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The paper deals with the elasto–plastic buckling of thin–walled Fiber Metal Laminates
short columns/profiles subjected to axial uniform compression. Structures of open and
hollow (closed) cross-sections are considered build of flat plate walls. Multilayered FML
walls are considered as built of alternating layers of aluminum and fiber–glass composite.
Three elastic–plastic theories are employed for constitutive relations description of alu-
minum layers i.e. fully elastic material behavior, the J2–deformation theory of plasticity
and the J2–flow theory later both with Ramberg-Osgood formula application, whereas
composite layers are assumed elastic within whole loading range. Some exemplary re-
sults determined with the application of own analytical–numerical method based on the
Koiter’s theory, in the Byskov and Hutchinson formulation are enclosed in the form of
tables and plots.
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1. Introduction

The aeronautical engineering still has been looking for structural materials which
fulfil tough requirements in terms of weight, strength, serviceable properties and
economy. Last several decades have brought some material solutions which have
attained these somewhat inconsistent demands. High strength alloys, as well as
fiber-reinforced composites are widely applied in aircraft design despite some dis-
advantages as poor impact resistance and fatigue properties. Thus the fiber metal
laminates are regarded as better materials combining the best features of fiber-
reinforced composites and metals. At the first place comes their higher damage
tolerance with superior fatigue behavior. These features and permanently weight
saving lead however to interest in a stability analysis which still has been within the
research topics. Possible sever conditions of aircraft members made of FML type
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materials are also the reason of elastic-plastic deformations in the metallic layers
and the source of buckling research in the elastic–plastic range.

In our authors’ team the elasto–plastic buckling of thin–walled structures has
been the scientific topic of interest of late Professor Katarzyna Kowal–Michalska
[21]. Also this aspect of research Professor Kowal–Michalska has initiated in our
investigations of FML panels. Thus this paper is the result of our cooperation within
common scientific activity devoted to elasto–plastic buckling of FML columns.

Fiber Metal Laminates (FMLs) are hybrid materials, built from alternately
bonded thin layers of metal alloy and fiber reinforced epoxy resin. These materials
are manufactured in autoclaving process by bonding composite plies to metal ones.
FMLs, with respect to metal layers, can be divided into FMLs based on aluminum
alloys (ARALL reinforced with aramid fibers, GLARE - glass fibers, CARALL – car-
bon fibers) and others. Nowadays material such as GLARE (glass fiber/aluminum)
due to their very good fatigue and strength characteristics combined with the low
density find increasing use in aircraft industry [19].

Within the recent literature one can find numerous publications concerning sin-
gular isolated plates of different isotropic material properties which work in the
post–buckling elastic and elastic–plastic range but there are relatively few works
dedicated to complex plate structures made of composite and/or laminate ma-
terials [2÷4, 7, 16]. In the last years, due to widespread of professional Finite
Element Method software application, several publications appeared where full
force-shortening curves (until fracture) of structures were determined. It concerns
structures with a complex cross section made of different materials - also including
orthotropic material [9, 14, 15].

In few works [6, 7, 13, 17] one can find the solution to the stability problem of
thin–walled columns made of isotropic and orthotropic materials in elastic–plastic
range. In the current study analogous issue for multi–layered materials of Fiber
Metal Laminate type is considered.

a)

Figure 1 Open cross–sections analyzed columns

GLARE type FML consists of alternate thin aluminum sheets and unidirectional
high–strength glass fiber layers pre–impregnated with adhesive. Usually each glass
composite layer is composed of a certain number of unidirectional (UD) plies which
are stacked either unidirectional, in a cross–ply or angle–ply arrangement [18]. The
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number of layers, plies orientation and the stacking sequence of the UD plies in the
entire FML panel depend on the GLARE grade. For example, a GLARE 2 has two
UD plies in a particular composite layer with the same 0-degree orientation, while a
GLARE 3 has two mutually perpendicular UD plies (cross–ply arrangement). The
most common type of aluminum applied in GLARE is 2024-T3 Alloy [19].

