (23)

iv – ratio of mechanism between elements 1 and 3,
|v̄C | = vC – value of point C velocity vector.
The effective radius Re and ratio iv are variable but always can be determined

dependently on position of mechanism given by length x of linear motor 1 (x = SF).
For further consideration the value of point C acceleration tangent component

avC in direction of velocity vector v̄C is important. Other components of point C
acceleration don’t have influence on power balance of mechanism. The component
avC is determined as follows.

avC =
d

dt
|v̄C | =

d

dt

(
vS
iv

)
=

dvS
dt iv − vS

div
dt

i2v
=

1

iv

dvS
dt

− vS
i2v

div
dt

dx

dt
= vS

dvS
dt

= avS
div
dt

=
div
dx

dx

dt
=

div
dx

vS (24)

avC =
avS
iv

− v2S
i2v

div
dt

avC0 =
avS
iv

∆avC = −v2S
i2v

div
dt

avC = avC0 +∆avC

The value of acceleration avC is the sum of avC0 depending on point S tangent accel-
eration avS of piston rod 1 and ∆avC depending on point S velocity vS of piston rod
1 squared. This component is equal zero when iv = const.

The value of element 3 angular acceleration is determined as follows.

εC =
dωC

dt
=

d

dt

(
vS
Re

)
=

dvS
dt Re − vS

dRe

dt

R2
e

=
1

Re

dvS
dt

− vS
R2

e

dRe

dt

dx

dt
= vS

dvS
dt

= avS
dRe

dt
=

dRe

dx

dx

dt
=

dRe

dx
vS (25)

εC =
avS
Re

− v2S
R2

e

dRe

dx
εC0 =

avS
Re

∆εC = − v2S
R2

e

dRe

dx

εC = εC0 +∆εC

The value of angular acceleration εC is the sum of εC0 depending on point S tangent
acceleration avS of piston rod 1 and ∆εC depending on point S velocity vS of piston
rod 1 squared. This component is equal zero when Re = const.
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3.3. Motion equation of mechanism

The formula (5) repeated as (26) determines efficiency of mechanism between ele-
ments 1 and 2 and describes power balance of mechanism.

ηm =
Pu

Pin
(26)

Pu – power necessary to move jib beak 3 (including mass forces),
Pin – power delivered to cylinder 1.

Power Pu can be described by formula (6) repeated as (27).

Pu = −F̄C v̄C +mCa
v
CvC + TCωC + ICεCωC

(27)

= F v
CvC +mCa

v
CvC + TCωC + ICεCωC

Variables present in right side of formula (27) are described in chapter 2.3 and
are connected with jib beak 3:

Pin = FS · vS (28)

By using formulas (27) and (28) in (26) formula (29) can be determined:

ηm =
P v
CvC +mCa

v
CvC +MCωC + ICεCωC

FSvS
(29)

The driving force FS is determined from relation (29):

FS = P v
C

vC
vS

1

ηm
+mCa

v
C

vC
vS

1

ηm
+MC

ωC

vS

1

ηm
+ ICεC

ωC

vS

1

ηm
(30)

After using relations (22) ÷ (25) the following formulas are correct.

FS =
P v
C

ivηm
+

mC

ivηm
avC +

MC

Reηm
+

IC
Reηm

εC

=
P v
C

ivηm
+

mC

ivηm
(avC0 +∆avC) +

MC

Reηm
+

IC
Reηm

(εC0 +∆εC)

=
P v
C

ivηm
+

mC

ivηm

(
avS
iv

− v2S
i2v

div
dt

)
+

MC

Reηm

+
IC

Reηm

(
avS
Re

− v2S
R2

e

dRe

dx

)
(31)

=
P v
C

ivηm
+

mC

i2vηm
avS − mCv

2
S

ηm

1

i3v

div
dt

+
MC

Reηm
+

IC
R2

eηm
avS − ICv

2
S

ηm

1

R3
e

dRe

dx

When the system is massless (mass mC and moment of inertia IC can be neglected)
the relation (31) describing force FS simplifies.

FS =
P v
C

ivηm
+

MC

Reηm
FS = FSu FSu =

P v
C

ivηm
+

MC

Reηm
(32)
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The force FSu (32) is named the static load force reduced to linear motor 1 (exactly
to piston rod of cylinder 1).

When mass mC and moment of inertia IC have to be taken into consideration
but the effective radius Re and the ratio iv are constant:(

Re = const ∧ iv = const ⇒ dRe

dx
= 0 ∧ div

dx
= 0

)
the relation (32) describing force FS changes.

FS = FSu +

(
mC

i2vηm
+

IC
R2

eηm

)
avS

FS = FSu +mzSa
v
S (33)

mzS =
mC

i2vηm
+

IC
R2

eηm

The mass mzS is named the effective mass reduced to linear motor 1 (exactly to
point S of cylinder piston rod 1).

In general case the force FS can be determined by relation (34).

FS = FSu +mzSa
v
S − mCv

2
S

ηm

1

i3v

div
dt

− ICv
2
S

ηm

1

R3
e

dRe

dx
(34)

The two last components of relation (34) are named the force (-∆FS) and developed
as follows.

−∆FS = −mCv
2
S

ηm

1

i3v

div
dt

− ICv
2
S

ηm

1

R3
e

dRe

dx

= −mCv
2
S

ηm

(
−1

2

)
d

dx

(
1

i2v

)
− ICv

2
S

ηm

(
−1

2

)
d

dx

(
1

R2
e

)
=

1

2
v2S

[
d

dx

(
mC

i2vηm

)
+

d

dx

(
IC

R2
eηm

)]
(35)

=
1

2
v2S

d

dx

(
mC

i2vηm
+

IC
R2

eηm

)
=

1

2
v2S

dmzS

dx

3.4. One–element dynamic model of mechanism

The component (35) has measure of force. The additional force ∆FS is described
by relation (36):

∆FS = −1

2
v2S

dmzS

dx
(36)

Using relations (35) and (36) in (34) the equation describing motion of mechanism
can be presented:

FS = FSu +mzSa
v
S −∆FS (37)

The equation (37) describes the motion of one-element dynamic model of mechanism
reduced to linear motor 1 (exactly to point S of cylinder piston rod 1). It is shown
in Fig. 11.
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FS

FD

piston rod 1 of cylinder
reduced to point S

zS
m

vS
aS

FSu

mzS

Figure 11 One–element dynamic model of mechanism reduced to linear motor 1

The relation (37) is useful when piston rod acceleration aS is known and calculation
of driving force FS is demanded.

When driving force FS is known and calculation of piston rod acceleration aS is
necessary there is comfortably to transform equation (37) to the form (38).

mzSa
v
S = FS − FSu +∆FS (38)

All formulas above are correct by assumption that power is delivered to piston rod 1
and received from jib beak 3 (the power transfer from linear motor 1 to element 3).
This case is characteristic by positive value of power Pin = FSvS (Pin > 0).

When the power is transferred in opposite direction from element 3 to piston
rod 1 (Pin = FSvS < 0) the formulas (27)–(35) are different. It is easy to show that
in this case the factor of efficiency ηm appears in numerator and not in denominator
of adequate fractions.

3.5. Analytical example

Fig. 12 shows the mechanism containing linear motor 1 driving jib 2 (length l)
which rotates around stationary point A.

The driving force F̄S is applied to moving element of linear motor 1 and has its
direction. With the end of the jib 2 is connected element 3 treated as material point
C (moment of inertia IC = 0) which as the only one has mass mC and is loaded
by its weight F̄C = mC · ḡ. The linear motor 1 can change length x, its moving
part in point S has determined velocity v̄S and tangent acceleration component āvS .
The velocity v̄S has direction SB and its value is vS = |v̄S |. Component āvS has
direction of vector v̄C velocity and its known value is |āvS | = avS = dvS

dt . For data
showed in Fig. 12 it is necessary to calculate:

avC0 – tangent acceleration of point C caused by acceleration āvS of linear motor
1 moving element,

∆avC – additional tangent acceleration of point C caused by variation of ratio iv,
avC – total tangent acceleration of point C (avC = avC0 +∆avC),
FSu – static load force reduced to linear motor 1,
mzSa

v
S – load force caused by acceleration avS of linear motor 1 moving element,

∆FS − additional driving force caused by variation of ratio iv,
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FS – total driving force applied to moving element of linear motor 1
(FS = FSu +mzSa

v
S −∆FS).
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m

v

C
F
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F
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v

S
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2b

C

g = 9,81 m/s
2

Figure 12 Example of jib mechanism

To simplify the problem the value of efficiency of mechanism is set as ηm = 1.
Therefore there is no necessary to test the sign of linear motor power Pin = FSvS
in every moment of the motion.

Using obvious laws of geometry and kinematics basing on designations in Fig. 12
the following formulas can be determined.