When the plate structures made of GLARE is subjected to in-plane uniform
compression in the elastic–plastic range of stresses, the buckling occurs in such
a way that aluminum layers become plastic but the glass layers remain elastic.
Therefore the behavior of such structures differs significantly from the behavior of
pure aluminum ones.

a) b)

Figure 2 Calculated G12 lamina modulus

2. Subject of Consideration

Under consideration were prismatic thin–walled structures built of FML plates con-
nected along longitudinal edges creating profile/column member of hollow or open
section presented in Fig. 1 and Fig. 2, respectively. The entire structure is sub-
jected to uniform axial loading and both its loaded ends are simply supported. In
order to account for all possible modes of global, local and coupled buckling, a plate
model of thin–walled structure has been adopted. It was also assumed that both
component materials the structure is made of obey the Hooke’s law.

3. Method of Solution

The problem of buckling in the elastic–plastic range of thin–walled FML pro-
files/columns, axially loaded by uniformly distributed compression, is investigated
basing on the analytical–numerical method (ANM) elaborated for the analysis of
the elastic stability of multi-layered thin–walled columns [8]. The nonlinear consti-
tutive relations between stress and strain for a singular elastic-plastic component
layer is derived on the basis of the J2–deformation theory of plasticity (i.e. DT)
or the J2–flow theory (i.e. incremental theory of plasticity – IT) with Ramberg–
Osgood formula application. Thus, these relations for material of FML metallic
layers in the elastic range is simply defined as

σ = Eε for σ ≤ σ0 (1)
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whereas the elastic–plastic stress-strain behaviour of FML aluminium layer is de-
scribed by a Ramberg-Osgood representation of the following type [6, 7]

σ =
(E − EY )ε[

1 +
(

(E−EY )ε
σY

)N
] 1

N

+ EY ε for σ ≥ σ0 (2)

where: σ – stress, ε – strain, E – Young’s modulus, σ0 – proportional limit, σY

– conventional yield limit, Ey – tangent modulus corresponding to the yield limit
σY , N – exponent in the Ramberg-Osgood formula. The orthotropic composite
layers are assumed to have only elastic properties due to the linear stress-strain
characteristic up to fracture.

For any orthotropic plate the constitutive relationships for the elastic range and
the elastic–plastic range have very similar or even identical form (Eq. 3) [7, 11]

Elastic range Inelastic range

σx = K11εx +K12εy
σy = K12εx +K22εy
τxy = K33γxy

σx = A11εx +A12εy
σy = A12εx +A22εy
τxy = A33γxy

(3)

Therefore comparing the corresponding coefficients in both relations, the instanta-
neous conventional parameters of ‘elastic composite’ for particular layers of entire
FML structure can be found out. In a consequence the problem of inelastic stability
of FML structures can be analyzed in the analogous way as the problem of elastic
composite structures. The coefficients A11 − A33 in (Eq. 3) determined on the
basis of the J2 – deformation (DT) or J2 – flow (IT) theory of plasticity depend
on the appropriate Young’s modulus, secant and tangent moduli for the considered
material layer characteristics in the elastic–plastic range.

The examined problem is solved in a numerical way. The elastic problem is
solved based on the asymptotic Koiter’s theory [5], in the Byskov and Hutchin-
son formulation [1]. The solution of the first order approximation enables one to
determine the values of buckling global and local loads and the corresponding buck-
ling modes. This analytical–numerical method [7, 8, 12] created to solve the elastic
buckling problem is applied here to calculate critical load values and buckling modes
for inelastic thin–walled FML columns and panels response. For particular column
geometrical dimensions and material data constants of singular FML layer, for an
assumed number of buckling half–waves, the elastic buckling stress for the consid-
ered FML structure is calculated. The most important advantage of this method
is that it enables one to describe a complete range of a buckling behaviour of thin–
walled structures from a global (i.e. flexural, flexural–torsional, lateral, distortional
buckling and their combinations) to a local stability, including a mixed buckling
modes [7, 8, 12].

Further, a zero value of the function f = f(σ − σe) is searched to apply the
method of secants, where σe is the value of the critical stress of the ”elastic or-
thotropic” structure. A reasonable accuracy is assumed during the computations,
that is σ ≈ σe when (σ − σe) · 100%/σ ≤ 0.01%.

The proposed method allows to consider the transition of buckling mode together
with the increase of loading as distinct from the usual assumption that the elastic–
plastic buckling mode is analogical to the elastic one.
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For a given geometrical parameters, material constants of each FML layer and
for the assumed number of buckling half-waves the elastic buckling stress for the
considered composite structure is then calculated.

4. Exemplary Results of Obtained Solution

As some examples of employed method of solution to the elastic–plastic problem
of thin–walled FML hybrid composite structure few complex plate structures have
been considered (Fig. 1 and Fig. 2). It was assumed that the loaded edges of
considered structure are simply supported. In order to account for all modes of
global, local and coupled buckling, a plate model of thin–walled structure has been
employed. The overall dimensions of selected structures were chosen in such a way
that the stability loss occurs in the elastic–plastic range for aluminum layers.

In current paper the detailed analysis was performed for the four chosen FML
members which overall and cross–section parameters were as follows:

• a beam/column profile with a square cross–section (Fig. 1a) and L = 1300 mm,
b = 130 mm,

• a beam/column profile with a trapezoidal cross–section (Fig. 1b)
and L = 1300 mm, b1 = 100 mm, b2 = 140 mm, b3 = 140 mm,

• a beam/column profile with a top–hat (Fig. 2a) and a lip channel cross section
(Fig. 2b); L = 1300 mm, b1 = 130 mm, b2 = 65 mm, b3 = 15 mm.

In all presented cases L indicates the column length. Constructions under inves-
tigation are built of alternate aluminum sheets and unidirectional high strength
glass fiber layers so assumed stacking sequence corresponds to GLARE 3 grade
with 2024-T3 sheets [11], [20]. The total number of layers in considered column
walls equals 13. That leads to the total wall thickness of column/panel wall equal
to t = 4.3 mm where the thickness of singular aluminum sheets equals 0.4 mm and
of particular doubled cross–ply fiber layer is 0.25 mm. Applied in computations
mechanical properties of both isotropic layers are presented in Tab. 1 [10, 20].

Table 1 Material data of GLARE 3-7/6-0.4 (13 layers) [20]

Material
data
of GLARE
3-7/6-0.4

Elastic properties Plastic properties

Young’s
modulus

Poisson’s
ratio

Proportional
limit

Yield
limit

Tangent
modulus

Exponent
in Eq. (1)

E ν σ0 σY EY N
[GPa] [-] [MPa] [MPa] [MPa] [-]

Alumi-
nium
2024-T3

700 0.3 170 290 12.1 1.8

Prepreg 30.75 0.144 - - - -
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Some chosen results of the critical stress σcr calculations for the considered
thin–walled FML structures (Figs. 1÷2) are presented in the following figures,
respectively. Applied into the analysis three theories are distinguished in these
figures as: elastic theory EL, J2-deformation theory DT and J2-incremental theory
IT. For individual member FML’s cross-sections a stability loss can occur under
symmetry (S) and anti-symmetry (A) conditions along symmetry axis of the cross-
section. In enclosed plots the determined critical stress values are presented as a
function of the number of half-waves m formed in the longitudinal direction. The
lowest values of σcr are summarized in Tables 2÷6. The buckling modes of analyzed
FML structures are also presented in Figs. 5, 6, 8, 9, 11, 12, 14÷16.

)

5 10 15 20

0

200

400

600

800

1000

1200

1400

1600

s
y

s
cr

[
M

P
a

]

m

EL_A
EL_S
DT_A
DT_S
IT_A
IT_S

s
o

b)

5 10 15 20

100

200

300

400

s
y

s
cr

[
M

P
a

]

m

EL_A
EL_S
DT_A
DT_S
IT_A
IT_S

s
o

a

Figure 3 Plots of buckling stress σcr versus number m of half–waves m for a hollow column of
square cross–section.
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4.1. Hollow cross–sections

4.1.1. Square cross–section

The plots in Fig. 3 present critical stress values σcr for the square cross–section from
Fig. 1a. Particular curve corresponds to the particular plasticity theory and gives
the σcr value as a function of half–waves number in longitudinal direction of the
compressed column. In Tab. 2 the lowest values of critical stresses for considered
symmetry conditions on column symmetry axis are shown for comparison. Critical
stress values σcr for symmetry conditions (S) are lower than for anti–symmetry
conditions, as it was expected. The lowest value of critical stress σcr was obtained
when the deformation theory (DT) formulation was applied. From Tab. 2 it is
clearly visible that the number of half–waves corresponding to the lowest value of
σcr is different for elastic theory (i.e. m = 14) from those of deformation theory
(i.e. m = 13). Both local buckling modes determined for considered theories are
very similar for assumed boundary conditions (Figs. 4, 5).