Ratio iv of mechanism for elements 3 and point S of linear motor 1 moving
element.

iv =
vS
vC

=
e

l

√
1−

(
x2 + e2 − b2

2e · x

)2

(39)

The derivative of ratio iv in respect to length x of linear motor 1.

div
dx

= −e2

l2
x4 −

(
e2 − b2

)2
4e2x3 · e

l

√
1−

(
x2+e2−b2

2e·x
)2 (40)

The effective mass mzS reduced to point S of linear motor 1 moving element caused
by element 3 mass mC .

mzS = mC l
2 · 4x2

4e2x2 − (x2 + e2 − b2)
2 (41)
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Figure 13 Ratio iv and its derivative div
dx

as functions of linear motor 1 length x

The derivative of mass mzS in respect to linear motor length x.

dmzS

dx
=

1

2
mC

l2

e4
x4 −

(
e2 − b2

)2
x3

[
1−

(
x2+e2−b2

2e·x
)2]2 (42)

The effective mass mzS and its derivative dmzS

dx are functions of variable length x
(segment SB) of linear motor 1. Their dependences on x for range ⟨2,2 m, 3,2 m⟩
are shown in Fig. 14.
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Figure 14 The effective mass mzS and its derivative dmzS
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as functions of linear motor 1 length
x

The ratio iv and its derivative div
dx are functions of variable length x (segment SB)

of linear motor 1. Their dependences on x for range ⟨2,2 m, 3,2 m⟩ are shown in
Fig. 13.
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Using formulas (24) the acceleration avC0, ∆avC and total tangent acceleration
avC of element 3 can be determined as functions of linear motor 1 length x. This
dependence is shown in Fig. 15.
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Figure 15 The tangent accelerations avC0, ∆avC and total tangent acceleration avC of element 3
as functions of linear motor 1 length x

The force FS necessary to move linear motor 1 with constant tangent acceleration
avS and still constant velocity vS of its moving part in point S and its components
FSu, (mzS · avS) and ∆FS can be determined from relations (32) ÷ (37). Their
dependences on length x of linear motor 1 for range ⟨2,2 m, 3,2 m⟩ are shown in
Fig. 16.
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and ∆FS as functions of length x
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4. Conclusions

1. Every one degree of freedom plane mechanism with rigid connections and
variable ratio and effective radius can be reduced to driving element as one–
element dynamic model:

(a) with variable effective moment of inertia in case of rotating motor (Fig. 8)
or

(b) with variable effective mass in case of linear motor (Fig. 11).

2. It is necessary to know:

– For rotating driving element:

1. the ratio im and effective radius Rz between driving element and considered
element in every position of mechanism given by angle α of driving shaft
rotation,

2. their derivatives in respect to angle α of driving shaft rotation dim
dα , dRz

dα .

– For linear driving motor:

1. the ratio iv and effective radius Re between driving element and considered
element in every position of mechanism given by length x of linear motor.

2. their derivatives in respect to length x of linear motor div
dx ,

dRe

dx .

When the geometry of mechanism is determined it is possible.

1. The knowledge of variables specified above let calculate accelerations (linear
and angular) of considered element; primary ones dependent on acceleration
(angular εS or linear avS) of driving element and additional ones dependent on
velocity (angular ωS or linear vS) of driving element caused by variable ratio
and effective radius of mechanism.

2. The derived formulas let determine the main parameters of dynamic model of
mechanism reduced to:

- driving shaft;

1. the reduced moment of inertia IzS as a function of angle α of driving shaft
rotation,

2. its derivative dIzS
dα in respect to angle α.

- linear motor;

1. the reduced mass mzS as a function of linear motor length x,

2. its derivative dmzS

dx in respect to length x.
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3. All loads of mechanism must be reduced to driving shaft (torques MSu and
∆M in Fig. 8) or to linear motor (forces FSu and ∆F in Fig. 11). The proper
formulas are defined in the paper.

4. The relations derived in the paper cover two cases and let calculate:

- For rotating driving element:

1. driving torque MS when angular driving shaft acceleration εS is known,

2. angular shaft acceleration εS when driving torque MS is known.

– For linear driving motor:

1. driving force FS when linear motor acceleration avS is known,

2. linear motor acceleration avS when driving force FS is known.

3. In the paper there is described situation where only one element of mechanism
has mass and moment of inertia. When more or all elements of mechanism
with one degree of freedom have masses and moments of inertia the loads and
masses can be reduced to driving element by using superposition method.
Load and mass (and moment of inertia) of each element have to be reduced
to driving element separately and then all reduced loads and masses should
be summed up to reach resultant reduced load and mass of the model.
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