Table 2 Square cross–section

Elastic range EL
Elastic–plastic range Conditions along

symmetry axis
of cross–section

DT IT
σcr[MPa] m σcr[MPa] m σcr[MPa] m
232 10 195 10 219 11 S
315 13 239 13 280 14 A

Figure 4 Shapes of local antisymmetric (A) buckling modes for elastic (EL) and inelastic range
(DT, IT) for square cross–section
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Figure 5 Shapes of local symmetric (S) buckling modes for elastic (EL) and inelastic range (DT,
IT) for square cross–section

4.1.2. Trapezoidal cross–section

For the trapezoidal cross–section from Fig. 1b, there are critical stress values σcr

as a function of half–waves number in longitudinal direction presented in Fig. 6 for
all considered theories (with both plasticity ones). After that, in Table 3 the lowest
values of critical stresses for considered boundary conditions on symmetry axis are
given. The local buckling modes for assumed boundary conditions are shown in Fig.
7 and 8. The conclusions from the elastic–plastic analysis of FML columns of the
trapezoidal cross–section are very similar to the comments formulated above for the
square cross-section FML column. When the final results of square and trapezoidal
cross-section columns are compared one can observed that the critical stress values
are lower for a trapezoidal–cross section column.
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Figure 6 Buckling stresses σcr versus number of axial half–waves m for trapezoidal cross–section
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Figure 7 Shapes of local antisymmetric (A) buckling modes for elastic and inelastic range for
trapezoidal cross–section

Table 3 Trapezoidal cross–section results

Elastic range EL
Elastic–plastic range Conditions along

symmetry axis par
of cross–section

DT IT
σcr

[MPa]
m σcr

[MPa]
m σcr

[MPa]
m

214 10 183 10 203 11 S
276 12 219 12 249 13 A

Figure 8 Shapes of local symmetric (S) buckling modes for elastic and inelastic range for trape-
zoidal cross–section
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4.2. Open cross–sections

In the case of examined open cross–section columns/profiles (presented in Fig. 2)
i.e. top hat and lipped channel, for assumed their overall dimensions all global
buckling modes should be examined during the analysis. It means that flexural
mode (S), distortional–flexural mode (S), flexural–torsional mode (A), distortion–
flexural–distortional mode (A)) and local buckling mode including distortional–local
modes, should be taken into account. Therefore additional indication is introduced
for open cross–section profiles - global buckling mode (i. e. m = 1) is denoted by
G and local buckling mode (i.e. m ≥ 1) by L.
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Figure 9 Buckling stresses σcr versus number of axial half–waves m for top hat

Figure 10 Shapes of global buckling modes for top hat
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Figure 11 Shapes of local anti-symmetric (A) buckling modes for a top hat profile

Figure 12 Shapes of local symmetric (S) buckling modes for top hat profile

4.2.1. Top hat

For the top hat cross–section columns/profiles (see Fig. 2 for cross–section shape)
results of critical stresses as a function of half–waves number m are presented in
Fig. 9. The lowest values of global and local critical stresses σcr are shown also
in Tab. 4. As it can be seen in this case a flexural-torsional global buckling mode
(i.e. m = 1, A) took place in the elastic range because the following relationship
is fulfilled σcr = 97MPa < σ0 = 170MPa. While a flexural buckling is observed
in the elastic–plastic range (i.e. m = 1, S). Following this observation the flexural
global buckling modes could be named as ”pure bending” (Fig. 10) while anti-
symmetry mode for elastic range is a distortional–flexural–torsional mode because
the lips are not perpendicular to the flanges (see EL A G curve in Fig. 10).

It can be seen in Table 4 that the value of the local critical stress σcr of symmetric
mode (i.e. m = 4, S) for elastic range is lower in comparison to a local anti-
symmetric mode buckling stress (i.e. m = 2, A) for elastic range. However, values
of σcr for both elastic–plastic formulations and antisymmetrical modes are lower
than the symmetric ones. For m ≥ 1 buckling modes are distortional–local modes
for both boundary conditions (Fig. 11, Fig. 12). Buckling modes are practically
the same for each of applied theories.
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Figure 13 Buckling stresses σcr versus number of axial half–waves m for lip channel column

Figure 14 Shapes of global buckling modes for lip channel

Figure 15 Shapes of local anti–symmetric (A) buckling modes for lip channel
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Table 4 Top hat results

Elastic range
EL

Elastic–plastic range Conditions along
symmetry axis
of cross–section

DT IT
σcr

[MPa]
m σcr

[MPa]
m σcr

[MPa]
m

201 1 177 1 178 1 S
257 4 201 4 220 4 S
97 1 - - - - A
267 2 196 2 202 2 A

Figure 16 Shapes of local symmetric (S) buckling modes for lip channel

Table 5 Lipped channel results

Elastic range
EL

Elastic–plastic range Conditions along
symmetry axis
of cross–section

DT IT
σcr

[MPa]
m σcr

[MPa]
m σcr

[MPa]
m

198 1 176 1 177 1 S
232 4 187 4 203 4 S
128 1 - - - - A
383 5 256 5 291 5 A
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4.2.2. Lipped channel

In Fig. 13 critical stress values σcr as a function of half–waves number m are
presented for the FML column of lipped channel cross–section. Tab. 5 shows also
the lowest values of global and local σcr for both considered boundary conditions
while corresponding to them buckling modes are given in Figs. 14÷16.

The lowest value of critical stresses σcr = 128 MPa corresponds to a global
flexural–torsional mode (i.e. m = 1, A) in elastic range (see EL A G line in Fig.
14). The global buckling stress value σcr = 198 MPa (m = 1, S) corresponds to a
distortional–flexural buckling mode for elastic range (Fig. 14). Symmetric global
buckling modes are similar for considered constitutive theories. Local buckling
stress values are lower for symmetric modes in comparison to anti-symmetry ones.

Presented in Figs 15 and 16 buckling modes are of distortional-local anti-symmetric
and symmetric type. It should be emphasized that local symmetric buckling modes
(Fig. 16) differ slightly between themselves at the junction of flanges with the lips.
In works [6, 11] for one–layered isotropic and orthotropic structures there was a
lot of variety local and global buckling modes obtained which differed significantly
between themselves for elastic and elastic–plastic range.

As it can be seen from presented in current work buckling modes for FML multi–
layered structures determined buckling modes differ at least slightly between them-
selves because particular elastic glass fibre layers work within elastic range. Thus
mechanical properties of glass fibre layer remain unchanged in elastic–plastic range
of entire FML wall, when aluminium layer changes own properties from isotropic to
orthotropic. It makes that multi–layered structures are not as sensitive to changes
of buckling modes as one–layered structures. The latter change their mechanical
properties across whole thickness in the elastic–plastic range [6, 13].

5. Conclusions

In work the comparison of critical stresses for thin–walled FML structures in elastic
and elastic-plastic range is presented. Two plasticity theories were considered i.e.
J2-deformation theory and J2-incremental theory. The lowest values of critical
stresses for all analysed structures were obtained in elastic–plastic range for the
deformation theory. It is fully consistent with results presented in literature survey.
Moreover it ought to be pointed out that:

• the solutions given here are valid in the cases of the uniform compression of
the thin–walled FML structure. Other types of loadings would need further
investigation,

• the usual assumption, made in many works in the field, that the buckling
modes in the elastic and elastic–plastic range are identical cannot be true in
some cases,

• it should be noted that the buckling modes in elastic and elastic-plastic range
can be not always cover–up.
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Jȩdrysiak, J.), A Series of Monographs, Lodz University of Technology, 2011.

[15] Kowal–Michalska, K., Ko lakowski, Z. and Kȩdziora S.: Global and local in-
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